JPH0294289A - Manufacture of thin film type electroluminescence element - Google Patents

Manufacture of thin film type electroluminescence element

Info

Publication number
JPH0294289A
JPH0294289A JP63245638A JP24563888A JPH0294289A JP H0294289 A JPH0294289 A JP H0294289A JP 63245638 A JP63245638 A JP 63245638A JP 24563888 A JP24563888 A JP 24563888A JP H0294289 A JPH0294289 A JP H0294289A
Authority
JP
Japan
Prior art keywords
emitting layer
thin film
light emitting
layer
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245638A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Tsunemi Oiwa
大岩 恒美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63245638A priority Critical patent/JPH0294289A/en
Publication of JPH0294289A publication Critical patent/JPH0294289A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high luminous intensity by forming a light emitting layer by the electron beam deposition method in the specific atmosphere with an evaporation source made of ZnS containing Sm and F and specifying the Sm concentration in the layer. CONSTITUTION:A display side electrode 2 made of a thin film of a transparent conducting material is formed on one surface of a base 1 made of glass, and the first dielectric layer 3, a light emitting layer 4, the second dielectric layer 5, and a back side electrode 6 made of an Al thin film or a thin film of a transparent conducting material are laminated and formed in sequence on the display side electrode 2. The light emitting layer 4 is formed with an evaporation source made of ZnS containing Sm and F by the electron beam deposition method in the atmosphere with the degree of vacuum of 5X10<-6>Torr or below, and the Sm concentration in the layer is set to 0.2-1.0mol%. An EL element with high luminous intensity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、デイスプレィ装置などに利用される薄膜形
のエレクトロルミネッセンス(以下、ELという)素子
、とくにZnS:Sm、Fからなる発光層を有して発光
三原色の一つである赤色発光を行う上記EL素子の製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin-film electroluminescent (hereinafter referred to as EL) element used in display devices, etc., and particularly to a thin-film electroluminescent (hereinafter referred to as EL) element having a light-emitting layer made of ZnS:Sm, F. The present invention relates to a method for manufacturing the above-mentioned EL element that emits red light, which is one of the three primary colors of light.

〔従来の技術〕[Conventional technology]

一般に、薄膜形EL素子は、少なくとも表示側が透明で
かつ通常はどちらか一方がパターン化された一対の電極
間に、発光層と誘電層とが配設された構造を有しており
、上記誘電層が発光層の片側のみに設けられた卓絶縁形
ならびに同じく両側に設けられた二重絶縁形のものが知
られており、また発光層が一層に限らす誘電層を介して
二層以上に積層されたものもある。
In general, a thin film EL element has a structure in which a light emitting layer and a dielectric layer are disposed between a pair of electrodes that are transparent at least on the display side and usually one of which is patterned. A desk insulation type in which the layer is provided on only one side of the light emitting layer and a double insulation type in which the layer is provided on both sides are known. Some are laminated.

このようなEL素子の駆動は、交流駆動方式では、両電
極間に交流電圧を印加することにより、発光層にその発
光開始しきい値電界以上の電界をかけて発光させ、この
発光色を表示側の表面に表出させることにより、所定パ
ターンの表示を行わせるものである。
In the AC driving method, such an EL element is driven by applying an AC voltage between both electrodes to apply an electric field equal to or higher than the threshold electric field for starting light emission to the light emitting layer, causing it to emit light, and displaying the color of the emitted light. By exposing the side surface, a predetermined pattern is displayed.

