JPH03104866A - Boron nitride coating film and formation thereof - Google Patents

Boron nitride coating film and formation thereof

Info

Publication number
JPH03104866A
JPH03104866A JP24174489A JP24174489A JPH03104866A JP H03104866 A JPH03104866 A JP H03104866A JP 24174489 A JP24174489 A JP 24174489A JP 24174489 A JP24174489 A JP 24174489A JP H03104866 A JPH03104866 A JP H03104866A
Authority
JP
Japan
Prior art keywords
boron
boron nitride
layer
coating film
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24174489A
Other languages
Japanese (ja)
Inventor
Eizaburo Kanda
栄三郎 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24174489A priority Critical patent/JPH03104866A/en
Publication of JPH03104866A publication Critical patent/JPH03104866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a boron nitride coating film having high adhesive strength and withstanding repeated use by vapor-depositing boron on the surface of graphite, further vapor-depositing a nitrogen-boron compd. and then vapor- depositing boron nitride as the uppermost layer. CONSTITUTION:Boron is vapor-deposited on the surface of graphite by chemical vapor deposition in about 0.001-0.1mm thickness. A second layer of a nitrogen- boron compd. is vapor-deposited on the resulting first layer so that the ratio between boron and nitrogen is continuously varied until that in boron nitride is attained. The thickness of the second layer is regulated to about 0.001-0.5mm. Boron nitride is then vapor-deposited on the second layer as a third layer of about 0.01-1mm thickness. By this three-layered structure, the adhesion of a formed coating film to the graphite is improved, thermal stress due to the difference in coefft. of thermal expansion can be relieved and a furnace material and a jig having a long service life can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野コ m−v族、あるいはII−Vl族等の化合物半導体の育
戊に際して使用される炉材、治具に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to furnace materials and jigs used in the growth of compound semiconductors such as those of the group M-V or group II-Vl.

[従来の技術] m−v族、あるいはII−Vl族等の化合物半導体の育
成に際して使用される炉材、治具は、原料と反応せず、
かつ不純物を含まないものが必要とされる。このような
炉材や治具を製造する原料として、グラファイトや、化
学気相蒸着法により作成された乱相構造六方晶窒化ホウ
素(以下熱分解窒化ホウ素と示す)が使用されている。
[Prior Art] Furnace materials and jigs used for growing compound semiconductors such as m-v group or II-Vl group do not react with raw materials;
A substance that does not contain impurities is also required. Graphite and hexagonal boron nitride with a disordered phase structure (hereinafter referred to as pyrolytic boron nitride) prepared by chemical vapor deposition are used as raw materials for manufacturing such furnace materials and jigs.

しかし、前者は大きなものは作戊できるものの、気孔が
あるためガスや不純物を吸蔵する欠点があり、後者は気
孔がなくガスや不純物を吸蔵するという欠点はないもの
の、大きなものは作或できないという欠点がある。
However, although the former can produce large objects, it has the disadvantage of occluding gas and impurities due to its pores, while the latter has no pores and does not have the disadvantage of occluding gas and impurities, but cannot produce large objects. There are drawbacks.

近年、両者の欠点を補うために、グラファイトに熱分解
窒化ホウ素を被覆したものが製造され、使用されている
。これは、グラファイトに直接熱分解窒化ホウ素を18
00゜C前後で被覆したものである。
In recent years, graphite coated with pyrolytic boron nitride has been manufactured and used to compensate for the drawbacks of both. This involves applying 18 pyrolytic boron nitride directly to graphite.
It was coated at around 00°C.

