JPH03126643A - Production of heat ray reflecting glass and coating solution - Google Patents

Production of heat ray reflecting glass and coating solution

Info

Publication number
JPH03126643A
JPH03126643A JP26208789A JP26208789A JPH03126643A JP H03126643 A JPH03126643 A JP H03126643A JP 26208789 A JP26208789 A JP 26208789A JP 26208789 A JP26208789 A JP 26208789A JP H03126643 A JPH03126643 A JP H03126643A
Authority
JP
Japan
Prior art keywords
titanium
glass
chelate compound
compound
acetylacetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26208789A
Other languages
Japanese (ja)
Other versions
JPH0725572B2 (en
Inventor
Takeshi Yamamoto
武 山本
Shigeaki Yonemori
重明 米森
Shunei Shibata
俊英 柴田
Iwakichi Sugiyama
杉山 岩吉
Akihisa Watanabe
明久 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Matsumoto Seiyaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Matsumoto Seiyaku Kogyo KK filed Critical Asahi Glass Co Ltd
Priority to JP1262087A priority Critical patent/JPH0725572B2/en
Publication of JPH03126643A publication Critical patent/JPH03126643A/en
Publication of JPH0725572B2 publication Critical patent/JPH0725572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain heat ray reflecting glass having high reflectance and high chemical resistance by coating the surface of glass at a high temp. with a soln. contg. a specified titanium chelate compd., thermally decomposing the compd. and forming a titanium oxide coating film on the surface of the glass. CONSTITUTION:Acetylacetone, octylene glycol and titanium alkoxide such as titanium tetraethoxide are brought into a reaction to produce a titanium chelate compd. having acetylacetone and octylene glycol as chelate ligands coordinated to titanium, contg. no residual TiOR group (R is monovalent alkyl) and having a first peak measured by differential thermal analysis at >300 deg.C at the time of thermal decomposition. The surface of glass at a high temp. is coated with a soln. contg. the titanium chelate compd., this compd. is thermally decomposed and a titanium oxide coating film is formed on the surface of the glass to obtain uniform heat ray reflecting glass having a uniform color.

Description

【発明の詳細な説明】 [産業上の利用分野] 本、発明は熱線反射ガラスの製造方法及びその塗布液に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing heat ray reflective glass and a coating liquid therefor.

[従来の技術] 酸化チタン被膜の物性は塗布方法やガラスの温度等、作
業条件の他に、使用されるチタン化合物や溶剤の種類な
どによって大きく影響される。特にチタン化合物の種類
とその構造は酸化チタン被膜の物性に与える影響が強い
事が知られている。これらの点に配慮して、四塩化チタ
ンや無機チタンを用いる方法(例えば特開昭56−16
0344)、チタンアルコキシドを用いる方法(例えば
特開昭56−145136)、チタンアシレートをモノ
マー又は縮合物、或いは混合した形で用いる方法(例え
ば特開昭6O−40171)等が提案されている。しか
しこれらの方゛法では、処理工程中で腐蝕性ガスが発生
したり、処理液の安定性が小さく、塗布性が悪いと言う
欠陥が認められる。更に塗布時の付着効率が低いと塗膜
面にムラが残る又は/及び白斑状の塗布ムラが発生する
事や、形成された被膜の化学的安定性と光線反射率等の
光学特性が充分でない等の欠点があったと言う事は当業
者周知の事であった。これらの欠点を回避するため、塗
布方法や、塗布時の溶剤組成の改良で欠点を軽減する試
みと共に各種のキレート化合物を用いる方法も多く提案
されている。
[Prior Art] The physical properties of a titanium oxide film are greatly influenced by the coating method, the temperature of the glass, and other working conditions, as well as the type of titanium compound and solvent used. In particular, it is known that the type of titanium compound and its structure have a strong influence on the physical properties of the titanium oxide film. Taking these points into consideration, a method using titanium tetrachloride or inorganic titanium (for example, JP-A-56-16
0344), a method using titanium alkoxide (for example, JP-A-56-145136), a method using titanium acylate as a monomer, a condensate, or a mixture (for example, JP-A-6O-40171), etc. have been proposed. However, these methods have drawbacks such as generation of corrosive gas during the treatment process, low stability of the treatment solution, and poor coating properties. Furthermore, if the adhesion efficiency during coating is low, unevenness may remain on the coating surface and/or white spot-like coating unevenness may occur, and the chemical stability and optical properties such as light reflectance of the formed coating may be insufficient. It is well known to those skilled in the art that there were such drawbacks. In order to avoid these drawbacks, many attempts have been made to alleviate the drawbacks by improving the coating method and the solvent composition during coating, as well as methods using various chelate compounds.

