JPH03115106A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPH03115106A
JPH03115106A JP21268190A JP21268190A JPH03115106A JP H03115106 A JPH03115106 A JP H03115106A JP 21268190 A JP21268190 A JP 21268190A JP 21268190 A JP21268190 A JP 21268190A JP H03115106 A JPH03115106 A JP H03115106A
Authority
JP
Japan
Prior art keywords
metal
alkoxides
metals
chelating agent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21268190A
Other languages
Japanese (ja)
Other versions
JPH0375483B2 (en
Inventor
Tsutomu Nanao
勉 七尾
Tamiyuki Eguchi
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP21268190A priority Critical patent/JPH03115106A/en
Publication of JPH03115106A publication Critical patent/JPH03115106A/en
Publication of JPH0375483B2 publication Critical patent/JPH0375483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Abstract

PURPOSE:To easily obtain a composite material contg. a transition metal and a metal having inferior stability by adding a chelating agent to a soln. contg. alkoxides of plural kinds of metals and by heating the resulting soln. for combined metals. CONSTITUTION:Alkoxides of two or more kinds of metals, e.g. barium triisoproxide and titanium tetraisoproxide are dissolved in a solvent, e.g. ethanol. A chelating agent, e.g. acetylacetone or methyl acetoacetate is then added and aldehyde as a dissolution accelerator, e.g. paraformaldehyde is further added as required to prepare a uniform soln. for combined metals. This soln. is directly heated to thermally decompose the metal alkoxides or a substrate is coated with the soln. and the alkoxides are thermally decomposed to obtain a composite material. Since the chelating agent is added, the stability and hydrolyzability of the alkoxides can be made uniform and the combined metals can stably be obtd.

Description

【発明の詳細な説明】 C産業上の利用分野] 本発明は2種以上の金属アルコキシド中にキレート剤を
加えてなる複合金属溶液を用いる複合材料の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field The present invention relates to a method for producing a composite material using a composite metal solution prepared by adding a chelating agent to two or more metal alkoxides.

[従来の技術および発明が解決しようとする課題] 複合材料、とくに2種以上の金属が酸化物や窒化物など
の形で存在する均一な組成の薄膜や超微粒子(通常粒径
が約1.can以下であって、機械的には粉砕できない
もの)は、電磁気的、光学的、機械的にすぐれた機能を
備え、能動素子としても充分使用可能な機能性セラミッ
クスの材料として有用なものであってその研究開発が進
められている。これらの機能性セラミックスにおいては
、用いる材料によって目的とする製品の特性の殆んどが
支配されるといっても過言ではない。従来の機能性セラ
ミックスの製法としては、無機化合物同士の固相反応を
利用する方法があるが、その方法では充分な機能を発揮
するものをうろことができず、しかも純度の高い、粒子
径の小さい、化学量論性の高い材料がえ難い。そのほか
金属無機塩を水溶液に溶かしたのち、アルカリまたは多
価カルボン酸などにより共沈させるか、これらを熱分解
して粒子をうる方法がある。
[Prior Art and Problems to be Solved by the Invention] Composite materials, particularly thin films and ultrafine particles (usually with a particle size of about 1.5 mm) of uniform composition in which two or more metals exist in the form of oxides, nitrides, etc. (with a diameter of less than 100 yen and cannot be mechanically pulverized) have excellent electromagnetic, optical, and mechanical functions and are useful as materials for functional ceramics that can be fully used as active elements. Research and development is underway. It is no exaggeration to say that in these functional ceramics, most of the characteristics of the intended product are controlled by the materials used. Conventional methods for producing functional ceramics utilize solid-phase reactions between inorganic compounds, but this method does not allow for the production of materials that exhibit sufficient functionality, and it is difficult to obtain materials with high purity and particle size. It is difficult to obtain small, highly stoichiometric materials. Other methods include dissolving a metal inorganic salt in an aqueous solution and then co-precipitating it with an alkali or polycarboxylic acid, or thermally decomposing the salt to obtain particles.

しかしながらその方法に使用される出発原料は、水溶液
中でイオン的に活性となる無機の炭酸塩、塩化物、硫酸
塩、硝酸塩など殆ルどであるため、熱処理しても内部に
不純物となるイオンが残る、粒成長して粒径が大きくな
りすぎる、目的物をうるためには高温での焼成処理が必
要となるなどの欠点がある。
However, most of the starting materials used in this method are inorganic carbonates, chlorides, sulfates, nitrates, etc. that become ionically active in aqueous solutions, so even when heat treated, ions become internal impurities. There are disadvantages such as the grains remain, grains grow to become too large in size, and high-temperature firing treatment is required to obtain the desired product.

そこで、これらの欠点を解決する手法として有機金属化
合物である金属アルコキシドを加水分解あるいは直接熱
分解することにより、従来よりも低い熱処理温度で高純
度かつ超微粒子状のセラミックス原料をうる方法が検討
されている。
Therefore, as a method to solve these drawbacks, a method to obtain highly pure and ultrafine ceramic raw materials at a lower heat treatment temperature than conventional methods has been investigated by hydrolyzing or directly thermally decomposing metal alkoxides, which are organometallic compounds. ing.

金属アルコキシドは化学的な手法によって高純度に精製
することができ、直接熱分解または加水分解後焼成する
ことにより、高純度で超微粒子状の機能性セラミックス
原料として理想的なものかえられることが知られている
It is known that metal alkoxides can be purified to high purity using chemical methods, and that by direct thermal decomposition or hydrolysis followed by firing, they can be converted into highly pure, ultrafine particles that are ideal as raw materials for functional ceramics. It is being

しかしながら機能性セラミックス材料はその機能を最大
限に発揮するために、単一の化合物のみで使用される例
はきわめて少なく、微量の他成分を添加したり複合化合
物としたりして用いられるばあいが多い。そのため単一
組成でいかに粒径が小さくても、目的とする組成にする
ためにはさらに熱処理を加え固相反応をさせる必要があ
り、その際に粒成長を起したり化学量論性が不安定にな
ったりすることがある。
However, in order to maximize its functionality, functional ceramic materials are rarely used as a single compound, and are often used with trace amounts of other components added or as a composite compound. many. Therefore, no matter how small the particle size is with a single composition, it is necessary to perform further heat treatment and a solid phase reaction in order to obtain the desired composition, which may cause grain growth or stoichiometry. It may become stable.

そうした2種以上の金属を含む複合酸化物をうるため、
金属アルコキシドを混合した系を調製するかまたは複合
金属アルコキシドを合成しそれらを分解して目的の複合
酸化物を直接えようとする試みも進められているが、そ
の方法にはつぎのような欠点がある。
In order to obtain such a composite oxide containing two or more metals,
Attempts are being made to directly obtain the desired composite oxide by preparing a mixed metal alkoxide system or by synthesizing composite metal alkoxides and decomposing them, but these methods have the following drawbacks. be.