[発明が解決しようとする課題] しかしながら、上記材料で作或された治具は、グラファ
イトと窒化ホウ素被覆膜との密着力が弱く、異物と当た
ったり、摩擦されたりすることにより窒化ホウ素被覆膜
が簡単にはく離するという問題点がある。さらに、これ
らの治具は通常、室温からiooo ’c以上に加熱さ
れ、また室温に戻されるという熱履歴を受けることにな
るが、この熱履歴によりグラファイトと窒化ホウ素被覆
膜とがはく離したり、窒化ホウ素被覆膜に亀裂が入った
りして、わずかな回数しか使用できないという問題点が
ある。これらの問題を解消するためにグラファイト表面
を適度に荒すことがなされているが充分な効果は得られ
ていない。
[Problems to be Solved by the Invention] However, the jig made of the above-mentioned material has a weak adhesion between the graphite and the boron nitride coating, and the boron nitride coating may break down due to contact with foreign objects or friction. There is a problem that the coating film easily peels off. Furthermore, these jigs are usually subjected to a thermal history in which they are heated from room temperature to over iooo'c and then returned to room temperature, and this thermal history may cause the graphite and boron nitride coating to peel off. However, there is a problem in that the boron nitride coating film cracks and can only be used a small number of times. In order to solve these problems, attempts have been made to roughen the graphite surface to an appropriate degree, but sufficient effects have not been achieved.

本発明の目的はグラファイトと密着力が強く、何回も使
用することのできる窒化ホウ素被覆膜とその形成方法の
提供にある。
An object of the present invention is to provide a boron nitride coating film that has strong adhesion to graphite and can be used many times, and a method for forming the same.

[課題を解決するための手段コ 上記課題を解決する本発明の被覆膜は、グラファイトの
表面に設けられた窒化ホウ素被膜において、ホウ素から
なる第1層と、ホウ素と窒素との比を窒化ホウ素にの比
になるまで連続的に変化させた窒素・ホウ素化合物から
なる第2層と、窒化ホウ素からなる最上層の3層によっ
て構成されることを特徴とする窒化ホウ素被覆膜であり
、好ましくは、第1層の厚さが0.001 mm以上、
第2層の厚さが0.001 mm以上、最上層の厚さが
0.01mm以上である窒化ホウ素被覆膜であり、さら
に、本発明の方法は、グラファイト表面に化学気相蒸着
法により熱分解窒化ホウ素を被覆するに際して、第1層
としてホウ素を蒸着し、次いでホウ素と窒素の比を窒化
ホウ素の比になるまで連続的に変化させて窒素・ホウ素
化合物を蒸着し、最上層として窒化ホウ素を蒸着する方
法である。
[Means for Solving the Problems] The coating film of the present invention that solves the above problems is such that, in the boron nitride film provided on the surface of graphite, the first layer made of boron and the ratio of boron to nitrogen are nitrided. A boron nitride coating film characterized by being composed of three layers: a second layer made of a nitrogen-boron compound that is continuously changed until the ratio becomes the same as that of boron, and an uppermost layer made of boron nitride, Preferably, the thickness of the first layer is 0.001 mm or more,
The method of the present invention is a boron nitride coating film in which the second layer has a thickness of 0.001 mm or more and the top layer has a thickness of 0.01 mm or more. In coating pyrolytic boron nitride, boron is deposited as the first layer, then a nitrogen-boron compound is deposited by continuously changing the ratio of boron to nitrogen until the ratio of boron nitride is reached, and the top layer is nitrided. This is a method of vapor depositing boron.

[作用] 本発明はグラファイト表面に設ける窒化ホウ素被覆膜を
3層構造とすることにより密着力を強化し、熱膨張率の
差による熱応力を緩和するものである。
[Function] The present invention strengthens adhesion by forming the boron nitride coating film provided on the graphite surface into a three-layer structure, thereby alleviating thermal stress due to the difference in coefficient of thermal expansion.

