JPH0298173A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPH0298173A
JPH0298173A JP25128188A JP25128188A JPH0298173A JP H0298173 A JPH0298173 A JP H0298173A JP 25128188 A JP25128188 A JP 25128188A JP 25128188 A JP25128188 A JP 25128188A JP H0298173 A JPH0298173 A JP H0298173A
Authority
JP
Japan
Prior art keywords
oxide film
gate electrode
layer
silicon layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25128188A
Other languages
Japanese (ja)
Inventor
Mitsumasa Ooishi
三真 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25128188A priority Critical patent/JPH0298173A/en
Publication of JPH0298173A publication Critical patent/JPH0298173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce an insulating film in thickness between a floating gate electrode and a control gate electrode and to operate at a low voltage by forming the floating electrode or amorphous silicon. CONSTITUTION:A field oxide film 2 is formed on a P-type Si semiconductor substrate 1, a gate oxide film 3 is then formed, amorphous Si is deposited on a whole substrate surface, the obtained amorphous Si layer 4 is selectively patterned to form a floating gate electrode, and the layer 4 is further crystallized. In this case, after an oxide film formed on the surface of an Si layer 4' is removed, a gate oxide film 5 is formed. Then, polycrystalline Si 6 is deposited on the whole surface, a photoresist mask 7 is formed on the layer 6, and a control electrode 6, is then formed. The film 5 and the layer 4' are removed, a floating gate electrode 4'' is formed, and the floating gate electrode 4' is formed in a self-alignment manner with the electrode 6'. Further, an N<+> type source region 9 and a drain region 10 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体記憶装置の製造方法に関し、特に不揮
発性半導体記憶装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor memory device, and particularly to a method of manufacturing a nonvolatile semiconductor memory device.

〔従来の技術〕[Conventional technology]

従来、制御ゲート電極と浮遊ゲート電極を有する不揮発
性半導体記憶装置の製造方法は、まず半導体記憶装置表
面に形成された酸化膜(第1ゲート酸化膜)上に浮遊ゲ
ート電極となる多結晶シリコン層を形成し、電気伝導を
良くするため熱拡散により高濃度の不純物添加を行なう
。この熱拡散時に酸化によって形成された多結晶シリコ
ン層表面のガラス層を除去した後、再び多結晶シリコン
層を熱酸化する。このとき多結晶シリコン層に添加され
た高濃度不純物によって形成される酸化膜は不純物が添
加されていない多結晶シリコン層に比べ酸化膜を厚く形
成できる(増速酸化)ことを利用し、浮遊ゲート電極と
制御ゲート電極との間の絶縁膜(以下第2ゲート酸化膜
と記す)を厚く形成する。その後、制御ゲート電極とな
る多結晶シリコン層を形成していた。
Conventionally, in the manufacturing method of a nonvolatile semiconductor memory device having a control gate electrode and a floating gate electrode, a polycrystalline silicon layer that will become a floating gate electrode is first deposited on an oxide film (first gate oxide film) formed on the surface of the semiconductor memory device. A high concentration of impurities is added by thermal diffusion to improve electrical conduction. After removing the glass layer on the surface of the polycrystalline silicon layer formed by oxidation during this thermal diffusion, the polycrystalline silicon layer is thermally oxidized again. At this time, the oxide film formed by the high concentration impurity added to the polycrystalline silicon layer can be formed thicker than the polycrystalline silicon layer to which no impurity is added (accelerated oxidation). An insulating film (hereinafter referred to as a second gate oxide film) between the electrode and the control gate electrode is formed to be thick. After that, a polycrystalline silicon layer that would become a control gate electrode was formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の不揮発性半導体記憶装置の製造方法では
、浮遊ゲート電極となる多結晶シリコン層に電気伝導を
良くするため高濃度不純物が添加されるので、第2ゲー
ト酸化膜を形成するため熱酸化した場合、酸化膜は厚く
形成され、浮遊ゲート電極と制御ゲート電極との間の耐
圧を高くすることができた。しかし、この製造方法では
記憶装置の動作電圧が高くなってしまう欠点がある。そ
こで動作電圧を低くするために、多結晶シリコン層に形
成される酸化膜を薄くしていくと酸化膜中の高濃度不純
物によって浮遊ゲート電極と制御ゲート電極との間のリ
ーク電流が増大するという欠点があった。
In the conventional manufacturing method of nonvolatile semiconductor memory devices described above, a high concentration of impurity is added to the polycrystalline silicon layer that becomes the floating gate electrode to improve electrical conduction, so thermal oxidation is performed to form the second gate oxide film. In this case, the oxide film was formed thickly, and the breakdown voltage between the floating gate electrode and the control gate electrode could be increased. However, this manufacturing method has the disadvantage that the operating voltage of the memory device becomes high. Therefore, in order to lower the operating voltage, if the oxide film formed on the polycrystalline silicon layer is made thinner, the leakage current between the floating gate electrode and the control gate electrode will increase due to the high concentration of impurities in the oxide film. There were drawbacks.