すなわち、金属アルコキシドは元素ごとおよびアルコキ
シ基の種類によって加水分解性が著るしく異なっており
、したがって2種以上の金属アルコキシドの混合系は不
安定であって、均一な組成にならないばあいがある。さ
らに複合金属アルコキシドにおいては目的物の単離が難
しく、不純物となる成分が含まれ、収率が低く、実用的
でない。とくに金属がニッケル、銅、コバルト、亜鉛な
どの遷移金属であるばあい、それらのアルコキシドは有
機溶媒に不溶のものが多く、そのため共通溶媒とした系
では加水分解ができず、均一な粉末かえられない。この
ように金属アルコキシドおよび複合金属アルコキシドの
みを用いる方法では、複合酸化物をつくる組合せに限度
があり、自由度が少ない。
In other words, the hydrolyzability of metal alkoxides differs significantly depending on the element and the type of alkoxy group, and therefore a mixed system of two or more metal alkoxides is unstable and may not have a uniform composition. . Furthermore, it is difficult to isolate the target product in complex metal alkoxides, they contain components that become impurities, yields are low, and they are not practical. In particular, when the metal is a transition metal such as nickel, copper, cobalt, or zinc, many of their alkoxides are insoluble in organic solvents, and therefore cannot be hydrolyzed in a common solvent system, making it difficult to convert into a uniform powder. do not have. In this way, in the method of using only metal alkoxides and composite metal alkoxides, there are limits to the combinations that can be used to form composite oxides, and there is little freedom.

そのほか、アルコキシ基の炭素数を大きくして加水分解
速度を遅くさせるなど、金属アルコキシドそれぞれの加
水分解性を調整する方法も検討されているが、金属ごと
にアルコキシドの性質が変わるので、繁雑であり、しか
も安定性については殆んど改良されない。
In addition, methods are being considered to adjust the hydrolyzability of each metal alkoxide, such as increasing the number of carbon atoms in the alkoxy group to slow down the hydrolysis rate, but this is complicated and difficult because the properties of the alkoxide vary depending on the metal. , and there is almost no improvement in stability.

金属アルコキシドは、超微粒子粉体を製造せるために用
いられるほかに、金属酸化物の薄膜を形成するために用
いられつつある。この方法は金属アルコキシドの加水分
解性を利用するものであって、基板に金属アルコキシド
を塗布後空気中の水分で加水分解させたのち熱処理する
ことにより、無機酸化物薄膜が容易にえられる。
In addition to being used to produce ultrafine powders, metal alkoxides are being used to form thin films of metal oxides. This method makes use of the hydrolyzability of metal alkoxides, and by coating the metal alkoxide on a substrate, hydrolyzing it with moisture in the air, and then heat-treating it, an inorganic oxide thin film can be easily obtained.

この金属アルコキシドを用いる薄膜の形成の応用例とし
ては、たとえばテトラエチルシリケートを用いる絶縁膜
、アルカリ浸透防止膜、反射防止膜;テトライソプロピ
ルチタネートを用いる熱線反射膜、光学フィルター、有
機物との接若促進用下地膜などが知られているが、前記
の理由のため金属アルコキシドを用いる方法による複合
酸化物の薄膜化技術はまだ実用化されるに至っていない
Application examples of thin film formation using this metal alkoxide include insulating films, alkali penetration prevention films, and antireflection films using tetraethyl silicate; heat ray reflective films using tetraisopropyl titanate, optical filters, and for accelerating attachment to organic substances. Although base films and the like are known, for the above-mentioned reasons, the technology for thinning composite oxides using metal alkoxides has not yet been put to practical use.

薄膜化技術は現在の電子産業の基盤となっている重要な
技術であり、主として真空技術を用いて種々の薄膜がつ
くられている。
Thin film technology is an important technology that forms the basis of the current electronic industry, and various thin films are produced mainly using vacuum technology.

複合酸化物薄膜も光関連デバイス、記憶材料、圧電材料
、センサなどに幅広い用途が期待されており、一部実用
化もなされている。しかし真空技術を用いた薄膜化法は
設備コストが高くなる、ユーティリティが高くなる、大
面積化が困難である、高融点の酸化物は製膜が困難であ
る、結晶性および化学量論性のよい膜かえられにくい、
生産性が低いなどの短所があるため応用分野に制限があ
るのが現状である。
Composite oxide thin films are also expected to have a wide range of applications, including optical-related devices, memory materials, piezoelectric materials, and sensors, and some have even been put into practical use. However, thin film forming methods using vacuum technology have high equipment costs, high utility costs, difficulty in increasing the area, high melting point oxides are difficult to form into films, and crystallinity and stoichiometry Good membrane is difficult to change,
Currently, there are limitations to the fields of application due to disadvantages such as low productivity.

これに対して金属アルコキシドを用いる酸化物薄膜の製
法は、簡単でしかも安価な設備で充分である、大面積化
が容易である、生産性が高くコストが安い、均質で化学
量論性のよい膜かえられるなどという真空技術を用いる
薄膜化法にない長所を有しており、この方法によってさ
らに種々の複合酸化物薄膜の製造が可能になれば、複合
酸化物の新しい用途機能が見出されることは明らかであ
る。
On the other hand, the manufacturing method of oxide thin film using metal alkoxide is simple and requires only inexpensive equipment, can be easily made into a large area, has high productivity and low cost, and is homogeneous and has good stoichiometry. This method has advantages over thin film forming methods using vacuum technology, such as the ability to change the film, and if this method makes it possible to manufacture a variety of composite oxide thin films, new functional uses for composite oxides will be discovered. is clear.

[課題を解決するための手段] 本発明者らは金属アルコキシドが容易にキレート剤と反
応して金属キレートもしくは一部キレート化した部分ア
ルコキシドをつくることに着目し、鋭意検討を重ねた結
果、2種以上の金属アルコキシド混合系にキレート剤を
添加すると、安定性のわるい金属アルコキシドおよび加
水分解速度の速い金属アルコキシドが優先的にキレート
剤と反応し安定化できること、有機溶媒に不溶である遷
移金属アルコキシドも、複合金属溶液とすることが可能
であること、加水分解により安定的に目的とする複合金
属成分かえられること、単一金属アルコキシドと同様な
取扱いにより、超微粒子薄膜かえられることを見出し、
本発明に到達した。
[Means for Solving the Problem] The present inventors focused on the fact that a metal alkoxide easily reacts with a chelating agent to produce a metal chelate or a partially chelated partial alkoxide, and as a result of extensive studies, the following results were found: When a chelating agent is added to a mixed system of more than one metal alkoxide, metal alkoxides with poor stability and metal alkoxides with a high rate of hydrolysis can preferentially react with the chelating agent and be stabilized, and transition metal alkoxides that are insoluble in organic solvents can be stabilized. We discovered that it is possible to make a composite metal solution, that the target composite metal component can be stably converted by hydrolysis, and that an ultrafine particle thin film can be converted by handling in the same way as a single metal alkoxide.
We have arrived at the present invention.

すなわち本発明は、2種以上の金属アルコキシドにキレ
ート剤を加えてなる複合金属溶液を加熱することを特徴
とする複合材料の製造法に関する。
That is, the present invention relates to a method for producing a composite material, which is characterized by heating a composite metal solution prepared by adding a chelating agent to two or more types of metal alkoxides.