ところで、上記発光層を構成する発光体材料には、通常
ZnSやCaSなどの蛍光体からなる母材中に少量の発
光付活剤を配合したものが使用されており、この発光付
活剤の種類によって特有の発光色が示される。たとえば
、光の三原色に近い発光色が得られる発光体材料として
は、赤色発光ではZnS : Sm、F、緑色発光では
ZnS:Tb、F、青色発光ではZnS:Tm、Fがそ
れぞれ代表的なものとして知られている(文献不詳)。
By the way, the luminescent material constituting the luminescent layer is usually a base material made of a phosphor such as ZnS or CaS mixed with a small amount of luminescent activator. Each type exhibits a unique emitted color. For example, typical luminescent materials that produce luminescent colors close to the three primary colors of light include ZnS:Sm, F for red luminescence, ZnS:Tb, F for green luminescence, and ZnS:Tm, F for blue luminescence. It is known as (document unknown).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、とくに赤色発光を行う発光体材料である
ZnS:Sm、Fに関しては、従来より輝度向上のため
に発光層形成に採用する各種真空中薄膜形成法の条件を
始めとして種々の検討〔たとえば、J、J、八、P、 
(1984)P、 6など〕が行われているが、現状で
は1KIIz駆動における最大輝度が200cd≠ ためにカラーデイスプレィなどの赤色発光用EL素子と
しては輝度不足で実用性がなかった。
However, with regard to ZnS:Sm, F, which is a luminescent material that emits red light in particular, various studies have been conducted, including the conditions of various thin film formation methods in vacuum, which are conventionally adopted for forming luminescent layers to improve brightness [e.g. J, J, 8, P,
(1984) P, 6], but currently the maximum brightness in 1KIIz drive is 200 cd≠, so the brightness is insufficient and it is not practical as an EL element for red light emission such as a color display.

この発明は、上述の状況に鑑み、赤色発光用の発光体材
料としてZnS:Sm、Fを使用して、かつ高輝度で実
用性充分な薄膜形EL素子の製造法を提供することを目
的としている。
In view of the above-mentioned circumstances, the present invention aims to provide a method for manufacturing a thin film EL element that uses ZnS:Sm, F as a luminescent material for red light emission and is highly luminous and has sufficient practicality. There is.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
を重ねた結果、ZnS:Sm、Fからなる発光層を有す
るEL素子の輝度がこの発光層の結晶性と発光中心濃度
つまりSm(サマリウム)濃度によって大きく影響され
、この発光層の形成手段として電子ビーム蒸着法を採用
した場合には上記結晶性が形成雰囲気の真空度と密接に
相関し、この真空度と発光層中のSm71度を特定値に
設定することにより、従来では得られなかった高輝度の
赤色発光が達成されることを見い出し、この発明をなす
に至った。
As a result of intensive studies to achieve the above object, the inventors found that the brightness of an EL element having a light emitting layer made of ZnS:Sm,F depends on the crystallinity of the light emitting layer and the concentration of light emitting centers, that is, Sm( When electron beam evaporation is adopted as a means of forming this luminescent layer, the crystallinity is closely correlated with the vacuum degree of the formation atmosphere, and this vacuum degree and the Sm in the luminescent layer are 71 degrees Celsius. The present inventors have discovered that by setting the value to a specific value, it is possible to achieve high-intensity red light emission that could not be obtained in the past, and have thus come up with the present invention.

すなわち、この発明は、少なくとも一方が透明である一
対の電極間にZnS:Sm、Fからなる発光層と誘導体
層とが介在されてなる薄膜形EL素子の製造法において
、上記発光層を、電子ビム蒸着法によってSmおよびF
を含有するZnSを蒸発源として真空度5X10−hT
orr以下の雰囲気中で成膜して形成し、かつ層中のS
m?m度を0.2〜1.0モル%の範囲とすることを特
徴とする薄膜形EL素子の製造法に係るものである。
That is, the present invention provides a method for manufacturing a thin film EL device in which a light emitting layer made of ZnS:Sm,F and a dielectric layer are interposed between a pair of electrodes, at least one of which is transparent. Sm and F by beam evaporation method
Vacuum degree 5X10-hT using ZnS containing as evaporation source
It is formed by forming a film in an atmosphere below orr, and the S in the layer is
M? The present invention relates to a method for manufacturing a thin film EL element, characterized in that the m degree is in the range of 0.2 to 1.0 mol%.