また、浮遊ゲート電極を多結晶シリコンで形成した場合
は、多結晶シリコン粒径の成長および粒界面により絶縁
膜質の劣化を生じる欠点もあった。
Furthermore, when the floating gate electrode is formed of polycrystalline silicon, there is also a drawback that the quality of the insulating film deteriorates due to the growth of the polycrystalline silicon grain size and the grain interface.

本発明の不揮発性半導体基板の製造方法は、半導体基板
表面に形成された第1のゲート酸化膜上に非晶質の第1
のシリコン層を形成する工程と、該第1のシリコン層を
熱処理する工程と、該熱処理された第1のシリコン層表
層に形成された酸化膜を除去する工程と、該第1のシリ
コン層表層に所望の厚さの第2のゲート酸化膜を形成す
る工程と、該第2のゲート酸化膜上に多結晶シリコンの
第2のシリコン層を形成する工程とを有している。
The method for manufacturing a nonvolatile semiconductor substrate of the present invention includes forming an amorphous first gate oxide film on a first gate oxide film formed on a surface of a semiconductor substrate.
a step of heat-treating the first silicon layer; a step of removing an oxide film formed on the surface layer of the heat-treated first silicon layer; and a step of removing the oxide film formed on the surface layer of the first silicon layer. and forming a second silicon layer of polycrystalline silicon on the second gate oxide film.