[発明の解決しようとする課題] 従来の提案されている方法で使用されているキレート化
合物の配位子としてはアセチルアセトン、オクチレング
リコール、トルエタノールアミン、アセト酢酸エステル
等を用いた方法(例えば特装54−32007)や特定
の構造のアルコキシチタンキレートを用いる方法(特装
57−47137)や2種以上のキレートを混合して使
用する方法(特装56−19298)を用いる方法等が
提案されている。これらのキレート化合物を用□いた方
法では、例えばアセチルアセトンキレートを用いた時、
付着効率は良いが被膜特性が不満足で′あり、オクチレ
ングリコールを用いた時は被膜特性はよいが塗布ムラや
白斑が発生し易く外観が悪く商品適性に欠けるという欠
点があった。
[Problems to be Solved by the Invention] Methods using acetylacetone, octylene glycol, toluethanolamine, acetoacetate, etc. as the ligand of the chelate compound used in the conventionally proposed methods (for example, Methods using alkoxy titanium chelate with a specific structure (Special Specification 57-47137), and methods using a mixture of two or more chelates (Special Specification 56-19298) have been proposed. ing. In methods using these chelate compounds, for example, when acetylacetone chelate is used,
Although the adhesion efficiency was good, the coating properties were unsatisfactory; when octylene glycol was used, the coating properties were good, but coating unevenness and white spots were likely to occur, and the appearance was poor, making it unsuitable for commercial use.

[課題を解決するための手段] 本発明は、ガラスにチタンキレート化合物を含む溶液を
スプレー塗布等で塗布して酸化チタン被膜を形成し熱線
反射ガラスを製造する方法においてガラスの変形が許容
範囲内に収まる温度域で処理出来て、反射特性、耐酸性
、耐アルカリ性、及び耐擦傷性が良く、白斑欠点や塗布
ムラがない商品価値の高い改良された酸化チタン被膜を
もつ熱線反射ガラスの製造法及びこれに用いる塗布液を
提供する事を目的とするものである。
[Means for Solving the Problems] The present invention provides a method for manufacturing heat-reflecting glass by applying a solution containing a titanium chelate compound to glass by spray coating or the like to form a titanium oxide film, in which the deformation of the glass is within an allowable range. A method for producing heat-reflective glass with an improved titanium oxide coating that can be processed in a temperature range within The object of the present invention is to provide a coating liquid for use therein.

即ち、本発明は高温のガラス表面にチタンキレート化合
物を含む溶液を塗布し、熱1分解させて、該表面に酸化
チタン被膜を形成させる方法において、上記チタンキレ
ート化合物としてアセチルアセトンとオクチレングリコ
ールをチタンに配位するキレート配位子とし、実質的に
Ti−OR基(Rは1価のアルキル基を示す)の残留が
なく、示差熱分析で、熱分解による最初のピークが30
0℃以上の化合物を用いることを特徴とする熱線反射ガ
ラスの製造方法を提供するものである。
That is, the present invention provides a method in which a solution containing a titanium chelate compound is applied to a high-temperature glass surface and thermally decomposed to form a titanium oxide film on the surface. It is a chelate ligand that coordinates to
The present invention provides a method for producing a heat ray reflective glass characterized by using a compound having a temperature of 0° C. or higher.

本発明者は、酸化チタン被膜の形成、焼結過程と関連要
因を更に詳しく解析、研究し直した結果、■高温ガラス
にスプレーされたチタン化合物を含む溶液の液滴から溶
剤が脱離し易い分子構造をもったチタン化合物である事
、■スプレーされた液滴が高温のガラス表面で気液平衡
状態を形成し液相部分がガラス表面を濡らして塗膜を形
成、均一化して分解生成した酸化チタン膜に、気相状態
のチタン化合物が吸着拡散され分解して焼結され緻密な
酸化チタン被膜を形成する時、チタン化合物が高温のガ
ラス表面で気液平衡状態を維持出来る程度に高い熱分解
性を示す化合物である事が重要である事を見出した。
As a result of further detailed analysis and re-research of the formation of titanium oxide film, the sintering process, and related factors, the inventor found that: ■ Molecules from which the solvent easily desorbs from droplets of a solution containing a titanium compound sprayed onto high-temperature glass. It is a titanium compound with a structure. ■The sprayed droplets form a vapor-liquid equilibrium state on the high-temperature glass surface, and the liquid phase wets the glass surface to form a coating film, which is homogenized and decomposed to produce oxidation. When a titanium compound in the gas phase is adsorbed and diffused into the titanium film, decomposed and sintered to form a dense titanium oxide film, the titanium compound undergoes high thermal decomposition to the extent that it can maintain a vapor-liquid equilibrium state on the high-temperature glass surface. We discovered that it is important that the compound exhibits a certain property.