また、この発明では、上記電子ビーム蒸着法における蒸
発源のSrr+?a度を0.1〜1.5モル%の範囲と
した構成を好適態様としている。
Further, in the present invention, Srr+? A preferred embodiment is a configuration in which the a degree is in the range of 0.1 to 1.5 mol%.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明においては、前記の如<ZnS:Sm。 In this invention, as described above <ZnS:Sm.

Fからなる発光層を電子ビーム蒸着法により形成するに
あたり、形成雰囲気の真空度を5X10Torr以下と
し、かつ形成される発光層中のSm ?M度を0.2〜
1.0モル%に設定することにより、高い発光輝度を実
現する。
When forming a light-emitting layer made of F by electron beam evaporation, the degree of vacuum in the formation atmosphere is set to 5×10 Torr or less, and Sm? M degree from 0.2
By setting it to 1.0 mol%, high luminescence brightness is achieved.

すなわち、上記真空度に関しては、後述する実施例1に
おいて発光層形成時の真空度を種々変えて他の条件は形
成される発光層中のS m 7@度が等しくなるように
同一に設定して作製されたEL素子につき、その真空度
と結晶性および輝度を示す第1表から明らかなように、
真空度が高くなるほど結晶性が向上すると同時に輝度も
高くなる傾向が認められており、とくに真空度が5X1
0−6Torr以下では非常に高い輝度が得られること
が判明している。この理由は、発光層形成時の真空度が
高くなるほど蒸着粒子のエネルギーが高くなり、これに
伴って蒸着面での結晶粒の成長が活発化するとともに不
純物原子の混入量が減少する結果、形成される発光層の
結晶性が向上して発光効率を高めるように作用し、とく
に上記特定値以下の高真空条件で上記作用が顕著に発現
されるものと考えられる。
That is, regarding the above degree of vacuum, in Example 1 to be described later, the degree of vacuum during the formation of the light emitting layer was varied, and the other conditions were set the same so that the S m 7@ degree in the formed light emitting layer was equal. As is clear from Table 1, which shows the degree of vacuum, crystallinity, and brightness of EL devices manufactured using
It has been observed that the higher the degree of vacuum, the better the crystallinity and the higher the brightness, especially when the degree of vacuum is 5X1.
It has been found that very high brightness can be obtained at 0-6 Torr or less. The reason for this is that the higher the degree of vacuum during formation of the emissive layer, the higher the energy of the evaporated particles, which in turn activates the growth of crystal grains on the evaporation surface and reduces the amount of impurity atoms mixed in. It is considered that the crystallinity of the light-emitting layer is improved and the luminous efficiency is increased, and the above-mentioned effect is particularly noticeable under high vacuum conditions below the above-mentioned specific value.

一方、発光層中のSmtffi度に関しては、後述する
実施例2において発光層形成時に真空度以外の条件を種
々変化させることによって作製した上記Sm濃度が異な
るEL素子のSm?M度−輝度の相関を示す第2図から
明らかなように、5m974度が0.2〜1.0モル%
の範囲よりも低くなっても高くなってもともに著しい輝
度低下を生じることが確認されている。これは、Sm濃
度が0.2モル%より少なくなるとSm発光中心とホッ
トエレクトロンとの衝突励起の確率低下により、逆に1
.0モル%より多くなると濃度消光により、それぞれ輝
度低下が著しくなるものと考えられる。
On the other hand, regarding the Smtffi degree in the light emitting layer, the Sm? As is clear from Figure 2, which shows the correlation between M degree and brightness, 5m974 degree is 0.2 to 1.0 mol%.
It has been confirmed that a significant decrease in brightness occurs when the brightness is lower or higher than the range of . When the Sm concentration is less than 0.2 mol%, the probability of collisional excitation between Sm emission centers and hot electrons decreases, and conversely, 1
.. It is considered that when the amount exceeds 0 mol %, the luminance decreases significantly due to concentration quenching.