[作用および実施例] この反応の詳細な解明はまだなされていないが、キレー
ト剤の添加によって2種以上の金属アルコキシドの安定
性および加水分解性を平均化しており、金属間において
も何らかの配位もしくは複合金属キレート成分をつくっ
ているものと考えられる。
[Operations and Examples] Although the detailed elucidation of this reaction has not yet been made, the stability and hydrolyzability of two or more metal alkoxides are averaged by the addition of a chelating agent, and some coordination between metals is also observed. Alternatively, it is thought that a composite metal chelate component is created.

本発明に用いられる金属アルコキシドは、加水分解性が
あるアルコキシ基をもっておればとくに制限されず、た
とえば一般式 %式% ) Ml [N(ORI )  ]  で表わされる単一組
成のn 金属アルコキシド、部分金属アルコキシド、複合金属ア
ルコキシドまたはそれらの金属アルコキシドの多量体な
どがあげられる。
The metal alkoxide used in the present invention is not particularly limited as long as it has a hydrolyzable alkoxy group, and for example, a single composition n metal alkoxide represented by the general formula %) Examples include metal alkoxides, composite metal alkoxides, and multimers of these metal alkoxides.

なお、前記一般式において、MlおよびNは同じかまた
は異なる金属原子であって、たとえばリチウム、ナトリ
ウム、カリウム、ムビジウム、セシウム、ベリリウム、
マグネシウム、カルシウム、ストロンチウム、バリウム
、チタン、ジルコニウム、ハフニウム、バナジウム、ニ
オブ、タンタル、クロム、モリブデン、タングステン、
マンガン、鉄、ニッケル、コバルト、銅、亜鉛、カドミ
ウム、水銀、硼素、アルミニウム、ガリウム、インジウ
ム、タリウム、シリコン、ゲルマニウム、錫、鉛、ヒ素
、アンチモン、ビスマス、セレン、テルル、ランタノイ
ド系の金属などがあげられる。
In the above general formula, Ml and N are the same or different metal atoms, such as lithium, sodium, potassium, mubidium, cesium, beryllium,
Magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten,
Manganese, iron, nickel, cobalt, copper, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, arsenic, antimony, bismuth, selenium, tellurium, lanthanoid metals, etc. can give.

RI   R2およびR3は同じかまたは異なる有機官
能基であり、好ましくは炭素数1〜20個、とくに好ま
しくは1〜8個のアルキル基、アリール基、アルケニル
基、アラルキル基またはそれらのヒドロキシル置換体や
ハロゲン置換体である。nは金属M1の価数であり、謹
は金属Nの価数に1または2を加えた数となる正の整数
である。Xはハロゲン原子、酸素原子、チッ素原子また
は種々の有機官能基である。
RI R2 and R3 are the same or different organic functional groups, preferably an alkyl group, an aryl group, an alkenyl group, an aralkyl group, or a hydroxyl substituted product thereof, each having 1 to 20 carbon atoms, particularly preferably 1 to 8 carbon atoms. It is a halogen substituted product. n is the valence of the metal M1, and 謹 is a positive integer equal to the valence of the metal N plus 1 or 2. X is a halogen atom, an oxygen atom, a nitrogen atom, or various organic functional groups.

前記金属M嘗のうちアルコキシドの生成が簡単でかつ安
価なものとしては、たとえばアルミニウム、ガリウム、
イツトリウム、インジウム、シリコン、チタン、ゲルマ
ニウム、ジルコニウム、錫、バナジウム、ニオブ、アン
チモン、タンタル、ビスマス、クロム、モリブテン、タ
ングステン、マンガン、鉄など、とくに鉄、チタン、ジ
ルコニウム、シリコン、アルミニウムがあげられる。
Among the above-mentioned metals, examples of metals whose alkoxides can be easily produced and are inexpensive include aluminum, gallium,
Examples include yttrium, indium, silicon, titanium, germanium, zirconium, tin, vanadium, niobium, antimony, tantalum, bismuth, chromium, molybdenum, tungsten, manganese, iron, and especially iron, titanium, zirconium, silicon, and aluminum.

金属141 とアルコキシドを形成する化合物としては
一般式110R(Rは前記RI   R2またはR3と
同じ)で示されるアルコール性水酸基を有する1価また
は多価アルコールであればよい。
The compound that forms an alkoxide with the metal 141 may be a monohydric or polyhydric alcohol having an alcoholic hydroxyl group represented by the general formula 110R (R is the same as RI R2 or R3 above).

好ましい具体例としては、たとえばメチルアルコール、
エチルアルコール、n−プロピルアルコール、イソプロ
ピルアルコール、n−ブチルアルコール、イソブチルア
ルコール、ペンチルアルコール、ヘキシルアルコール、
2−エチルヘキシルアルコール、オクチルアルコール、
t−ブチルアルコール、ラウリルアルコール、■、4−
ブタンジオール、グリセリン、エチレングリコール、オ
クチルアルコール、エチレングリコールのモノアルキル
エーテルなどがあげられる。
Preferred specific examples include methyl alcohol,
Ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, pentyl alcohol, hexyl alcohol,
2-ethylhexyl alcohol, octyl alcohol,
t-Butyl alcohol, lauryl alcohol, ■, 4-
Examples include butanediol, glycerin, ethylene glycol, octyl alcohol, and monoalkyl ether of ethylene glycol.

本発明に用いられる金属アルコキシドの具体例としては
、前記のほかデイ・シー・ブラッドレイ(D、 C,B
radley)ら、メタル・アルコキシドズ(Meta
l Alkoxides) 、1978年、アカデミツ
ク・プレス(AcadeiIc Press)社に記載
されているものも使用できる。
Specific examples of metal alkoxides used in the present invention include those listed above, as well as DC Bradley (D, C, B
radley) et al., metal alkoxides (Meta
It is also possible to use those described in Academia Press, 1978 (1978).

また本発明に用いる金属アルコキシドは適度の加水分解
性と安定性を有しているものが好ましい。通常それらの
性質は反応させる金属およびアルコールの種類によって
決まり、一般に金属アルコキシドは用いるアルコールの
炭素数が大きくなる程加水分解速度が遅く、また金属と
してアルカリ金属またはアルカリ土類金属を用いるとき
は加水分解速度が速くなる。したがって所望の加水分解
速度や安定性に応じて、適宜用いる金属やアルコールを
決めることが重要である。
Further, the metal alkoxide used in the present invention preferably has appropriate hydrolyzability and stability. Usually, their properties are determined by the types of metals and alcohols to be reacted; in general, the higher the number of carbon atoms in the alcohol used, the slower the rate of hydrolysis of metal alkoxides; speed increases. Therefore, it is important to appropriately determine the metal and alcohol to be used depending on the desired hydrolysis rate and stability.