この様な分子構造と熱分解性を示すチタン化合物につい
て研究した結果、4価6配位のチタンの結合配位塵が安
定なキレート基で充足されている事。更に示差熱分析に
おいて熱分解温度を低下させるTi−OR基を含まない
事。付着効率の点からアセチルアセトン基を含み又熱分
解温度の点からオクチレングリコール基をもつ、チタン
キレート化合物が好ましい事を解明した。
As a result of research on titanium compounds that exhibit such molecular structures and thermal decomposition properties, we found that the bonded coordination dust of tetravalent, hexacoordinated titanium is filled with stable chelate groups. Furthermore, it does not contain Ti-OR groups that lower the thermal decomposition temperature in differential thermal analysis. It was found that a titanium chelate compound containing an acetylacetone group from the viewpoint of adhesion efficiency and an octylene glycol group from the viewpoint of thermal decomposition temperature is preferable.

この種の化合物は示差熱分析の標準的条件で分析した時
、熱分解温度は300℃以上となる。
When this type of compound is analyzed under standard conditions for differential thermal analysis, the thermal decomposition temperature is 300°C or higher.

この化合物をスプレー法で塗布するため、炭化水素、エ
ステル等の通常的に使用される有機溶剤で、スプレーの
容易な温度に溶解し、通常450℃〜650℃に加熱さ
れた硝子にスプレーし、酸化チタン被膜を形成する方法
が本発明である。
In order to apply this compound by spraying, it is dissolved in commonly used organic solvents such as hydrocarbons and esters at a temperature that is easy to spray, and is sprayed onto glass heated to usually 450°C to 650°C. The present invention is a method of forming a titanium oxide film.

本発明に用いられるチタンキレート化合物は、チタンテ
トラアルコキシド、例えばチタンテトラエトキシド、チ
タンテトライソプロポキシド、チタンテトラn−プロポ
キシド、チタンテトラ−n−ブトキシド、チタンテトラ
−8ec−ブトキシド、チタンテトラ−tertブトキ
シド、チタンテトライソブトキシド、チタンテトラ−t
ertアミロキシド、チタンテトラ−ヘキソキシド、チ
タンテトラ−オクトキシド等のチタンテトラアルコキシ
ドやその混合物を単独又は混合して使用することが出来
る。特にキレート化反応を完結させる操作をし易い炭素
数4以下の低級アルコキシドが好ましい。
The titanium chelate compound used in the present invention is a titanium tetraalkoxide, such as titanium tetraethoxide, titanium tetraisopropoxide, titanium tetra-n-propoxide, titanium tetra-n-butoxide, titanium tetra-8ec-butoxide, titanium tetra- tert butoxide, titanium tetraisobutoxide, titanium tetra-t
Titanium tetraalkoxides such as ert amyloxide, titanium tetrahexoxide, titanium tetra-octoxide, and mixtures thereof can be used alone or in combination. In particular, lower alkoxides having 4 or less carbon atoms are preferred because they are easy to operate to complete the chelation reaction.

キレート化反応はアセチルアセトンとオクチレングリコ
ールを少くとも合計で3モル量又はそれ以上とチタンア
ルコキシド1モル量を反応させ、Ti−OR基が配位子
で置換されるまで反応させて行なう事が出来る。この反
応は生成するアルコールを系外に除去しつつ行なうとか
、加水分解反応を併用する等の方法でも容易に行なう事
が出来る。生成されたキレート化合物がTi−OR基を
実質的に残存しない事はNMR分析の他、標準的条件で
行なった示差熱分析による熱分解を示す最初のピークが
300℃以上の高い温度を示す事によっても確認出来る
The chelation reaction can be carried out by reacting at least a total of 3 or more moles of acetylacetone and octylene glycol with 1 mole of titanium alkoxide until the Ti-OR group is replaced with a ligand. . This reaction can be easily carried out by removing the produced alcohol from the system, or by using a hydrolysis reaction in combination. The fact that substantially no Ti-OR groups remain in the produced chelate compound is shown by the fact that in addition to NMR analysis, the first peak indicating thermal decomposition in differential thermal analysis conducted under standard conditions shows a high temperature of 300°C or higher. It can also be confirmed by