なお、形成される発光層中のSm濃度は、使用する蒸発
源中のSm濃度のほか、この蒸発源の形態、大きさ(ベ
レットでは粒度)、密度、作製方法ならびに蒸着時の基
板温度、成膜速度、電子ビム強度、基板位置の如き各種
条件によっても変化する。したがって、この発明では、
発光層中のSmf14度が0.2〜1.0モル%の範囲
となるように蒸発源の種類と蒸着条件を適宜選択すれば
よいが、とくに蒸発源中のSm71度は通常0.l〜1
.5モル%程度とすることが推奨される。
The Sm concentration in the light emitting layer formed depends on the Sm concentration in the evaporation source used, as well as the form, size (particle size for pellets), density, manufacturing method, substrate temperature during evaporation, and formation of the evaporation source. It also changes depending on various conditions such as film speed, electron beam intensity, and substrate position. Therefore, in this invention,
The type of evaporation source and vapor deposition conditions may be appropriately selected so that the Smf 14 degrees in the light emitting layer is in the range of 0.2 to 1.0 mol%, but in particular, the Sm 71 degrees in the evaporation source is usually 0.2 to 1.0 mol%. l~1
.. It is recommended that the content be about 5 mol%.

なお、蒸発源の作製は、一般にZnS粉末に所要量のS
 m F :+粉末を均一に添加混合し、この混合物を
加圧成形してペレット状やディスク状などの所要形状と
することによって行われる。
In addition, to prepare the evaporation source, generally a required amount of S is added to ZnS powder.
This is carried out by uniformly adding and mixing m F :+ powder, and press-molding this mixture into a desired shape such as a pellet shape or a disk shape.

電子ビーム蒸着によって発光層を形成するには、基板と
蒸発源を蒸着チャンバー内にセットし、チャンバー内を
真空度5X10−6Torr以下の不活性ガス雰囲気と
して、基板温度を200〜250℃程度に設定した上で
、蒸発源に電子ビームを照射して加熱蒸発させればよい
。このとき、成膜速度は通常lOO〜600 人/分程
度、最終的に得られる発光層の厚みを3.000〜7,
000人程度に設定すればよい。
To form a light-emitting layer by electron beam evaporation, set the substrate and evaporation source in a evaporation chamber, create an inert gas atmosphere in the chamber with a vacuum level of 5 x 10-6 Torr or less, and set the substrate temperature to about 200 to 250 °C. After that, the evaporation source may be heated and evaporated by irradiating the evaporation source with an electron beam. At this time, the film formation rate is usually about 100 to 600 persons/min, and the thickness of the final luminescent layer is 3,000 to 7,000 people/min.
The number may be set to about 000 people.

第1図はこの発明によって作製される二重絶縁形の赤色
発光EL素子の一例を示すものである。
FIG. 1 shows an example of a double insulation type red light emitting EL device manufactured according to the present invention.

図において、1はガラス製の基板であり、その一方の表
面にインジウム−スズ複合酸化物(以下、ITOという
)やフッ素を含む酸化スズなどの透明性導電材料の薄膜
からなる表示側電極2が形成されている。この表示側電
極2上には順次、第1の誘電層3、前記のZnS:Sm
、Fからなる発光層4、第2の誘電層5、A1薄膜また
は上記透明性導電材料の薄膜からなる背面側電極6が積
層形成されている。
In the figure, 1 is a glass substrate, on one surface of which a display-side electrode 2 made of a thin film of a transparent conductive material such as indium-tin composite oxide (hereinafter referred to as ITO) or fluorine-containing tin oxide is disposed. It is formed. On this display side electrode 2, a first dielectric layer 3, the above-mentioned ZnS:Sm
, a second dielectric layer 5, and a back side electrode 6 made of an A1 thin film or a thin film of the transparent conductive material described above.