グラファイトと被覆膜との密着力を飛躍的にまずために
は炭素とホウ素との間に化学結合を形或することが必要
である。しかし、窒化ホウ素とグラファイトとの間でこ
の反応を起こさせるためには2000 ’C以上の温度
が必要とされ、現実的ではない。しかし、グラファイト
にホウ素を化学気相法で蒸着するとホウ素と炭素との強
固な結合を得ることができる。これが本発明において、
第l相をホウ素相とする理由である。この第1層の厚さ
は、ホウ素と炭素との結合を確実なものとし、かつその
上に窒素・ホウ素化合物層を化学気相法で蒸着した際に
充分な密着力が得られるようにするためには0.001
 mm以上の厚さが必要であり、一方あまり厚くするこ
とは経済性を損うため0.1mm以下とすることが好ま
しいからである。
In order to dramatically improve the adhesion between graphite and the coating film, it is necessary to form a chemical bond between carbon and boron. However, in order to cause this reaction between boron nitride and graphite, a temperature of 2000'C or more is required, which is not realistic. However, if boron is deposited on graphite by chemical vapor deposition, a strong bond between boron and carbon can be obtained. In the present invention, this is
This is the reason why the first phase is a boron phase. The thickness of this first layer ensures the bond between boron and carbon, and also ensures sufficient adhesion when a nitrogen-boron compound layer is deposited on top of it by chemical vapor deposition. 0.001 for
This is because a thickness of 0.1 mm or less is required, and on the other hand, making it too thick impairs economic efficiency.

第2相をホウ素と窒素の比を窒化ホウ素の比になるまで
連続的に変化させた窒素・ホウ素化合物層とするのは、
ホウ素層と窒化ホウ素層との熱膨張率の差による熱応力
を低下させるためである。
The second phase is a nitrogen-boron compound layer in which the ratio of boron to nitrogen is continuously changed until it reaches the ratio of boron nitride.
This is to reduce thermal stress due to the difference in thermal expansion coefficient between the boron layer and the boron nitride layer.

この化合物層がいかなる構造と組成を持つかということ
を完全に解析することは困難である。しかし、本発明者
は、該化合物層の形成において原料ガスであるBCIs
とNH.との割合を連続的に変化させることから、非化
学量論組成の窒化ホウ素、あるいはホウ素と窒化ホウ素
とが微細に入交じったものと推定している。この第2層
の厚さを薄くすると熱応力の低減効果が充分でなく、あ
まり厚くすると経済性を失するため0.001 mm以
上とすることが必要であり、0.5mm以下とすること
が好ましい。
It is difficult to completely analyze the structure and composition of this compound layer. However, the present inventor discovered that BCIs, which is a raw material gas, in forming the compound layer.
and N.H. Since the ratio of boron and boron nitride changes continuously, it is presumed that boron nitride has a non-stoichiometric composition, or that boron and boron nitride are finely mixed. If the thickness of this second layer is made thin, the effect of reducing thermal stress will not be sufficient, and if it becomes too thick, economical efficiency will be lost. Therefore, it is necessary to make it 0.001 mm or more, and it is not recommended to make it 0.5 mm or less. preferable.

このようにして得られた第2層の上に窒化ホウ素を第3
層として化学気相法により蒸着することにより、本発明
の目的である密着力の強い窒化ホウ素被覆膜を得ること
ができる。第3層の厚さは、使用に際しての機械的強度
を考慮した厚さであればよ< 、0.01 mm以上と
することが必要であり、経済性より 1 mm以下とす
ることが望ましい。
A third layer of boron nitride is deposited on the second layer thus obtained.
By depositing the material as a layer by chemical vapor deposition, a boron nitride coating film with strong adhesion, which is the object of the present invention, can be obtained. The thickness of the third layer needs to be at least 0.01 mm, as long as it takes into account mechanical strength during use, and is preferably at most 1 mm from economical considerations.

なお、本発明の窒化ホウ素被覆膜を得るに際しては、ホ
ウ素の蒸着より窒化ホウ素の蒸着に至るまで、膜生成は
連続的に行うことが必要である。
In addition, in obtaining the boron nitride coating film of the present invention, it is necessary to perform film formation continuously from the evaporation of boron to the evaporation of boron nitride.