キレート化反応においてアセチルアセトンの比率が多く
なると塗布時の付着効率は良くなるが、形成された皮膜
の物性は好ましくないので、そのTiに配位するアセチ
ルアセトンの平均モル数は0.5〜2.5モルが望まし
い。オクチレングリコールのチタンに配位する平均モル
数が多いと熱分解温度は高くなるが、塗布作業時に白斑
が生成し易くなるのでその平均モル数は0.5〜2.5
である事が望ましい。
When the ratio of acetylacetone increases in the chelation reaction, the adhesion efficiency during coating improves, but the physical properties of the formed film are unfavorable, so the average number of moles of acetylacetone coordinated to Ti is 0.5 to 2.5. Moles are preferred. If the average number of moles of octylene glycol coordinated with titanium is large, the thermal decomposition temperature will be high, but white spots are likely to be generated during coating, so the average number of moles should be 0.5 to 2.5.
It is desirable that

その量は合計でのモル比がチタンアルコキシドから出発
した時には通常3で行なう事が望ましいが加水分解反応
を併用した時には3以下でも反応を行なうことが出来る
。又特に望むならば3以上のモル比で行なう事も出来る
。このようにして合成した化合物の1例を示せば、アセ
チルアセトンをAA、オクチレングリコールをOGと表
すと、Ti (AA) + (OG) 2. Ti (
AA) w (OG)、Ti (AA) +、 s (
OG) +6などが挙げられる。
When starting from titanium alkoxide, it is usually desirable to carry out the reaction at a total molar ratio of 3, but when a hydrolysis reaction is used in combination, the reaction can be carried out with a total molar ratio of 3 or less. Also, if particularly desired, a molar ratio of 3 or more can be used. An example of a compound synthesized in this way is Ti (AA) + (OG), where acetylacetone is represented by AA and octylene glycol is represented by OG. Ti (
AA) w (OG), Ti (AA) +, s (
OG) +6 etc.

スプレー塗布する時は、トルエン、キシレン、灯油、n
−ヘキサン等の炭化水素やハロゲン化炭化水素類、ギ酸
メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブ
チル等のカルボン酸エステル類、ジオキサン、テトラヒ
ドロフランの様なエーテル類、メタノール、エタノール
、プロパツール、ブタノール等のアルコール類、トリエ
チルアミン、ブチルアミン、アニリン等のアミン類等を
単独又は2種以上混合してスプレー用溶液を調合して使
用する事が出来る。
When spraying, use toluene, xylene, kerosene, n
- Hydrocarbons and halogenated hydrocarbons such as hexane, carboxylic acid esters such as methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane and tetrahydrofuran, methanol, ethanol, propatool, Alcohols such as butanol, amines such as triethylamine, butylamine, aniline, etc. can be used alone or in combination of two or more to form a spray solution.

溶液中のTiO2が20%以上になると粘度が上昇して
スプレー作業に支障が出る。又TiO2が0.1%以下
の時は所定の膜厚を得るために多量の溶液を塗布する必
要が生じ、作業効率が悪いだけでなく、ガラス温度の変
化による好ましくない影響も出るので、0.1%以上、
特に好ましくは0.2〜10%の範囲にチタン化合物を
溶解させる事が望ましい。
When the TiO2 content in the solution exceeds 20%, the viscosity increases, causing trouble in spraying operations. Furthermore, when TiO2 is less than 0.1%, it is necessary to apply a large amount of solution to obtain a predetermined film thickness, which not only reduces work efficiency but also causes undesirable effects due to changes in glass temperature. .1% or more,
It is particularly desirable to dissolve the titanium compound in a range of 0.2 to 10%.

本発明において、酸化チタン被膜の形成はガラスの温度
を650℃以上に上げるとガラスの変形が大きく、外観
上商品価値を害なう。又450℃以下では生成した酸化
チタン被膜の物性が著しく低下し好ましくないのでスプ
レー作業は450℃〜650℃の温度域で行なう事が望
ましい。
In the present invention, when the titanium oxide film is formed, when the temperature of the glass is raised to 650° C. or higher, the glass deforms significantly, which impairs the commercial value in terms of appearance. Further, if the temperature is below 450°C, the physical properties of the produced titanium oxide film will significantly deteriorate, which is undesirable, so it is desirable to carry out the spraying operation in the temperature range of 450°C to 650°C.