ここで、第1および第2の誘電層3.5の構成材料とし
ては、既存の絶縁材料をいずれも使用でき、たとえば’
l”a2 os 、Alz Ot 、 Y20wl 。
Here, any existing insulating material can be used as the constituent material of the first and second dielectric layers 3.5, such as '
l”a2 os, Alz Ot, Y20wl.

SiO□、S 53Np 、TI O□、Nb2O6、
BaTi0. 、SrTiO3、PbTi0:+などが
挙げられ、各誘電層で異なるものを使用してもよい。ま
た、画成電層3.5の一方もしくは両方を、構成材料の
異なる2層以上の積層物としても差し支えない。
SiO□, S53Np, TIO□, Nb2O6,
BaTi0. , SrTiO3, PbTi0:+, etc., and different materials may be used for each dielectric layer. Furthermore, one or both of the definition electrode layers 3.5 may be a laminate of two or more layers made of different constituent materials.

各層の厚さは、画成電層3,5では3,000〜7.0
00人程度、側電極2.6では1,000〜3゜000
人程度である。なお、これら各層の形成手段としては、
電子ビーム蒸着や抵抗加熱蒸着の如き真空蒸着法、高周
波スパッタリングの如きスパッタリング法、イオンブレ
ーティング法などの既存の種々の真空中薄膜形成法を使
用材料種に応じて適宜採用できる。
The thickness of each layer is 3,000 to 7.0 for the definition layers 3 and 5.
00 people, 1,000 to 3°000 for side electrode 2.6
It is about the size of a person. Note that the means for forming each of these layers are as follows:
Various existing vacuum thin film forming methods such as vacuum evaporation methods such as electron beam evaporation and resistance heating evaporation, sputtering methods such as high frequency sputtering, and ion blating methods can be employed as appropriate depending on the type of material used.

上記構成のEL素子では、発光層4にその発光開始しき
い値電界を超える電界がかかりうる電圧を側電極2.6
間に印加することにより、発光層4がZnS:Sm、F
に基づく赤色に発光する。
In the EL element having the above configuration, a voltage that can apply an electric field exceeding the emission start threshold electric field to the light emitting layer 4 is applied to the side electrodes 2.6.
By applying a voltage between
It emits red light based on

そして、この赤色発光はIKI(z駆動で400cd/
d以上という高輝度を示すものとなる。
And this red light emission is IKI (400 cd/ in z drive)
It exhibits high brightness of d or more.

なお、この発明は、上述した二重絶縁形のEL素子のほ
か、卓絶縁形のEL素子や、一方の電極をパターンの異
なる2層以上の多層構造としたEL素子にも適用可能で
ある。
In addition to the above-mentioned double insulation type EL element, the present invention is also applicable to a table insulation type EL element and an EL element in which one electrode has a multilayer structure of two or more layers with different patterns.

〔発明の効果〕〔Effect of the invention〕

この発明の製造法によれば、ZnS:Sm、Fからなる
発光層を特定条件の電子ビーム蒸着によって形成し、か
つこの発光層中のS m ’濃度を特定範囲に設定する
ことから、上記発光体材料を使用した発光層を有する従
来のEL素子では達成されなかった高い発光輝度を示し
てカラーデイスプレィなどとして実用性充分な薄膜形E
L素子を提供できる。
According to the manufacturing method of the present invention, a light-emitting layer made of ZnS:Sm, F is formed by electron beam evaporation under specific conditions, and the S m ' concentration in this light-emitting layer is set within a specific range. Thin-film type E exhibits high luminance that could not be achieved with conventional EL elements that have a light-emitting layer made of organic material, making it practical for use in color displays, etc.
L elements can be provided.

また、上記方法において、蒸発源のS m ’0%度を
0.1〜1.5モル%の範囲とした場合は、上記特定範
囲のSm11度を有する発光層を容易に形成できる利点
がある。
In addition, in the above method, when the Sm'0% degree of the evaporation source is set in the range of 0.1 to 1.5 mol%, there is an advantage that a light emitting layer having an Sm11 degree within the above specific range can be easily formed. .