本発明に用いられるキレート剤は、キレート剤として従
来知られている含酸素化合物、含窒素化合物、含イオウ
化合物などのうち金属アルコキシド混合系に溶解するも
のであればとくに制限されない。具体例としては、たと
えばEDTA(エチレンジアミン四酢酸) 、NTA 
 にトリロ三酢酸)、UDA(ウラミルニ酢酸)、ジメ
チルグリオキシム、ジチゾン、オキシン、β−ジケトン
、グリシン、メチルアセトアセテート、エチルアセトア
セテート、メルカプタン類およびリルン酸、オレイン酸
、オクチル酸などの単価カルボン酸、シュウ酸、シトラ
コン酸、マレイン酸、フタル酸、ナフテン酸などの多価
カルボン酸−の1種または2種以上があげられる。とり
わけβ−ジケトン、メチルアセトアセテート、エチルア
セトアセテート、単価カルボン酸および多価カルボン酸
が有用である。
The chelating agent used in the present invention is not particularly limited, as long as it is soluble in the metal alkoxide mixed system among oxygen-containing compounds, nitrogen-containing compounds, sulfur-containing compounds, etc. that are conventionally known as chelating agents. Specific examples include EDTA (ethylenediaminetetraacetic acid), NTA
trilotriacetic acid), UDA (uramyl diacetic acid), dimethylglyoxime, dithizone, oxine, β-diketones, glycine, methylacetoacetate, ethyl acetoacetate, mercaptans, and monohydric carboxylic acids such as lylunic acid, oleic acid, and octylic acid. , oxalic acid, citraconic acid, maleic acid, phthalic acid, naphthenic acid, and other polyhydric carboxylic acids. Particularly useful are β-diketones, methyl acetoacetate, ethyl acetoacetate, monocarboxylic acids and polycarboxylic acids.

前記β−ジケトンとしては、たとえばアセチルアセトン
、ジイソブチリルメタン、ジピバロイルメタン、3−メ
チルペンタン−2,4−ジオン、2.2−ジメチルペン
タン−3,5−ジオンまたはそれらのフッ素化物があげ
られ、とりわけアセチルアセトンが好ましい。
Examples of the β-diketone include acetylacetone, diisobutyrylmethane, dipivaloylmethane, 3-methylpentane-2,4-dione, 2,2-dimethylpentane-3,5-dione, or fluorinated products thereof. Among them, acetylacetone is particularly preferred.

本発明においては、用いられる2種以上の金属アルコキ
シドがすべて液状であればとくに溶媒を必要としないが
、それらが相溶でないか、固相の状態であるきとは共通
溶媒が必要となる。
In the present invention, no particular solvent is required if the two or more metal alkoxides used are all liquid, but if they are not compatible or are in a solid phase, a common solvent is required.

共通溶媒としてはたとえば1価または多価アルコール;
カルボン酸エステル;ケトン;ベンゼン、トルエン、キ
シレンなどの芳香族溶媒;ジオキサン、テトラヒドロフ
ランなどのエーテルおよびN−メチル−2−ピロリドン
、ジメチルホルムアミド、ジメチルアセトアミド、ピリ
ジンなどの窒素含有有機溶媒などの1種または2FIi
以上の混合溶媒があげられる。それらのうち1価または
多価の低級アルコール;低級カルボン酸エステル;ジオ
キサン、テトラヒドロフランなどのニーテンおよびN−
メチル−2−ピロリドン、ジメチルホルムアミド、ジメ
チルアセトアミドなどの窒素含有有機溶媒は本発明にお
いて広く用いることができるが、具体的な溶媒は、用い
られる金属アルコキシドとキレート剤の組合せで適宜選
定すればよい。
Common solvents include, for example, monohydric or polyhydric alcohols;
Carboxylic acid esters; ketones; aromatic solvents such as benzene, toluene, and xylene; ethers such as dioxane and tetrahydrofuran; and nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and pyridine; 2FIi
Examples include the above mixed solvents. Among them, monohydric or polyhydric lower alcohols; lower carboxylic acid esters; dioxane, tetrahydrofuran, etc. and N-
Nitrogen-containing organic solvents such as methyl-2-pyrrolidone, dimethylformamide, and dimethylacetamide can be widely used in the present invention, but the specific solvent may be appropriately selected depending on the combination of metal alkoxide and chelating agent used.

なお、2種以上の金属アルコキシド共存下でキレート剤
を添加するとき、キレート剤が多量のばあいおよびキレ
ート剤のキレート能が強いばあいには沈殿を生じて相溶
しないときがある。
Note that when a chelating agent is added in the coexistence of two or more metal alkoxides, if a large amount of the chelating agent is used or if the chelating agent has a strong chelating ability, precipitation may occur and the two may not be compatible.

そのときはアルデヒドを加え、必要に応じて加熱処理す
ることで、均一な溶液とすることができる。加熱処理は
、通常溶媒の還流温度以下で行なうのが好ましい。この
作用はキレート剤がβ−ジケトンのときとくに顕著にあ
られれる。
At that time, by adding an aldehyde and performing a heat treatment if necessary, a uniform solution can be obtained. The heat treatment is usually preferably carried out at a temperature below the reflux temperature of the solvent. This effect is particularly noticeable when the chelating agent is a β-diketone.

アルデヒドの添加は前記の可溶化作用のほかに、キレー
ト化した金属錯体の昇華性をさらに抑制する作用をも果
たす。
In addition to the above-mentioned solubilizing effect, the addition of aldehyde also serves to further suppress the sublimation of the chelated metal complex.

アルデヒドとしては、炭素数1〜8個のアルデヒド、と
くにホルムアルデヒド、パラホルムアルデヒド、アセト
アルデヒド、ベンズアルデヒドなどが好ましい。
Preferred aldehydes include aldehydes having 1 to 8 carbon atoms, particularly formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, and the like.

アルデヒドの添加による可溶化効果は用いる金属アルコ
キシドが周期表第■族または第■族の金属アルコキシド
にキレート剤を加えて沈殿を生じたときにとくにすぐれ
ており、昇華性の抑制効果は金属アルコキシドが3〜5
価の遷移金属アルコキシドにキレート剤を加えたときに
すぐれている。
The solubilizing effect of the addition of aldehyde is particularly excellent when the metal alkoxide used is a metal alkoxide of group Ⅰ or group Ⅰ of the periodic table, and a chelating agent is added to form a precipitate. 3-5
Excellent when a chelating agent is added to a valent transition metal alkoxide.

アルデヒドの使用量は添加されるキレート剤1モルに対
してo、ootモル以上、通常0.1モル以上で前記効
果が奏される。
The above effects can be achieved when the amount of aldehyde used is o, oot mole or more, usually 0.1 mole or more, per mole of the chelating agent added.

またキレート剤の添加量は金属アルコキシド本来の性質
を損わない溶液とするために、キレート剤の官能基の数
が金属アルコキシドのアルコキシ基の総数未満であるこ
とが必要であり、好ましくはアルコキシ基の総数の50
%以下になるように調整する。
In addition, in order to obtain a solution that does not impair the original properties of the metal alkoxide, the amount of the chelating agent added must be such that the number of functional groups in the chelating agent is less than the total number of alkoxy groups in the metal alkoxide, and preferably, the number of functional groups in the chelating agent is less than the total number of alkoxy groups in the metal alkoxide. 50 of the total number of
Adjust so that it is below %.