この方法をフロートガラス製造時のオンラインで適用す
る時には公知の方法例えば特装5B−18547に記載
された様な方法で容易に適用出来る。オンラインで別途
ガラス板を加熱し、スプレーを行って本発明の熱線反射
ガラスの製造を行うことも出来ることは言うまでもない
ことである。
When this method is applied online during the manufacture of float glass, it can be easily applied by a known method, for example, the method described in Special Publication No. 5B-18547. It goes without saying that the heat ray reflective glass of the present invention can also be manufactured by separately heating a glass plate online and spraying it.

本発明において、チタンキレート化合物を含む溶液の塗
布法としては、スプレー塗布法、ロールコータ−法、メ
ニスカスコーター法、浸漬引き上げ法、刷は塗り法等の
種々の塗布方法が使用できるが、生産性、均−性等の点
でスプレー塗布法が最も好ましい。
In the present invention, various coating methods can be used to apply the solution containing the titanium chelate compound, such as a spray coating method, a roll coater method, a meniscus coater method, a dipping method, and a printing method. The spray coating method is most preferable in terms of uniformity and the like.

[作用] 以上の様に酸化チタン膜形成剤として熱分解温度の高い
特定の化合物を用いて高温度のガラスに゛スプレー塗布
すると均一で色ムラが無く、耐酸性J耐アルカリ性が高
く、光線反射率の優れた熱線反射ガラスを得る事が出来
る。この形成され酸化チタン膜は緻密で硬度も高いので
処理されたガラスは同時に耐擦傷性にも優れているので
表面保護機能も有している。
[Function] As mentioned above, when a specific compound with a high thermal decomposition temperature is used as a titanium oxide film-forming agent and sprayed onto high-temperature glass, it is uniform and has no color unevenness, has high acid resistance, high alkali resistance, and light reflection. It is possible to obtain heat-reflecting glass with excellent heat ray reflection rate. This formed titanium oxide film is dense and has high hardness, so the treated glass also has excellent scratch resistance and has a surface protection function.

[実施例] 合成例−1 チタンテトライソプロポキシド284部(部は重量を示
す)にアセチルアセトン200部とオクチレングリコー
ル147部を加えて、加熱撹拌しつつ、液温80〜10
0℃で20分間反応したのち減圧処理してアルコールを
除去させ浅春橙色透明な粘稠酸体388部を得た。元素
分析の結果TiO3含有量は20.5%であった。
[Example] Synthesis Example-1 200 parts of acetylacetone and 147 parts of octylene glycol were added to 284 parts of titanium tetraisopropoxide (parts indicate weight), and the mixture was heated and stirred until the liquid temperature was 80 to 10%.
After reacting at 0° C. for 20 minutes, the alcohol was removed by vacuum treatment to obtain 388 parts of a light orange transparent viscous acid. As a result of elemental analysis, the TiO3 content was 20.5%.

’ ”C−NMR分析の結果26.2.102.5〜1
04.1ppm(以上アセチルアセトン) 、12.4
.14.2.14.3゜1 23.5. 33.4. 37.9. 48.0. 7
4.2 〜76、5゜87.8〜88.0ppm  (
以上オクチレングリコール)にチタン原子に直接配位し
た配位子のピークが観測され、Ti−0CJyの吸収は
認められず、又示差熱分析の結果は第1図の通りであり
、熱分解を示す最初のピークは325℃であり生成物は
Ti (AA) t (OG) 1と帰属出来る化合物
である事が判った。
``C-NMR analysis results 26.2.102.5~1
04.1ppm (more than acetylacetone), 12.4
.. 14.2.14.3゜1 23.5. 33.4. 37.9. 48.0. 7
4.2 ~ 76, 5° 87.8 ~ 88.0ppm (
The peak of the ligand directly coordinated to the titanium atom was observed in octylene glycol), and no absorption of Ti-0CJy was observed, and the results of differential thermal analysis are as shown in Figure 1, indicating that thermal decomposition was not observed. The first peak shown was at 325° C., and it was found that the product was a compound that could be assigned to Ti (AA) t (OG) 1.