〔実施例〕〔Example〕

以下、この発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 縦34龍、横341重、厚さl、 l **のガラス製
基板の一面側に電子ビーム蒸着法によりITO薄膜から
なる厚さ2.000人の表示側電極を形成し、ついでこ
の電極上に順次、スパッタリング法によりT a z 
Osからなる厚さ4,000人の第1の誘電層、電子ビ
ーム蒸着法によりZnS:Sm、Fからなる厚さ5,0
00人の発光層、スパッタリング法により’razos
からなる厚さ4,000人の第2の誘電層、抵抗加熱蒸
着法によりAI薄膜からなる厚さ1,500人の所定パ
ターンの背面側電極を積層形成して、第1図で示す構造
のEL素子を作製した。
Example 1 A display-side electrode made of an ITO thin film with a thickness of 2,000 mm was formed on one side of a glass substrate measuring 34 mm long, 341 mm wide, and 1 and 1 ** thick by electron beam evaporation, and then On this electrode, T a z
A first dielectric layer 4,000 thick consisting of Os, 5,000 thick consisting of ZnS:Sm,F by electron beam evaporation
00 luminescent layer, 'razos' by sputtering method
A second dielectric layer with a thickness of 4,000 layers and a back electrode of a predetermined pattern with a thickness of 1,500 layers made of an AI thin film were laminated using a resistance heating evaporation method to form the structure shown in An EL device was produced.

このとき、電子ビーム蒸着法による発光層の形成を、基
板温度220℃、成膜速度300A/分として、真空度
のみを下記第1表に記載されるように種々変更した条件
下で行い、いずれも発光層中のSm?1度が0.3モル
%である試料11hl〜7のEL素子を作製した。
At this time, the formation of the light emitting layer by electron beam evaporation was carried out at a substrate temperature of 220°C, a film formation rate of 300 A/min, and only the degree of vacuum was varied as shown in Table 1 below. Also Sm in the luminescent layer? EL elements of samples 11hl to 7 in which 1 degree was 0.3 mol % were fabricated.

これらEL素子について、発光層の結晶性を示すX線回
折半値幅と1Kllz駆動による最大発光輝度を測定し
たところ、つぎの第1表の結果が得られた。
For these EL elements, the half width of X-ray diffraction, which indicates the crystallinity of the light emitting layer, and the maximum luminance by driving at 1 Kllz were measured, and the results shown in Table 1 below were obtained.

第  1 表 第1表の結果から、発光層形成時の真空度と発光層の結
晶性および発光輝度とが密接に相関しており、真空度が
高くなるほど結晶性が向上して高輝度が得られ、とくに
この発明の方法である真空度5X10−bTorr以下
で作製したEL素子隘5〜7はこれらより真空度の低い
条件で作製したEL素子m1〜4に比較して格段に高い
輝度を発現することが明らかである。
Table 1 From the results in Table 1, the degree of vacuum during formation of the light emitting layer is closely correlated with the crystallinity and luminance of the light emitting layer, and the higher the degree of vacuum, the better the crystallinity and the higher the brightness. In particular, the EL elements 5 to 7 produced using the method of the present invention at a vacuum level of 5 x 10-b Torr or less exhibit much higher luminance than the EL elements m1 to 4 produced at lower vacuum conditions. It is clear that

実施例2 電子ビーム蒸着法による発光層の形成に際し、真空度を
5X10−6Torrとし、他の条件(主として蒸発源
のSm71度)を種々変更して発光層のSm濃度を種々
異ならせた以外は、実施例1と同様にして多数のEL素
子を作製した。
Example 2 When forming a light-emitting layer by electron beam evaporation, the degree of vacuum was set to 5X10-6 Torr, and other conditions (mainly Sm of the evaporation source at 71 degrees) were variously changed to vary the Sm concentration of the light-emitting layer. A large number of EL devices were manufactured in the same manner as in Example 1.