本発明において、前記共通溶媒のほかに熱分解を促進す
るためまたは保存安定性を増すために、有機酸や酸化防
止剤を添加してもよいし、薄膜製造時に膜厚をコントロ
ールするために粘度調節効果をもつセルロース系高分子
、ポリ酢酸ビニル、グリセリン、ポリエチレングリコー
ルなどの増粘剤を添加してもよいし、さらに金属成分を
補充するために金属有機酸などの他の有機金属化合物を
添加してもよい。ただし、これらの添加剤は共通溶媒に
溶解し、かつ熱分解時に超微粒子および薄膜生成に悪影
響を及ぼさないものであることが重要である。
In the present invention, in addition to the above-mentioned common solvent, organic acids and antioxidants may be added to promote thermal decomposition or increase storage stability, and viscosity Thickening agents such as cellulose-based polymers, polyvinyl acetate, glycerin, polyethylene glycol, etc. with a regulating effect may be added, and other organometallic compounds such as metal organic acids may be added to further replenish the metal components. You may. However, it is important that these additives are soluble in the common solvent and do not adversely affect the formation of ultrafine particles and thin films during thermal decomposition.

本発明に用いられる溶液は金属アルコキシド単独と同様
に°加水分解性があり、しかも保存安定性にすぐれてお
り、加熱することにより容易に任意の金属を含む複合酸
化物複合材料の超微粒子や薄膜を製造することができる
The solution used in the present invention has the same hydrolyzability as the metal alkoxide alone, and has excellent storage stability.By heating, it can be easily formed into ultrafine particles or thin films of complex oxide composite materials containing any metal. can be manufactured.

本発明の方法によるときは、金属アルコキシドを種々選
定し組合せることにより、所望の組成の複合材料かえら
れるが、本発明におけ8複合金属溶液はとくに金属アル
コキシド単独使用ではえられない遷移金属や安定性の乏
しいアルカリ金属、アルカリ土類金属あるいは金属アル
コキシドを形成しえない金属を含む複合材料を目的とす
るばあい、さらに微量成分が均一に混合された複合材料
を目的とするばあいにきわめて有用である。
When using the method of the present invention, a composite material with a desired composition can be obtained by selecting and combining various metal alkoxides. However, in the present invention, the 8 composite metal solution contains transition metals that cannot be obtained by using metal alkoxides alone. If you are aiming for a composite material containing alkali metals, alkaline earth metals, or metals that cannot form metal alkoxides, which have poor stability, or if you are aiming for a composite material in which trace components are uniformly mixed, it is extremely Useful.

また加熱時の雰囲気を種々選定することにより、えられ
る複合材料の組成を変更することができる。たとえば大
気中で加熱するときは複合酸化物がえられ、水素や一酸
化炭素などを含む還元性雰囲気中で加熱処理するときは
複合金属(合金も含む)かえられる。またNll3やN
2を含む窒素雰囲気下で加熱処理すれば窒化物を含む複
合材料かえられる。
Furthermore, by selecting various atmospheres during heating, the composition of the resulting composite material can be changed. For example, when heated in the air, a composite oxide is obtained, and when heat treated in a reducing atmosphere containing hydrogen, carbon monoxide, etc., composite metals (including alloys) are obtained. Also Nll3 and N
A composite material containing nitride can be changed by heat treatment in a nitrogen atmosphere containing 2.

超微粒子状の複合材料をうる方法としては、たとえば複
合金属溶液をそのまま加熱して熱分解する方法、微量の
水またはアンモニア水を加えて加水分解したのち加熱し
て熱分解する方法、溶液をガス状またはミスト状にした
状態で加熱し熱分解する方法、溶液をガス化したのちプ
ラズマまたはレーザー光によって分解する方法などがあ
る。ガス状で熱分解する方法およびプラズマなどで分解
する方法によりえられる超微粒子はとくにすぐれた分散
性を示す。なお−膜内に熱分解速度が速い程えられる超
微粒子の粒径が小さく、化学量論性がよい。
Methods for obtaining composite materials in the form of ultrafine particles include, for example, heating and pyrolyzing a composite metal solution as it is, adding a small amount of water or aqueous ammonia to hydrolyze it and then heating it to pyrolyze it, and heating the solution to pyrolyze it. There are two methods: a method of thermally decomposing the solution by heating it in the form of a liquid or mist, and a method of gasifying the solution and then decomposing it with plasma or laser light. Ultrafine particles obtained by gaseous thermal decomposition methods and plasma decomposition methods exhibit particularly excellent dispersibility. Note that the faster the thermal decomposition rate is within the membrane, the smaller the particle size of the ultrafine particles and the better the stoichiometry.

複合金属酸化物薄膜を製造する方法としては、基板状に
本発明における複合金属溶液をスプレ、デツピング、ス
ピンコーティングなどにより塗布したのち加熱して熱分
解する方法、分解温度に加熱された基板に溶液を噴霧し
て基板上で熱分解させる方法、溶液をガス化したのち加
熱して熱分解するか、またはプラズマもしくはレーザー
光によって分解しながら分解物を基板上に堆積させる方
法、あるいは印刷法など、金属アルコキシドを単独で使
用するばあいと同様な方法が採用できる。とりわけ塗布
法と噴霧熱分解による薄膜の製法□が安価な設備で生産
性が高く実用的である。
The composite metal oxide thin film can be produced by applying the composite metal solution of the present invention onto a substrate by spraying, dipping, spin coating, etc., and then heating and thermally decomposing the solution. A method of spraying and thermally decomposing it on a substrate, a method of gasifying a solution and then heating it to thermally decompose it, a method of depositing a decomposed product on a substrate while being decomposed by plasma or laser light, or a printing method, etc. A similar method can be adopted when a metal alkoxide is used alone. In particular, the thin film manufacturing method □ using coating method and spray pyrolysis is highly productive and practical with inexpensive equipment.

塗布法で薄膜を製造するばあい、溶液中の金属成分含有
量を0.01〜20%(重量%、以下同様)、好ましく
は0.1−10%とし、加熱温度を200℃以上にする
とき一般に良質な薄膜かえられる。金属成分含有量が0
.01%よりも少ないと、基板上で塗布成分がはじけて
塗布むらを形成するばあいかあり、20%よりも多いと
一回塗布時の膜厚が厚くなるため、熱処理時の熱的歪や
分解ガスのためクラックが入ったり、基板に密着せずに
熱分解して粒子化して濁りを生ずるばあいがある。
When manufacturing a thin film by a coating method, the metal component content in the solution is 0.01 to 20% (weight %, the same applies hereinafter), preferably 0.1 to 10%, and the heating temperature is 200 ° C. or higher. When generally good quality thin film is changed. Metal component content is 0
.. If it is less than 0.01%, the coating components may pop off on the substrate and cause uneven coating, and if it is more than 20%, the film thickness will become thicker once coated, resulting in thermal distortion and decomposition during heat treatment. Cracks may occur due to the gas, or the material may thermally decompose without adhering to the substrate and turn into particles, resulting in turbidity.

ただし、それらの条件は用いる金属アルコキシドとキレ
ート剤の組合せや共通溶媒の種類、塗布手段、塗布雰囲
気によって前記条件が大きく変動することがあり、各組
合せに応じて最適条件を決めることが重要である。
However, these conditions may vary greatly depending on the combination of metal alkoxide and chelating agent used, the type of common solvent, coating method, and coating atmosphere, and it is important to determine the optimal conditions for each combination. .