[実施例−1] 直径200 mm長さ600 +nn+の石英管の上下
にステンレス製のフランジを接続した真空炉の内部に、
グラファイトフェルト断熱材をおき、その内側に直径1
00 mm %長さ100 mmのグラファイト加熱体
を設置し、これを加熱すべく石英管外部に加熱用高周波
コイルが設けられ、蒸着原料ガスがグラファイト加熱体
の下部より2本のノズルによって導入され、上部から排
気されるようになった化学気相蒸着装置を用いて以下の
条件で窒化ホウ素被覆膜を形成した。
[Example-1] Inside a vacuum furnace, stainless steel flanges were connected to the top and bottom of a quartz tube with a diameter of 200 mm and a length of 600 +nn+.
Place a graphite felt insulation material and have a diameter of 1 mm inside it.
A graphite heating element with a length of 100 mm was installed, and a heating high-frequency coil was provided outside the quartz tube to heat it, and the vapor deposition source gas was introduced from the bottom of the graphite heating element through two nozzles. A boron nitride coating film was formed under the following conditions using a chemical vapor deposition apparatus with exhaust from the top.

最初にl300゜C, 2 torrにてBCImと1
1.とをそれぞれ85、200 SCCM (std,
cubic.cm/min)の割合で装置内へ流入させ
、150分間蒸着し、次いで、流入ガス組成はそのまま
とし、30分間かけて温度をl800゜Cまで上昇させ
、l800  ゜Cで120分間蒸着し第2層を形成し
た。この第2層を形成するに際し、BCImの流入割合
を85 SCCMに維持したまま、■オをNH.に逐次
置き換え、途中H,の割合を0とし、最終的にNH.を
400SCCMにした。引続き、BC1iと NHiと
の流入量をそれぞれ85、400 SCCMの割合に維
持したまま180分間の蒸着を行った。
First, BCIm and 1 at 1300°C and 2 torr.
1. and 85 and 200 SCCM (std,
cubic. cm/min) into the apparatus for 150 minutes of evaporation, then, with the inlet gas composition unchanged, the temperature was raised to 1800 °C over 30 minutes, and the second deposition was performed at 1800 °C for 120 minutes. formed a layer. When forming this second layer, while maintaining the inflow rate of BCIm at 85 SCCM, , the ratio of H, is set to 0, and finally NH. was set to 400SCCM. Subsequently, evaporation was performed for 180 minutes while maintaining the inflow rates of BC1i and NHi at a ratio of 85 and 400 SCCM, respectively.

得られた窒化ホウ素被覆膜の第1層の厚さは0.01 
mmであり、第2層の厚さは0.02mmであり、最上
層の窒化ホウ素膜の厚さは0.35mmであった。
The thickness of the first layer of the obtained boron nitride coating film was 0.01
The thickness of the second layer was 0.02 mm, and the thickness of the top layer boron nitride film was 0.35 mm.

この被覆膜をドライバーで強く擦ったところ、表面の窒
化ホウ素層のみにわずかに傷を生じたのみであった。
When this coating film was rubbed strongly with a screwdriver, only the boron nitride layer on the surface was slightly scratched.

[実施例−2コ 直径100問、厚さ10 mmのグラファイト板に実施
例一lと同様にして全厚み0.3mmの被覆膜を形成し
た。これを窒素雰囲気中1気圧下で室温から1800 
’Cまでの昇降温試験を10回繰返した。その結果、な
んら異常は認められなかった。
[Example 2] A coating film having a total thickness of 0.3 mm was formed on a graphite plate having a diameter of 100 pieces and a thickness of 10 mm in the same manner as in Example 11. This was heated from room temperature to 1,800 yen under 1 atm in a nitrogen atmosphere.
The temperature raising/lowering test up to 'C was repeated 10 times. As a result, no abnormality was observed.

[比較例−1] 実施例−1と同一の蒸着装置、グラファイトを用い、1
800 ’C, 2 torrで、BCIsと NH.
とをそれぞれ85、400 SCCMの割合に維持した
まま0.3mmの厚さの窒化ホウ素被覆膜を形成し、試
料Aを得た。次いで、新しいグラファイトに入替え、!
300 ”C, 2 torrにてBCI.とH,とを
それぞれ85、200 SCCM (std.cubi
c.cm/win)の割合で装置内へ流入させ、蒸着し
て0.01 mmの厚さのホウ素被覆膜形成し、次いで
、流入ガス組成はそのままとし、温度をl800゜Cま
で上昇させた。
[Comparative Example-1] Using the same vapor deposition apparatus and graphite as in Example-1, 1
At 800'C, 2 torr, BCIs and NH.
Sample A was obtained by forming a boron nitride coating film with a thickness of 0.3 mm while maintaining the ratios of 85 and 400 SCCM. Next, replace it with new graphite!
300"C, BCI. and H, at 2 torr, respectively 85 and 200 SCCM (std.cubi
c. The boron coating was vapor-deposited to form a boron coating film with a thickness of 0.01 mm.Then, the inflow gas composition was kept the same and the temperature was raised to 1800°C.