これらEL素子について、発光層のS m ?a度をI
CPS(プラズマ発光分光分析)にて測定するとともに
、1KIlz駆動による最大発光輝度を測定した。その
結果、上記Sm濃度と最大発光輝度との間にほぼ第2図
で示す関係があることが判った。
Regarding these EL elements, the S m ? of the light emitting layer? degree a degree
In addition to measuring by CPS (plasma emission spectroscopy), the maximum luminance was measured by driving at 1Klz. As a result, it was found that there is a relationship approximately shown in FIG. 2 between the Sm concentration and the maximum luminance.

なお、図中の最大発光輝度は3m7.i7i度1.2モ
ル%の発光層による輝度を基準とした相対値で示してい
る。
The maximum luminance in the figure is 3m7. It is shown as a relative value based on the luminance due to the luminescent layer having i7i degree of 1.2 mol %.

第2図の結果から、発光層中のS m fQ度が0.2
〜1.0モル%の範囲にある場合に高い発光輝度が得ら
れ、この範囲よりも少なくても、また多くても輝度低下
が著しくなることが判る。
From the results shown in Figure 2, the S m fQ degree in the light emitting layer is 0.2.
It can be seen that high luminance is obtained when the content is in the range of 1.0 mol %, and even if the content is less than or greater than this range, the luminance decreases significantly.

実施例3 電子ビーム蒸着法による発光層の形成に際し、蒸発源の
Sm濃度および真空度を下記第2表に示す値とした以外
は、実施例1と同様にしてEL素子A−Eを作製した。
Example 3 EL devices A-E were produced in the same manner as in Example 1, except that the Sm concentration of the evaporation source and the degree of vacuum were set to the values shown in Table 2 below when forming the light emitting layer by electron beam evaporation. .

このEL素子A−Eについて、実施例2と同様にして発
光層中のSm濃度を測定した結果を第2表に示すととも
に、IKHz駆動による輝度−電圧特性の測定結果を第
3図に示す。
Table 2 shows the results of measuring the Sm concentration in the light emitting layer of EL elements A to E in the same manner as in Example 2, and FIG. 3 shows the results of measuring the brightness-voltage characteristics by IKHz driving.