なおディッピング法によるときは、引上げ速度を0.5
〜100 am/分、好ましくは2〜20c+n/分と
すると均質性にすぐれた薄膜かえられる。
In addition, when using the dipping method, the pulling speed is 0.5
When the speed is set to 100 am/min, preferably 2 to 20 c+n/min, a thin film with excellent homogeneity can be obtained.

噴霧熱分解法で薄膜を製造するばあいは、あらかじめ基
板の温度を200℃以上、好ましくは400℃以上に加
熱しておいて、溶液中の金属成分含有量を0.01〜2
0%、好ましくは0.05〜5%にして、空気または窒
素、アルゴン、ヘリウムなどの不活性ガス、さらにこれ
らに水蒸気を含有させたガスをキャリヤーガスとして基
板に吹きつけることによってえられる。安定な金属ケト
ン錯体を用いることは特にキャリヤーガス中に水蒸気を
含有させることにより、分解性がよくなり、膜質および
化学量論性にすぐれた薄膜かえられる。また均質をよく
するには、噴霧するミストの粒子を均一で細かくするこ
とが重要であり、好ましくは20遍以下の粒子を吹きつ
けるとよい。そのためにはノズルおよびミストが飛散す
る空間を高周波もしくは超音波により振動させてミスト
を均一に細かくするか、さらにノズルと基板間に電場を
かけてミストを速やかに基板上に被着させるのが好まし
い。なお、溶液の処理量、キャリヤーガスの流量は装置
により大きく異なり、適宜調整する必要がある。
When producing a thin film using the spray pyrolysis method, the temperature of the substrate is heated to 200°C or higher, preferably 400°C or higher, and the metal component content in the solution is adjusted to 0.01 to 2.
It can be obtained by blowing air or an inert gas such as nitrogen, argon, or helium, or a gas containing water vapor as a carrier gas onto the substrate at a concentration of 0%, preferably 0.05 to 5%. The use of a stable metal ketone complex, especially when water vapor is included in the carrier gas, improves the decomposition properties and allows the formation of a thin film with excellent film quality and stoichiometry. In order to improve homogeneity, it is important to make the particles of the sprayed mist uniform and fine, and it is preferable to spray particles of 20 times or less. To achieve this, it is preferable to vibrate the nozzle and the space where the mist is scattered using high frequency or ultrasonic waves to make the mist uniformly fine, or to apply an electric field between the nozzle and the substrate to quickly deposit the mist on the substrate. . Note that the throughput of the solution and the flow rate of the carrier gas vary greatly depending on the apparatus, and need to be adjusted as appropriate.

形成する薄膜の厚さは用いる複合金属溶液の金属成分含
有量、粘度、塗布量などによって調節できるが、ディッ
ピング法においては通常1回の塗布で膜厚が100〜3
000人、好ましくは100〜1500人に調節するの
が好ましく、噴霧熱分解法においては1回に3000Å
以下になるようにし、3000人を超えるときは炭化物
を除去するために、熱処理をしたのち再塗布することが
好ましい。また同一または異なる組成の溶液を繰り返し
塗布して同一または異なる組成の薄膜の積層体としても
よい。
The thickness of the thin film to be formed can be adjusted by adjusting the metal component content of the composite metal solution used, viscosity, coating amount, etc., but in the dipping method, the film thickness is usually 100 to 30% by one coating.
000 people, preferably 100 to 1500 people, and in the spray pyrolysis method, 3000 Å at a time.
If the number of people exceeds 3,000, it is preferable to perform heat treatment and reapply to remove carbides. Alternatively, solutions having the same or different compositions may be repeatedly applied to form a laminate of thin films having the same or different compositions.

なお複合金属溶液の熱処理の条件を変えることにより結
晶状態の異なる複合材料を製造することができる。通常
加熱当初では結晶相のえられないアモルファス相となり
、さらに加熱すると徐々に結晶化が進む。したがって加
熱条件を適宜選定することにより任意の結晶状態の複合
材料の薄膜などかえられる。このような薄膜形成法は従
来にない方法であり、えられる結晶状態の異なる薄膜に
は新たな機能が期待できる。
Note that by changing the heat treatment conditions of the composite metal solution, composite materials with different crystal states can be manufactured. Normally, at the beginning of heating, the material becomes an amorphous phase with no crystalline phase, and as it is further heated, crystallization gradually progresses. Therefore, by appropriately selecting the heating conditions, it is possible to change the thin film of the composite material to any desired crystalline state. This thin film formation method is unprecedented, and the resulting thin films with different crystal states can be expected to have new functions.

アモルファス相は通常含有されている有機物の分解が完
了する300〜500℃付近でえられ、400℃以上で
は結晶化が進む。ただし、そうした温度は目的とする複
合材料の組成によって変化するので、そのつどその傾向
を把握して調整する必要がある。
The amorphous phase is usually obtained at around 300 to 500°C, when the decomposition of the contained organic matter is completed, and crystallization progresses at temperatures above 400°C. However, such temperature changes depending on the composition of the target composite material, so it is necessary to understand the trend and adjust it each time.

基板材料としては、薄膜形成時に与えられる熱に耐えら
れる材料であればいかなる材料も使用可能であり、たと
えばガラス、アルミナ、シリカなどのセラミックス製の
板、ステンレスなどの金属板や金属箔、ポリイミドなど
の耐熱性樹脂フィルムなどがあげられるが、とくに表面
の平滑性にすぐれているものが好ましい。
Any material can be used as the substrate material as long as it can withstand the heat applied during thin film formation, such as glass, ceramic plates such as alumina and silica, metal plates such as stainless steel, metal foil, polyimide, etc. Examples include heat-resistant resin films, but those with excellent surface smoothness are particularly preferred.

本発明によってえられる複合金属酸化物微粒子や薄膜は
新しい機能性材料としてきわめて有望なものであり、た
とえば各種のセンサ材料、導電膜材料、光関連デバイス
用材料、磁気記録材料、圧電素子材料、誘電体材料など
としてすぐれた一性能を有する。
The composite metal oxide fine particles and thin films obtained by the present invention are extremely promising as new functional materials, such as various sensor materials, conductive film materials, optical-related device materials, magnetic recording materials, piezoelectric element materials, and dielectric materials. It has excellent performance as a body material.

つぎに本発明を参考例、実施例および比較例に基づいて
説明するが、本発明はかかる実施例のみに限定されるも
のではない。
Next, the present invention will be explained based on Reference Examples, Examples, and Comparative Examples, but the present invention is not limited only to these Examples.

実施例I Ba:TIのモル比が1:1になるようにバリウムトリ
イソプロポキシド5.17gとチタンテトライソプロポ
キシド5.89gを100 、の無水エチルアルコール
中に溶かし、等モル比のアセチルアセトン2gを添加し
たところ自沈が生じた。
Example I 5.17 g of barium triisopropoxide and 5.89 g of titanium tetraisopropoxide were dissolved in 100 ml of absolute ethyl alcohol so that the molar ratio of Ba:TI was 1:1, and acetylacetone was added in an equimolar ratio. When 2g was added, scuttling occurred.