温度が1800゜Cになった時点で流入ガスをBCIs
とNl!.とに切換えた。BCI.とNll.の流入割
合は、それぞれ85、400 SCCMとした。この状
態で240分間蒸着してOJ5mmの厚さの窒化ホウ素
被覆膜を形成し、試料Bを得た。
When the temperature reaches 1800°C, the incoming gas is converted to BCIs.
and Nl! .. I switched to. BCI. and Nll. The inflow rates were 85 and 400 SCCM, respectively. In this state, vapor deposition was performed for 240 minutes to form a boron nitride coating film with a thickness of OJ 5 mm, and sample B was obtained.

試料AとBとの被覆膜をドライバーで強く擦ったところ
、Aでは表面の窒化ホウ素被覆膜が簡単にグラファイト
からはく離し、Bでは被覆膜の窒化ホウ素層がはく離し
、グラファイト表面にはホウ素層が付着していた。
When the coating films of samples A and B were strongly rubbed with a screwdriver, the boron nitride coating film on the surface of sample A was easily peeled off from the graphite, and the boron nitride layer of the coating film of sample B was peeled off and the surface of the graphite was peeled off. had a boron layer attached.

[比較例−2] 直径100 nu++,厚さto mmのグラファイト
板に比較例−1と同様にして厚さOJmmの被覆膜を形
成し、試料A’ 、B’ を得た。これを窒素雰囲気中
l気圧下で室温から1800″Cまでの昇降温試験を行
った。その結果、グラファイトに窒化ホウ素被覆膜を直
接形成したA′では1回ではく離が生じ、グラファイト
にホウ素被覆膜を設け、その上に窒化ホウ素被覆膜を設
けたB゜は3回の繰返しでクラックを生じた。
[Comparative Example-2] A coating film having a thickness of OJmm was formed on a graphite plate having a diameter of 100 nu++ and a thickness of to mm in the same manner as in Comparative Example-1 to obtain samples A' and B'. This was subjected to a temperature raising/lowering test from room temperature to 1800''C under 1 atm in a nitrogen atmosphere.As a result, with A', in which a boron nitride coating film was directly formed on graphite, peeling occurred at one time, and boron on graphite B°, in which a coating film was provided and a boron nitride coating film was provided thereon, developed cracks after three repetitions.

[発明の効果] 本発明の被覆膜は、ホウ素層、窒素・ホウ素化合物層、
窒化ホウ素層の3層構造とすることにより、グラファイ
トとの密着性を強化し、熱膨張率の差による熱応力を緩
和することができるため従来のものより長寿命な炉材や
治具を作成でき、その結果、より高品質な結晶の育戊を
可能にする。
[Effects of the invention] The coating film of the invention includes a boron layer, a nitrogen/boron compound layer,
The three-layer structure of boron nitride layers strengthens adhesion with graphite and alleviates thermal stress due to differences in thermal expansion coefficients, creating furnace materials and jigs that have a longer lifespan than conventional ones. As a result, it is possible to grow higher quality crystals.