第  2  表 第3図の結果から、この発明の製造法によるEL素子A
では最大輝度4QOcd/rtfに達する高輝度が得ら
れてかつ輝度の立ち上がりが急峻である特性を示すのに
対し、蒸着時の真空度および発光層中のSmtliA度
のいずれか一方でもこの発明の規定範囲を外れる条件で
得られるEL素子B−Eは到達輝度が低く輝度の立ち上
がりも緩やかで実用性に乏しいことが判る。
From the results shown in Table 2 and Figure 3, it can be seen that EL element A manufactured by the manufacturing method of the present invention
In this case, high brightness reaching a maximum brightness of 4QOcd/rtf can be obtained and the rise in brightness is steep. It can be seen that the EL elements B-E obtained under conditions outside the range have low achieved brightness and a slow rise in brightness, and are therefore impractical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造法によって作製される薄膜形エ
レクトロルミネッセンス素子の構造例を示す断面図、第
2図は実施例2で作製された同上素子の発光層中のSm
濃度と最大発光輝度との相関図、第3図は実施例3で作
製されたEL素子の輝度−電圧特性図である。 2・・・表示側電極、3・・・誘電層、4・・・発光層
、5・・・誘電層、6・・・背面側電極 特許出願人  日立マクセル株式会社 第1 第2図
FIG. 1 is a cross-sectional view showing an example of the structure of a thin film electroluminescent device manufactured by the manufacturing method of the present invention, and FIG. 2 shows Sm in the light emitting layer of the same device manufactured in Example 2.
A correlation diagram between concentration and maximum luminance, and FIG. 3 is a luminance-voltage characteristic diagram of the EL element manufactured in Example 3. 2...Display side electrode, 3...Dielectric layer, 4...Light emitting layer, 5...Dielectric layer, 6...Back side electrode Patent applicant Hitachi Maxell Ltd. 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一方が透明である一対の電極間にZn
S:Sm,Fからなる発光層と誘電層とが介在されてな
る薄膜形エレクトロルミネツセンス素子の製造法におい
て、上記発光層を、電子ビーム蒸着法によつてSmおよ
びFを含有するZnSを蒸発源として真空度5×10^
−^6Torr以下の雰囲気中で成膜して形成し、かつ
層中のSm濃度0.2〜1.0モル%の範囲とすること
を特徴とする薄膜形エレクトロルミネツセンス素子の製
造法。
(1) Zn between a pair of electrodes, at least one of which is transparent
S: In a method for manufacturing a thin film electroluminescent device having a light emitting layer and a dielectric layer interposed between Sm and F, the light emitting layer is coated with ZnS containing Sm and F by an electron beam evaporation method. Vacuum degree 5×10^ as evaporation source
- A method for manufacturing a thin film electroluminescent device, characterized in that the film is formed in an atmosphere of 6 Torr or less, and the Sm concentration in the layer is in the range of 0.2 to 1.0 mol%.
(2)蒸発源のSm濃度が0.l〜1.5モル%の範囲
にある請求項(1)に記載の薄膜形エレクトロルミネツ
センス素子の製造法.
(2) The Sm concentration of the evaporation source is 0. The method for producing a thin film electroluminescent device according to claim 1, wherein the amount is in the range of 1 to 1.5 mol%.
JP63245638A 1988-09-29 1988-09-29 Manufacture of thin film type electroluminescence element Pending JPH0294289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245638A JPH0294289A (en) 1988-09-29 1988-09-29 Manufacture of thin film type electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245638A JPH0294289A (en) 1988-09-29 1988-09-29 Manufacture of thin film type electroluminescence element

Publications (1)

Publication Number Publication Date
JPH0294289A true JPH0294289A (en) 1990-04-05

Family

ID=17136635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245638A Pending JPH0294289A (en) 1988-09-29 1988-09-29 Manufacture of thin film type electroluminescence element

Country Status (1)

Country Link
JP (1) JPH0294289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414398U (en) * 1990-05-28 1992-02-05
JPH0414397U (en) * 1990-05-28 1992-02-05

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414398U (en) * 1990-05-28 1992-02-05
JPH0414397U (en) * 1990-05-28 1992-02-05

Similar Documents

Publication Publication Date Title
JP2003238953A (en) Phosphor and el panel
JP4230363B2 (en) Phosphor thin film, manufacturing method thereof, and EL panel
KR100392363B1 (en) Phosphor and method for fabricating the same
US5612591A (en) Electroluminescent device
US6242858B1 (en) Electroluminescent phosphor thin films
JP4047095B2 (en) Inorganic electroluminescent device and manufacturing method thereof
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JP2003155480A (en) Oxide phosphor, electroluminescence element and manufacturing method for the element
JP3574829B2 (en) Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPH01263188A (en) Calcium tungstate luminescent thin layer and its production
JP4125108B2 (en) Thin film electroluminescent device
CA2470247A1 (en) Electroluminescence element and production method therefor
JP3016323B2 (en) Electroluminescence element
JP3446542B2 (en) Thin film EL element
JPH01200593A (en) Manufacture of electroluminescence display element
JP3599356B2 (en) Electroluminescence element
JPH01206595A (en) Electroluminescence element
JPH0831571A (en) Thin film electroluminescent element and multi-color thin film electroluminescent panel
JPS6180792A (en) Manufacture of electroluminescence element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH02114490A (en) Sputtering target and its manufacture and fluorescent thin film formation using the target
JPH01213991A (en) Transparent electrode substrate and electroluminescence element utilizing same
JPH097769A (en) Electroluminescent element and its manufacture