合成例−2 チタンテトライソプロポキシド288部にアセチルアセ
トン100部とオクチレングリコール147部を加えて
液温85〜90℃で30分還流し反応させた。これにキ
シレン200部を加え、更に9部の水を加えたイソプロ
ピルアルコール50部を加えて20分同温で終了し淡黄
色透明溶液を得た。このキシレンアルコールを含む生成
物の示差熱分析の結果328℃の熱分解温度を示した。
Synthesis Example 2 100 parts of acetylacetone and 147 parts of octylene glycol were added to 288 parts of titanium tetraisopropoxide, and the mixture was refluxed for 30 minutes at a liquid temperature of 85 to 90°C to react. To this was added 200 parts of xylene and 50 parts of isopropyl alcohol to which 9 parts of water had been added, and the mixture was left at the same temperature for 20 minutes to obtain a pale yellow transparent solution. Differential thermal analysis of this xylene alcohol-containing product showed a thermal decomposition temperature of 328°C.

又脱溶物の分析の結果Ti−0CsHyの吸収はなく、
元素分析の結果TiOsは26.80%であり、(OG
) 、(AA) 1Ti−0−Ti (OG) 1(A
A) rと帰属出来た。
Moreover, as a result of analysis of the desoluted product, there was no absorption of Ti-0CsHy.
As a result of elemental analysis, TiOs was 26.80%, (OG
) , (AA) 1Ti-0-Ti (OG) 1(A
A) I was able to attribute it to r.

2 合成例−3 合成例−1と同様にしてチタンテトラブトキシド340
部にアセチルアセトン100部とオクチレングリジール
284部を反応させてTiO□含有量18、13%でT
i (AA) 1(OG) *に相当する浅春橙色透明
液体435部を得た。
2 Synthesis Example-3 Titanium tetrabutoxide 340 was prepared in the same manner as in Synthesis Example-1.
100 parts of acetylacetone and 284 parts of octylene glycyl were reacted to produce T with a TiO□ content of 18% and 13%.
435 parts of a light spring orange transparent liquid corresponding to i (AA) 1 (OG) * was obtained.

合□成例−比較例 合成例−1と同様にしてチタンテトライソプロポキシド
284部にアセチルアセトン200部を反応させてTi
(AA)a(QC−Hy)gを得た。
Synthesis Example - Comparative Example In the same manner as in Synthesis Example 1, 284 parts of titanium tetraisopropoxide was reacted with 200 parts of acetylacetone to produce Ti.
(AA)a(QC-Hy)g was obtained.

実施例1〜3、比較例 ■スプレー溶液の調整 合成例で合成したチタン化合物に酢酸エチルとキシレン
を容量比で1:1に混合したものを溶剤として使い、各
化合物をTiO□含有量1.5%になるように加えて溶
解しスプレー用溶液を調整した。
Examples 1 to 3, Comparative Example ■ Preparation of Spray Solution A mixture of the titanium compound synthesized in the synthesis example with ethyl acetate and xylene in a volume ratio of 1:1 was used as a solvent, and each compound was mixed with a TiO□ content of 1. A solution for spraying was prepared by adding and dissolving the solution to a concentration of 5%.

■スプレー作業 フロート法板ガラス製造装置のフロートバス出口におい
て5m/分の速度で移動するリボン状ガラス(厚さ6m
/m)の上面に、該ガラスリボンの移動と直角方向に往
復運動するスプレーガンからスプレー溶液を空気圧5 
kg/cm2で1.5j2/分の液量でスプレー処理し
た。酸化チタン被膜の形成されたガラスリボンは所定の
徐冷を行なった後切断された。
■Spray work Float method Ribbon-shaped glass (6 m thick
/m) from a spray gun that reciprocates in a direction perpendicular to the movement of the glass ribbon.
The spray treatment was carried out at a liquid volume of 1.5j2/min at kg/cm2. The glass ribbon on which the titanium oxide film was formed was subjected to a prescribed slow cooling process and then cut.

各種チタン化合物を用いて各種ガラスリボン温度で形成
された酸化チタン被膜付きガラス板についての特性試験
結果は(表−1)の通りであり、良好な特性が得られた
The characteristics test results for titanium oxide coated glass plates formed using various titanium compounds at various glass ribbon temperatures are as shown in Table 1, and good characteristics were obtained.