Claims (3)

【特許請求の範囲】[Claims] (1)グラファイトの表面に設けられた窒化ホウ素被膜
において、ホウ素からなる第1層と、ホウ素と窒素との
比を窒化ホウ素の比になるまで連続的に変化させた窒素
・ホウ素化合物からなる第2層と、窒化ホウ素からなる
最上層の3層によって構成されることを特徴とする窒化
ホウ素被覆膜。
(1) In the boron nitride coating provided on the surface of graphite, the first layer is made of boron, and the second layer is made of a nitrogen-boron compound in which the ratio of boron to nitrogen is continuously changed until it reaches the ratio of boron nitride. A boron nitride coating film comprising three layers: two layers and an uppermost layer made of boron nitride.
(2)請求項(1)記載の窒化ホウ素被膜において、第
1層の厚さが0.001mm以上であり、第2層の厚さ
が0.001mm以上であり、最上層の厚さが0.01
mm以上である窒化ホウ素被覆膜。
(2) In the boron nitride coating according to claim (1), the first layer has a thickness of 0.001 mm or more, the second layer has a thickness of 0.001 mm or more, and the top layer has a thickness of 0.001 mm or more. .01
A boron nitride coating film having a thickness of mm or more.
(3)グラファイト表面に化学気相蒸着法により乱層構
造六方晶窒化ホウ素を被覆するに際して、第1層として
ホウ素を蒸着し、次いでホウ素と窒素の比を窒化ホウ素
の比になるまで連続的に変化させて窒素・ホウ素化合物
を蒸着し、最上層として窒化ホウ素を蒸着することを特
徴とする窒化ホウ素被覆膜の形成方法。
(3) When coating the graphite surface with turbostratic hexagonal boron nitride by chemical vapor deposition, boron is deposited as the first layer, and then the ratio of boron to nitrogen is continuously adjusted until the ratio of boron nitride is reached. 1. A method for forming a boron nitride coating film, the method comprising depositing a nitrogen-boron compound by varying the amount of nitrogen and boron, and depositing boron nitride as the top layer.
JP24174489A 1989-09-20 1989-09-20 Boron nitride coating film and formation thereof Pending JPH03104866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24174489A JPH03104866A (en) 1989-09-20 1989-09-20 Boron nitride coating film and formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24174489A JPH03104866A (en) 1989-09-20 1989-09-20 Boron nitride coating film and formation thereof

Publications (1)

Publication Number Publication Date
JPH03104866A true JPH03104866A (en) 1991-05-01

Family

ID=17078899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24174489A Pending JPH03104866A (en) 1989-09-20 1989-09-20 Boron nitride coating film and formation thereof

Country Status (1)

Country Link
JP (1) JPH03104866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021190A (en) * 2006-05-17 2007-02-01 Shu Nakamura Artificial nipple

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021190A (en) * 2006-05-17 2007-02-01 Shu Nakamura Artificial nipple

Similar Documents

Publication Publication Date Title
JPH0566358B2 (en)
JPH01294867A (en) Formation of coating film of carbon or consisting essentially of carbon
CN107740068B (en) Novel method for depositing diamond film on stainless steel surface
JPH09312245A (en) Thin-film-deposited substrate and manufacture thereof
US5807416A (en) Silica glass member with glassy carbon coating method for producing the same
CN117587361B (en) Preparation method of tantalum carbide coating
JPH03153876A (en) Silicon carbide member
JPH03104866A (en) Boron nitride coating film and formation thereof
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
CN115044889A (en) SiC composite coating for graphite base surface and preparation method thereof
EP1676935A2 (en) Yttrium-containing ceramic coating
CN116180075B (en) Preparation method of low-stress strong-bonding high-temperature insulating coating
CN110629193A (en) Method for preparing diamond film on surface of stainless steel
JPH05202211A (en) Abrasion-resistant plastic molding and its production
JPH11130565A (en) Silicon carbide-coated carbon material
JPH06100398A (en) Production of diamond film having mirror finished surface
CN113293353B (en) Metal-doped zirconium diboride film and preparation method thereof
KR102649530B1 (en) Low-temperature deposition method of crystalline zirconium oxide thin film by ALD
JPS6316464B2 (en)
JPH08144045A (en) Cubic boron nitride coated member
TWI282779B (en) Molding core for molding glass
JP3450818B2 (en) Method for producing aluminum nitride thin film with improved surface and bonding properties
JP3051667B2 (en) Silica glass jig for semiconductor device manufacturing
JP3319217B2 (en) Mold for optical lens and method of manufacturing the same
JPS5817257B2 (en) Boron film formation method