さらに0.3 g (モル比として0.5)のバラホル
ムアルデヒドを加えて10分間還流を行なったところ、
赤褐色の透明な均一溶液となり、溶媒をテトラヒドロフ
ランに変換したところ、1力月以上も安定であった。こ
の溶液は加水分解性があり、石英ガラスにlO■/分の
速度でデイツプコーティングすることにより、白濁のな
い透明な薄膜ができ、これを800℃1時間焼成するこ
とにより、透明なりaT10s薄膜かえられた。
Further, 0.3 g (0.5 molar ratio) of rose formaldehyde was added and refluxed for 10 minutes.
A reddish-brown transparent homogeneous solution was obtained, and when the solvent was changed to tetrahydrofuran, it was stable for more than 1 month. This solution is hydrolyzable, and by dip-coating it on quartz glass at a rate of lO/min, a transparent thin film with no cloudiness is created. By baking this at 800°C for 1 hour, it becomes a transparent aT10s thin film. It was returned.

また、この溶液から溶媒を除去し、600℃にて1時間
焼成することにより、粒径o、t Jl以下のBaTl
O3超微粒子かえられた。加水分解後に焼成しても同様
にBaTlOsの超微粒子かえられた。
In addition, by removing the solvent from this solution and calcining it at 600°C for 1 hour, BaTl with a particle size of o, t Jl or less was obtained.
O3 ultrafine particles have been changed. Even after hydrolysis and calcination, ultrafine particles of BaTlOs were changed in the same way.

実施例2 Fo:Srが12:1のモル比になるように鉄トリエト
キシド15.およびストロンチウムジイソプロポキシド
1.35gを無水エチルアルコール100gに溶かし、
これにアセチルアセトン0.5g加えたところ自沈が生
じた。これに0.2gのホルマリンを加えて70℃にて
10分間加熱したところ、自沈が溶解して均一な溶液と
なった。
Example 2 Iron triethoxide 15. and 1.35 g of strontium diisopropoxide dissolved in 100 g of absolute ethyl alcohol,
When 0.5 g of acetylacetone was added to this, scuttling occurred. When 0.2 g of formalin was added to this and heated at 70° C. for 10 minutes, the scuttling was dissolved and a homogeneous solution was obtained.

この溶液を石英ガラス上に10cm/分の速度でディッ
ピング後、800℃にて1時間焼成したところ、厚さ約
1000人の赤色透明なストロンチウムフェライト(S
「0・6I’e 203)薄膜かえられた。
When this solution was dipped onto quartz glass at a speed of 10 cm/min and baked at 800°C for 1 hour, the result was a transparent red strontium ferrite (S) with a thickness of approximately 1000 mm.
``0.6I'e 203) The thin film was changed.

また、この溶液から溶媒を除去し乾固後、800℃にて
1時間焼成したところ、−炭粒径0.08μのストロン
チウムフェライト粒子かえられた。
Further, when the solvent was removed from this solution, the solution was dried and then fired at 800°C for 1 hour, strontium ferrite particles having a charcoal particle size of 0.08 μm were obtained.

実施例3 Fe:Znのモル比が2=1になるように鉄トリイソプ
ロポキシド11.84 gと亜鉛ジェトキシド3.88
gを無水エチルアルコール100gに添加したところ、
亜鉛ジェトキシドは溶解せず沈殿した。
Example 3 11.84 g of iron triisopropoxide and 3.88 g of zinc jetoxide were added so that the molar ratio of Fe:Zn was 2=1.
When adding g to 100 g of absolute ethyl alcohol,
Zinc jetoxide did not dissolve but precipitated.

この系にシトラコン酸2gを撹拌しながら加えて還流し
たところ、均一な溶液となった。
When 2 g of citraconic acid was added to this system with stirring and refluxed, a homogeneous solution was obtained.

この溶液から溶媒を除去したのち600℃にて1時間焼
成したところ、粒径0.2μのZnPa2Q4スピネル
フエライト粉末かえられた。
After removing the solvent from this solution, it was calcined at 600° C. for 1 hour, and ZnPa2Q4 spinel ferrite powder with a particle size of 0.2 μm was obtained.

実施例4 Pb:TI:Zr−2: 1 : 1 (モル比)にな
るように鉛ジイソプロポキシド18.3g 、チタンテ
トライソプロポキシド7.12g 、ジルコニウムテト
ラブトキシド9.80gを無水エチルアルコール100
 、に溶かし、さらにオレイン酸10gを加えたのち3
0分間加熱還流を行ない、均一な溶液をえた。この溶液
は1力月以上安定であり、溶媒除去後800℃にて1時
間焼成することにより、粒径0.2μのPb(Zr 、
5Tl o、5)03粉体がえられた。
Example 4 18.3 g of lead diisopropoxide, 7.12 g of titanium tetraisopropoxide, and 9.80 g of zirconium tetrabutoxide were mixed with anhydrous ethyl alcohol so that the molar ratio of Pb:TI:Zr-2 was 1:1. 100
, and then add 10 g of oleic acid, and then
The mixture was heated under reflux for 0 minutes to obtain a homogeneous solution. This solution is stable for more than 1 month, and after removing the solvent, it is calcined at 800°C for 1 hour to form Pb (Zr,
5Tlo, 5)03 powder was obtained.

またこの溶液を石英ガラス板に10cm/分の速度でデ
ィッピングして800℃にて1時間焼成したところ、厚
さ1000人の透明性のある1’b(Zr   ・Ti
 、5)03薄膜かえられた。
Furthermore, when this solution was dipped onto a quartz glass plate at a speed of 10 cm/min and baked at 800°C for 1 hour, a transparent 1'b (Zr/Ti
, 5) 03 thin film was changed.

0.5 比較例1 実施例1と同様にBa:Tiのモル比が1対1になるよ
うにバリウムトリイソプロポキシド5.17にとチタン
テトライソプロポキシド5.89gを100 g無水エ
チルアルコールに溶かしたのち、10■/分の速度で石
英ガラス板上のディッピングしたところ、表面が粒子イ
ヒし、白濁した薄膜となり、均一性に乏しい膜しかえら
れなかった。
0.5 Comparative Example 1 Similar to Example 1, 5.17 g of barium triisopropoxide and 5.89 g of titanium tetraisopropoxide were mixed with 100 g of anhydrous ethyl alcohol so that the molar ratio of Ba:Ti was 1:1. When the solution was dissolved in water and dipped on a quartz glass plate at a rate of 10 μ/min, the surface became saturated with particles, resulting in a cloudy thin film with poor uniformity.

なお、この溶液を密閉して2日間放置したところ、多量
の沈殿物が生じ、安定性に乏しいことが判明した。
Note that when this solution was left sealed for two days, a large amount of precipitate was formed and it was found that the solution was poor in stability.

比較例2 実施例2と同様にFa: 5r−12: 1 (モル比
)になるように鉄トリエトキシドとストロンチウムイソ
プロポキシドを加えた無水エタノール溶液を調製し、こ
の溶液を密閉して2日間放置したところ、多量の沈殿物
が生じ、安定性に乏しいことが判明した。
Comparative Example 2 An anhydrous ethanol solution containing iron triethoxide and strontium isopropoxide was prepared in the same manner as in Example 2 to give Fa: 5r-12: 1 (molar ratio), and this solution was sealed and left for 2 days. As a result, it was found that a large amount of precipitate was formed and the stability was poor.

[発明の効果] 本発明の製造法によるときは、種々の金属、とくにアル
コキシド単独使用ではえられない遷移金属や安定性に乏
しい金属を含む複合材料を容易に提供することができる
[Effects of the Invention] When the production method of the present invention is used, it is possible to easily provide a composite material containing various metals, particularly transition metals that cannot be obtained by using an alkoxide alone, and metals with poor stability.

Claims (1)

【特許請求の範囲】[Claims] 1 2種以上の金属アルコキシドにキレート剤を加えて
なる複合金属溶液を加熱することを特徴とする複合材料
の製造法。
1. A method for producing a composite material, which comprises heating a composite metal solution prepared by adding a chelating agent to two or more metal alkoxides.
JP21268190A 1990-08-10 1990-08-10 Production of composite material Granted JPH03115106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21268190A JPH03115106A (en) 1990-08-10 1990-08-10 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21268190A JPH03115106A (en) 1990-08-10 1990-08-10 Production of composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8479283A Division JPS59213602A (en) 1983-04-15 1983-05-13 Composite metallic solution

Publications (2)

Publication Number Publication Date
JPH03115106A true JPH03115106A (en) 1991-05-16
JPH0375483B2 JPH0375483B2 (en) 1991-12-02

Family

ID=16626652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21268190A Granted JPH03115106A (en) 1990-08-10 1990-08-10 Production of composite material

Country Status (1)

Country Link
JP (1) JPH03115106A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002044303A1 (en) * 2000-11-30 2004-04-02 中部キレスト株式会社 Method for producing metal oxide phosphor
JP2004256377A (en) * 2003-02-27 2004-09-16 Nippon Shokubai Co Ltd Method of manufacturing metal oxide film
JP2006322052A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Method for producing metal powder
US7547490B2 (en) 2001-07-31 2009-06-16 Altairnano Inc. High performance lithium titanium spinel Li4Ti5012 for electrode material
JP2009200349A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Material for photodoping and optical amplifying medium
JP2011068500A (en) * 2009-09-24 2011-04-07 Tokuyama Corp Method for producing multiple oxide nanoparticles
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP2014208579A (en) * 2013-03-26 2014-11-06 Toto株式会社 Composite metal oxide particles and method for producing the same
WO2014192965A1 (en) * 2013-05-29 2014-12-04 Toto株式会社 Method for producing metal oxide particles
JP2015196634A (en) * 2014-04-03 2015-11-09 住友金属鉱山株式会社 Production method of metal oxide fine particle and metal oxide fine particle, and powder, dispersion liquid and dispersion of the same, and coated substrate
JP2016044089A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for producing metal oxide fine particles, and metal oxide fine particles as well as powder, dispersion liquid, dispersion and coated substrate thereof
JP2016143490A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Film formation agent, manufacturing method of the same, positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002044303A1 (en) * 2000-11-30 2004-04-02 中部キレスト株式会社 Method for producing metal oxide phosphor
JP5176084B2 (en) * 2000-11-30 2013-04-03 中部キレスト株式会社 Method for producing metal oxide phosphor
US7547490B2 (en) 2001-07-31 2009-06-16 Altairnano Inc. High performance lithium titanium spinel Li4Ti5012 for electrode material
JP2004256377A (en) * 2003-02-27 2004-09-16 Nippon Shokubai Co Ltd Method of manufacturing metal oxide film
JP2006322052A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Method for producing metal powder
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP2009200349A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Material for photodoping and optical amplifying medium
JP2011068500A (en) * 2009-09-24 2011-04-07 Tokuyama Corp Method for producing multiple oxide nanoparticles
JP2014208579A (en) * 2013-03-26 2014-11-06 Toto株式会社 Composite metal oxide particles and method for producing the same
WO2014192965A1 (en) * 2013-05-29 2014-12-04 Toto株式会社 Method for producing metal oxide particles
JP2015006974A (en) * 2013-05-29 2015-01-15 Toto株式会社 Method for producing metal oxide particles
CN105283418A (en) * 2013-05-29 2016-01-27 Toto株式会社 Method for producing metal oxide particles
EP3006402A4 (en) * 2013-05-29 2017-01-18 Toto Ltd. Method for producing metal oxide particles
JP2015196634A (en) * 2014-04-03 2015-11-09 住友金属鉱山株式会社 Production method of metal oxide fine particle and metal oxide fine particle, and powder, dispersion liquid and dispersion of the same, and coated substrate
JP2016044089A (en) * 2014-08-21 2016-04-04 住友金属鉱山株式会社 Method for producing metal oxide fine particles, and metal oxide fine particles as well as powder, dispersion liquid, dispersion and coated substrate thereof
JP2016143490A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Film formation agent, manufacturing method of the same, positive electrode active material for nonaqueous electrolyte secondary battery, and manufacturing method of the same
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst
US10456775B2 (en) 2016-03-28 2019-10-29 Lg Chem, Ltd. Method of preparing zinc ferrite catalyst

Also Published As

Publication number Publication date
JPH0375483B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
CA1217927A (en) Inorganic composite material and process for preparing the same
US4584280A (en) Porous ceramic thin film and process for preparing the same
JPH03115106A (en) Production of composite material
JPH0346402B2 (en)
WO1999055619A1 (en) Process for producing metal oxide, target comprising the metal oxide for forming thin metal oxide film, process for producing the same, and process for producing thin metal oxide film
JP2003002647A (en) Plzt ferroelectric thin film, composition for forming the same, and producing method for the same
US5073410A (en) Thin films of metal phosphates and the method of their formation
JPS59195504A (en) Composite metallic solution
JP2000256862A (en) Production of composite oxidized film
US6086957A (en) Method of producing solution-derived metal oxide thin films
JP2012136487A (en) Method for producing composition for forming ceramic film, piezoelectric ceramic film, and method for producing bismuth 2-ethylhexanoate
US20050057884A1 (en) Dielectric-forming composition containing particles with perovskite crystal structure, production process and uses of the same, and process for preparing crystal particles having perovskite crystal structure
JP2000016812A (en) Production of metal oxide film
Sakamoto et al. Synthesis of Lead Barium Niobate Powders and Thin Films by the Sol‐Gel Method
US5202175A (en) Thin films of metal phosphates and the method of their formation
JP3985887B2 (en) Metal oxide precursor solution
JP4257518B2 (en) Method for producing perovskite type crystal particles, method for producing perovskite type crystal particle dispersion, and dielectric film
JPH03115105A (en) Production of composite material
JP4329288B2 (en) BLT or BT ferroelectric thin film, composition for forming the same and method for forming the same
JPS6197159A (en) Solution for manufacturing piezoelectric thin film and manufacture of film
JP2000351623A (en) Raw material solution for forming perovskite oxide thin film
JP2005075713A (en) Composition for forming dielectric, method of manufacturing the same, dielectric film using the same and capacitor
JPS59213665A (en) Functional inorganic thin film and manufacture
JPS59209212A (en) Transparent ferrodielectric thin film and method of producing same
Apblett et al. Liquid metal carboxylates as precursors for aluminum-containing ceramics