(表−1) 注]ΔT%=[試験後透過率−試験前透過率]耐 酸 
性 0.1規定シユウ酸に90℃で2時間浸漬耐アルカ
リ性 0.l規定水産化ナトリウム溶液に90℃で2時
間浸漬 耐擦傷性 テーパー試験(500g、 7ORPM 、
  300回)外観評価  A:問題なし B:若干問題あり C:問題あり  6 5 [発明の効果] 本発明は高反射率、高耐薬品性の如き優れた効果を有し
、特にスプレー温度を最適化することにより、色ムラが
なくなるという効果も認められる。
(Table-1) Note] ΔT% = [Transmittance after test - Transmittance before test] Acid resistance
Immersion in 0.1N oxalic acid at 90°C for 2 hours Alkali resistance 0. Scratch resistance taper test (500g, 7ORPM,
300 times) Appearance evaluation A: No problem B: Some problems C: Problems 6 5 [Effects of the invention] The present invention has excellent effects such as high reflectance and high chemical resistance, and in particular, the spray temperature can be optimized. The effect of eliminating color unevenness is also observed.

又スプレー液のキレート効果が高いため経時変化に強い
スプレー液を得ることが出来る。
Furthermore, since the spray liquid has a high chelating effect, it is possible to obtain a spray liquid that is resistant to changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の合成例1における示差熱分析の結果で
ある。
FIG. 1 shows the results of differential thermal analysis in Synthesis Example 1 of the Example.

Claims (1)

【特許請求の範囲】 1、高温のガラス表面にチタンキレート化合物を含む溶
液を塗布し、熱分解させて、該表面に酸化チタン被膜を
形成させる方法におい て、上記チタンキレート化合物としてアセチルアセトン
とオクチレングリコールをチタンに配位するキレート配
位子とし、実質的に Ti−OR基(Rは1価のアルキル基を示す)の残留が
なく、示差熱分析で、熱分解による最初のピークが30
0℃以上の化合物を用いることを特徴とする熱線反射ガ
ラスの製造方法。 2、チタンキレート化合物において、チタン1原子に配
位するアセチルアセトンの平均モル数をn、オクチレン
グリコールの平均モル数をmとすると、n+m≦3、0
.5≦n≦2.5、0.5≦m≦2.5である化合物で
あることを特徴とする請求項1記載の熱線反射ガラスの
製造方法。 3、450〜650℃に加熱したガラス表面に、チタン
キレート化合物を含む溶液をスプレーして酸化チタン被
膜を形成させることを特徴とする請求項1記載の熱線反
射ガラスの製造 方法。 4、アセチルアセトンとオクチレングリコールをチタン
に配位するキレート配位子とし、実質的にTi−OR基
(Rは1価のアルキル基を示す)の残留がなく、示差熱
分析で、熱分解による最初のピークが300℃以上であ
るチタンキレート化合物を含むことを特徴とする熱線反
射ガラスの製造用塗布液。 5、チタン1原子に配位するアセチルアセトンの平均モ
ル数をn、オクチレングリコールの平均モル数をmとす
ると、n+m≦3、0.5≦n≦2.5、0.5≦m≦
2.5であるチタンキレート化合物を含むことを特徴と
する請求項4記載の熱線反射ガラスの製造用塗布液。
[Claims] 1. A method in which a solution containing a titanium chelate compound is applied to a high-temperature glass surface and thermally decomposed to form a titanium oxide film on the surface, wherein the titanium chelate compound is acetylacetone and octylene glycol. is a chelate ligand that coordinates to titanium, there is virtually no residual Ti-OR group (R represents a monovalent alkyl group), and in differential thermal analysis, the first peak due to thermal decomposition is 30
A method for producing heat ray reflective glass, characterized by using a compound having a temperature of 0° C. or higher. 2. In a titanium chelate compound, where n is the average number of moles of acetylacetone coordinated to one titanium atom and m is the average number of moles of octylene glycol, n+m≦3,0
.. 2. The method for producing a heat ray reflective glass according to claim 1, wherein the compound is a compound satisfying 5≦n≦2.5 and 0.5≦m≦2.5. 3. The method for producing heat-reflective glass according to claim 1, characterized in that a titanium oxide film is formed by spraying a solution containing a titanium chelate compound onto the glass surface heated to 450 to 650°C. 4. Acetylacetone and octylene glycol are used as chelate ligands that coordinate to titanium, and there is virtually no residual Ti-OR group (R represents a monovalent alkyl group), and differential thermal analysis shows that it is not caused by thermal decomposition. A coating liquid for producing heat ray reflective glass, characterized in that it contains a titanium chelate compound whose first peak is 300°C or higher. 5. If the average number of moles of acetylacetone coordinated to one titanium atom is n, and the average number of moles of octylene glycol is m, then n+m≦3, 0.5≦n≦2.5, 0.5≦m≦
5. The coating liquid for producing heat ray reflective glass according to claim 4, further comprising a titanium chelate compound having a titanium chelate compound having a titanium chelate compound having a titanium chelate compound having a titanium chelate compound having a titanium chelate compound of
JP1262087A 1989-10-09 1989-10-09 Heat ray reflective glass manufacturing method and coating liquid Expired - Fee Related JPH0725572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262087A JPH0725572B2 (en) 1989-10-09 1989-10-09 Heat ray reflective glass manufacturing method and coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262087A JPH0725572B2 (en) 1989-10-09 1989-10-09 Heat ray reflective glass manufacturing method and coating liquid