そのため第2のゲート酸化膜を薄く形成しても不純物に
よるリーク電流の発生を防ぐことができる。
Therefore, even if the second gate oxide film is formed thin, leakage current due to impurities can be prevented from occurring.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の第1の実施例を示す工
程断面図である。P型シリコン半導体基板l上にシリコ
ン酸化膜(S i O,膜)およびシリコン窒化膜(S
isNs膜)(図示せず)の2層を選択的に形成した後
、第1図(a)に示すように、露出した基板表面を熱酸
化して5in2からなるフィールド酸化膜2を形成する
。次に5ixN<膜と5in2膜を除去し、例えば90
0℃で湿式酸化を行ない厚さ40nmの第1ゲート酸化
膜3を形成する。次にしきい値電圧制御のためのポロン
イオンをエネルギー50KeV、ドーズ量6 X 10
 ”cm−”で打ち込む0次に基板を、たとえば400
℃に加熱し5izHaガスを高周波放電によって分解し
、プラズマ気相成長法により非晶質シリコン(以下アモ
ルファスシリコンと記す)を基板全面に250nmの厚
さに堆積させる。こうして形成された7モルファシスシ
リコン層4を選択的にパターニングすることによって浮
遊ゲート電極形成のための第1次加工を行ない、第1図
(a)の図面に垂直方向のチャネル部の寸法を規定する
。次に900℃で乾式酸化を行ない、引き続き酸素と不
活性ガスの混合雰囲気中で1000℃1時間の熱処理を
行ない7モルファシスシリコン層4の結晶化ヲ行すう、
この時シリコン層4′表面に形成される酸化膜を除去し
た後900℃で湿式酸化を行ない、厚さ30nmの第2
ゲート酸化膜5を結晶化されたシリコン層り′上に形成
する。その後第1図(b)に示すように、全面に多結晶
シリコン6を化学気相成長により厚さ400nm堆積さ
せリンを熱拡散により飽和濃度近くまで添加し、伝導性
を良くし多結晶シリコン層6の上にフォトレジスト膜を
塗布しバターニングを行ないフォトレジストマスク7を
形成する。次に第1図(c)に示すように反応性イオン
エツチングにより多結晶シリコン層6を加工し制御ゲー
ト電極6′を形成する。続けて反応性イオンエツチング
により第2ゲート酸化膜5とシリコン層4′をエツチン
グすることにより浮遊ゲート電極4″の第2次加工を行
ない、浮遊ゲート電極4′を制御ゲート電極6′と自己
整合的に形成する。次にフォトレジストマスク7を除去
し浮遊ゲート電極4″の露出した側面部に絶縁膜を形成
するために900℃で乾式酸化を行ない厚さ20nmの
側面酸化膜8を形成し制御ゲート電極6′をマスクにヒ
素イオンをエネルギー70K e V s  ドーズ量
I X I O”an−”で打ち込んだ後、酸素と不活
性ガスの混合雰囲気中で1000℃30分の熱処理を行
ない、n+型のソース領域9およびドレイン領域10を
形成する。さらに第1図(d)に示すようにリンガラス
からなる層間絶縁膜11を堆積させ、ソース、ドレイン
領域9,10にコンタクト孔12−1.12−2を開孔
した後制御ゲート電極配線(図示せず)、ソース電極配
線13およびドレイン電極14をアルミニウムで形成す
る。
FIGS. 1(a) to 1(d) are process cross-sectional views showing a first embodiment of the present invention. A silicon oxide film (SiO, film) and a silicon nitride film (S
After selectively forming two layers of the isNs film (not shown), the exposed substrate surface is thermally oxidized to form a field oxide film 2 of 5 in 2 as shown in FIG. 1(a). Next, remove the 5ixN< film and the 5in2 film, e.g.
Wet oxidation is performed at 0° C. to form a first gate oxide film 3 with a thickness of 40 nm. Next, poron ions were used for threshold voltage control at an energy of 50 KeV and a dose of 6 x 10
For example, the zero-order board to be implanted with "cm-" is 400
℃, 5izHa gas is decomposed by high frequency discharge, and amorphous silicon (hereinafter referred to as amorphous silicon) is deposited to a thickness of 250 nm over the entire surface of the substrate by plasma vapor deposition. The thus formed 7-morphosis silicon layer 4 is selectively patterned to perform the first processing for forming a floating gate electrode, and the dimensions of the channel portion in the vertical direction are defined in the drawing of FIG. 1(a). do. Next, dry oxidation is performed at 900°C, followed by heat treatment at 1000°C for 1 hour in a mixed atmosphere of oxygen and inert gas to crystallize the 7-morphosis silicon layer 4.
At this time, after removing the oxide film formed on the surface of the silicon layer 4', wet oxidation was performed at 900°C to form a second layer with a thickness of 30 nm.
A gate oxide film 5 is formed on the crystallized silicon layer. Thereafter, as shown in FIG. 1(b), polycrystalline silicon 6 is deposited to a thickness of 400 nm on the entire surface by chemical vapor deposition, and phosphorus is added to near saturation concentration by thermal diffusion to improve conductivity and form a polycrystalline silicon layer. A photoresist film is applied on 6 and patterned to form a photoresist mask 7. Next, as shown in FIG. 1(c), the polycrystalline silicon layer 6 is processed by reactive ion etching to form a control gate electrode 6'. Subsequently, the second gate oxide film 5 and silicon layer 4' are etched by reactive ion etching to perform secondary processing of the floating gate electrode 4'', and the floating gate electrode 4' is self-aligned with the control gate electrode 6'. Next, the photoresist mask 7 is removed, and in order to form an insulating film on the exposed side surfaces of the floating gate electrode 4'', dry oxidation is performed at 900° C. to form a side oxide film 8 with a thickness of 20 nm. Using the control gate electrode 6' as a mask, arsenic ions are implanted at an energy of 70 K e V s and a dose of I X I O "an-", followed by heat treatment at 1000° C. for 30 minutes in a mixed atmosphere of oxygen and inert gas. An n+ type source region 9 and drain region 10 are formed. Furthermore, as shown in FIG. 1(d), an interlayer insulating film 11 made of phosphorus glass is deposited, and contact holes 12-1 and 12-2 are opened in the source and drain regions 9 and 10, and then the control gate electrode wiring ( (not shown), the source electrode wiring 13 and the drain electrode 14 are formed of aluminum.

第2図は本発明の第2の実施例を説明するための不揮発
性半導体記憶装置の断面図である。
FIG. 2 is a sectional view of a nonvolatile semiconductor memory device for explaining a second embodiment of the present invention.

フィールド酸化膜2を第1の実施例と同じように形成し
た後、ドレイン領域10を形成する。次に第1ゲート酸
化膜3を形成した後、トンネル領域を形成するために選
択的に第1ゲート酸化膜3をエツチングし、900℃の
乾式酸化により9nmのトンネル酸化膜5を形成する。
After field oxide film 2 is formed in the same manner as in the first embodiment, drain region 10 is formed. Next, after forming the first gate oxide film 3, the first gate oxide film 3 is selectively etched to form a tunnel region, and a 9 nm thick tunnel oxide film 5 is formed by dry oxidation at 900°C.

それ以降は第1の実施例と同様に形成する。The subsequent steps are formed in the same manner as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では浮遊ゲート電極をアモル
ファスシリコンで形成するため多結晶シリコンのように
絶縁膜のリーク電流を増加させるように悪影響を及ぼす
ことがなく、従って浮遊ゲート電極と制御ゲート電極と
の間の絶縁膜を薄くでき低電圧で動作する不揮発性半導
体記憶装置を実現できる効果がある。
As explained above, in the present invention, since the floating gate electrode is formed of amorphous silicon, it does not have the adverse effect of increasing the leakage current of the insulating film unlike polycrystalline silicon, and therefore the floating gate electrode and the control gate electrode are This has the effect of making it possible to thin the insulating film between the layers, thereby realizing a nonvolatile semiconductor memory device that operates at low voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の第1の実施例を示す断
面工程図、第2図は本発明の第2の実施例を示す断面図
である。 ■・・・・・・P型シリコン半導体基板、2・・川・フ
ィールド酸化膜、3・−・・・・第1ゲート酸化膜、4
・・・・・・アモルファスシリコン層、4′・・川・結
晶化サレタシリコン層、4″・・・・・・浮遊ゲート電
極、5・・・・・・第2ゲート酸化膜、6・・・・・・
多結晶シリコンシリコン層、6′・・・・・・制御ゲー
ト電極、7・旧・・フォトレジストマスク、8・・・・
・・側面酸化膜、9・・印・ソース領域、IO・・・・
・・ドレイン領域、11・旧・・層間絶縁膜、12−1
.12−2.12−3・・団・コンタクト孔、13・・
・・・・ソース電極配線、14・・・・・・ドレイン電
極配線、15・・・・・・トンネル酸化膜、16・・団
・制御ゲート電極配線。 代理人 弁理士  内 原   晋 /l1l) 月Z図 万1回
FIGS. 1A to 1D are cross-sectional process diagrams showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a second embodiment of the present invention. ■... P-type silicon semiconductor substrate, 2... River/field oxide film, 3... First gate oxide film, 4
...Amorphous silicon layer, 4'... Crystallized silicon layer, 4''... Floating gate electrode, 5... Second gate oxide film, 6...・・・・・・
Polycrystalline silicon silicon layer, 6'... Control gate electrode, 7. Old... Photoresist mask, 8...
... Side oxide film, 9... mark, source region, IO...
...Drain region, 11.Old...Interlayer insulating film, 12-1
.. 12-2.12-3...Group/contact hole, 13...
... Source electrode wiring, 14... Drain electrode wiring, 15... Tunnel oxide film, 16... Group control gate electrode wiring. Agent: Susumu Uchihara, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に形成された第1の絶縁膜上に非晶質の
第1のシリコン層を形成する工程と、該第1のシリコン
層を熱処理する工程と、該熱処理された第1のシリコン
層表層の酸化膜を除去する工程と、該第1のシリコン層
表面に第2の絶縁膜を形成する工程と、該第2の絶縁膜
上に多結晶の第2のシリコン層を形成する工程と、該第
2のシリコン層と前記第2の絶縁膜と前記第1のシリコ
ン層とを所定の形状にエッチングする工程とを含むこと
を特徴とする半導体記憶装置の製造方法。
a step of forming an amorphous first silicon layer on a first insulating film formed on a surface of a semiconductor substrate; a step of heat-treating the first silicon layer; and a step of heat-treating the first silicon layer. a step of removing a surface layer oxide film; a step of forming a second insulating film on the surface of the first silicon layer; and a step of forming a polycrystalline second silicon layer on the second insulating film. A method of manufacturing a semiconductor memory device, comprising: etching the second silicon layer, the second insulating film, and the first silicon layer into a predetermined shape.
JP25128188A 1988-10-04 1988-10-04 Manufacture of semiconductor memory Pending JPH0298173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25128188A JPH0298173A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25128188A JPH0298173A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor memory

Publications (1)

Publication Number Publication Date
JPH0298173A true JPH0298173A (en) 1990-04-10

Family

ID=17220468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25128188A Pending JPH0298173A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor memory

Country Status (1)

Country Link
JP (1) JPH0298173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521943B1 (en) * 1997-03-19 2003-02-18 Hitachi, Ltd. Semiconductor device having thin electrode layer adjacent gate insulator and method of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521943B1 (en) * 1997-03-19 2003-02-18 Hitachi, Ltd. Semiconductor device having thin electrode layer adjacent gate insulator and method of manufacture
US6723625B2 (en) 1997-03-19 2004-04-20 Renesas Technology Corporation Semiconductor device having thin electrode laye adjacent gate insulator and method of manufacture

Similar Documents

Publication Publication Date Title
US4735917A (en) Silicon-on-sapphire integrated circuits
JP4093855B2 (en) Manufacturing method of semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH0298173A (en) Manufacture of semiconductor memory
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP2513312B2 (en) Method for manufacturing MOS transistor
JPS63275181A (en) Manufacture of semiconductor device
JPH08321607A (en) Method of manufacturing semiconductor device
JP3224432B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPS61156883A (en) Manufacture of semiconductor device
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
KR0147255B1 (en) Method for manufacturing mosfet
JPH0369137A (en) Manufacture of semiconductor integrated circuit
JPS63261879A (en) Manufacture of semiconductor device
JPH0730103A (en) Manufacture of semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
KR100250686B1 (en) Manufacturing method of a semiconductor device
CA1168765A (en) Method for making short channel transistor devices
JP2000196073A (en) Manufacture of semiconductor device
JPS63244884A (en) Semiconductor device and manufacture thereof
JPH0917999A (en) Semiconductor device manufacturing method