Publications (2)

Publication Number Publication Date
JPH03126643A true JPH03126643A (en) 1991-05-29
JPH0725572B2 JPH0725572B2 (en) 1995-03-22

Family

ID=17370850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262087A Expired - Fee Related JPH0725572B2 (en) 1989-10-09 1989-10-09 Heat ray reflective glass manufacturing method and coating liquid

Country Status (1)

Country Link
JP (1) JPH0725572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2702207A1 (en) * 1993-03-05 1994-09-09 Glaverbel A glass substrate having a pyrolysis coating and a method of forming such a coating.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122321A (en) * 1978-03-16 1979-09-21 Central Glass Co Ltd Production of heat beam reflecting glass
JPS5619298A (en) * 1979-07-26 1981-02-23 Sony Corp Speaker diaphragm
JPS5747137A (en) * 1980-09-02 1982-03-17 Hitachi Heating Appliance Co Ltd Microwave oven equipped with magnetic card reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122321A (en) * 1978-03-16 1979-09-21 Central Glass Co Ltd Production of heat beam reflecting glass
JPS5619298A (en) * 1979-07-26 1981-02-23 Sony Corp Speaker diaphragm
JPS5747137A (en) * 1980-09-02 1982-03-17 Hitachi Heating Appliance Co Ltd Microwave oven equipped with magnetic card reader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2702207A1 (en) * 1993-03-05 1994-09-09 Glaverbel A glass substrate having a pyrolysis coating and a method of forming such a coating.
US5730771A (en) * 1993-03-05 1998-03-24 Glaverbel Method of manufacturing a corrosion resistant pyrolytically coated glass

Also Published As

Publication number Publication date
JPH0725572B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
EP0374754B1 (en) Coating composition and a process for manufacturing the same
EP0611812B1 (en) Liquid coating composition forming a liquid crystal display element insulating film
US3582395A (en) Protective coatings for glass surfaces
CN103589339A (en) Polysilazane coating solution and method for preparing composite coating containing metallic oxide-SiO2
JPH07182939A (en) Transparent conducting film forming composition and transparent conducting film forming method
US6416814B1 (en) Volatile organometallic complexes of lowered reactivity suitable for use in chemical vapor deposition of metal oxide films
EP0552131B1 (en) Liquid coating composition forming a liquid crystal display element insulating film
JP2589291B2 (en) Iris suppression method
JPH0130771B2 (en)
JPH03126643A (en) Production of heat ray reflecting glass and coating solution
WO2000067300A1 (en) Liquid precursors for formation of materials containing alkali metals
JPH05124818A (en) Coating liquid for forming metal oxide coated film
JPS6150904B2 (en)
US4457957A (en) Method for applying an inorganic titanium coating to a glass surface
JP4206747B2 (en) Method for producing titanium oxide film
JP5537986B2 (en) Amorphous titanium oxide dispersion and method for producing the same
JP2001058825A (en) Coating agent for forming inorganic film, its production and formation of the same inorganic film
JPS62180740A (en) Organoindium sol and composite for forming transparent electrically conductive membrane
JPS60215762A (en) Formation of aluminum film
JP3360408B2 (en) Coating solution for metal oxide film formation
JPH0633014A (en) Coating agent composition
JPH09920A (en) Highly light transparent titanium oxide photocatalyst and its production
JP2024047971A (en) Coating composition and method for producing articles having zinc oxide-containing coatings
JP2002121480A (en) Coating composition
JP3024181B2 (en) Method for manufacturing glass body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees