JPH0293032A - Fiber reinforced light alloy composite material - Google Patents

Fiber reinforced light alloy composite material

Info

Publication number
JPH0293032A
JPH0293032A JP24270088A JP24270088A JPH0293032A JP H0293032 A JPH0293032 A JP H0293032A JP 24270088 A JP24270088 A JP 24270088A JP 24270088 A JP24270088 A JP 24270088A JP H0293032 A JPH0293032 A JP H0293032A
Authority
JP
Japan
Prior art keywords
fiber
light alloy
composite material
matrix
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24270088A
Other languages
Japanese (ja)
Inventor
Shinichi Ogura
新一 小倉
Suenobu Hata
畑 季延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24270088A priority Critical patent/JPH0293032A/en
Publication of JPH0293032A publication Critical patent/JPH0293032A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat resistance and strength of the title material by roughening the surface of carbon fiber, providing the surface with a functional group and improving the reactivity of the surface with a matrix constituted of light alloy. CONSTITUTION:The fiber reinforced light alloy composite material is formed from a matrix constituted of light alloy and carbon fiber treated specially so as to compound with the matrix. The carbon fiber is immersed into nitric acid to roughen the surface of the fiber into 4 to 6m<2>/g specific surface. The above surface is provided with a functional group, so that its reactivity with the above light alloy is improved.

Description

【発明の詳細な説明】 A0発明の目的 (])産業上の利用分野 本発明は、軽合金よりなるマトリックスと、そのマトリ
ックスと複合する炭素繊維とより構成された繊維強化軽
合金複合材に関する。
DETAILED DESCRIPTION OF THE INVENTION A0 OBJECTS OF THE INVENTION (]) Industrial Field of Application The present invention relates to a fiber-reinforced light alloy composite material composed of a matrix made of a light alloy and carbon fibers composited with the matrix.

(2)従来の技術 従来、この種複合材として、炭素繊維をその繊維軸方向
、即ち一方向に配向させたものが知られている。
(2) Prior Art Conventionally, as this type of composite material, one in which carbon fibers are oriented in the fiber axis direction, that is, in one direction, is known.

(3)発明が解決しようとする課題 しかしながら従来の複合材は、その炭素繊維とマトリッ
クスとの接合強度が低いことに起因して繊維配向方向の
強度に比べて繊維配向方向に直交する方向の強度が極端
に低いという異方性を呈し、そのため複合材の利用分野
が狭められる等の問題を生じる。
(3) Problems to be solved by the invention However, due to the low bonding strength between the carbon fibers and the matrix, conventional composite materials have a strength in the direction perpendicular to the fiber orientation direction compared to the strength in the fiber orientation direction. It exhibits anisotropy with an extremely low value, which causes problems such as narrowing the field of use of composite materials.

本発明は前記に鑑み、炭素繊維とマトリックスとの接合
強度を向上し、前記問題を解決し得るようにした前記複
合材を提供することを目的とする。
In view of the above, an object of the present invention is to provide the composite material which can improve the bonding strength between the carbon fibers and the matrix and solve the above problems.

B0発明の構成 (1)課題を解決するための手段 本発明は、軽合金よりなるマトリックスと、該マトリッ
クスと複合する炭素繊維とより構成された繊維強化軽合
金複合材において、前記炭素繊維の表面を粗面化すると
共に該表面に、それと前記マトリックスとの反応性を向
上させる官能基を付与したことを特徴とする。
B0 Structure of the Invention (1) Means for Solving the Problems The present invention provides a fiber-reinforced light alloy composite material composed of a matrix made of a light alloy and carbon fibers composited with the matrix. It is characterized by roughening the surface and adding to the surface a functional group that improves the reactivity between the surface and the matrix.

(2)作 用 炭素繊維表面の粗面化に伴い炭素繊維とマトリックスと
の接合面積が増加し、また炭素繊維およびマトリックス
間において、官能基により活性化された炭素繊維表面と
マトリックスとの間に生成される反応生成物を媒介とし
た接合力が得られる。
(2) Effect As the carbon fiber surface becomes rougher, the bonding area between the carbon fiber and the matrix increases, and between the carbon fiber and the matrix, the carbon fiber surface activated by the functional group and the matrix increase. Bonding force is obtained through the reaction products produced.

これにより炭素繊維とマトリックスとの接合強度が高く
なるので、複合材の異方性が改善される。
This increases the bonding strength between the carbon fibers and the matrix, thereby improving the anisotropy of the composite material.

(3)実施例 マトリックスとしての軽合金には、アルミニウム合金、
マグネシウム合金等が用いられる。
(3) The light alloy as the example matrix includes aluminum alloy,
Magnesium alloy or the like is used.

また炭素繊維としては、高弾性炭素繊維が適当である。Further, as the carbon fiber, high modulus carbon fiber is suitable.

この種炭素繊維の表面処理は、炭素繊維を硝酸、好まし
くは濃硝酸に浸漬する工程、炭素繊維に超音波水洗を施
す工程および炭素繊維を真空加熱乾燥する工程を順次繰
て行われる。
This type of surface treatment of carbon fibers is performed by sequentially repeating the steps of immersing the carbon fibers in nitric acid, preferably concentrated nitric acid, subjecting the carbon fibers to ultrasonic water washing, and drying the carbon fibers under vacuum heating.

この表面処理において、濃硝酸による炭素の溶出および
酸化作用が行われるので、第1図に示すように炭素繊維
1の表面2は粗面化されると同時にその表面2に、それ
を活性化する官能基、即ち、OH,C0OHが付与され
る。このように濃硝酸によれば、前記粗面化および官能
基付与を一回の処理で行える利点がある。
In this surface treatment, carbon is eluted and oxidized by concentrated nitric acid, so that the surface 2 of the carbon fiber 1 is roughened and activated at the same time, as shown in Figure 1. Functional groups, ie OH, COOH, are provided. As described above, the use of concentrated nitric acid has the advantage that the surface roughening and functional group addition can be performed in one treatment.

第2図は高弾性炭素繊維の硝酸への浸漬日数と高弾性炭
素繊維の比表面積との関係を示し、また第3図は高弾性
炭素繊維の比表面積と複合材における高弾性炭素繊維の
繊維配向方向に直交する方向の曲げ強さとの関係を示し
、さらに第4図は前記浸漬日数と前記曲げ強さとの関係
を示す。曲げ試験に供された複合材は、アルミニウム合
金マトリックスと、繊維体積率50%の一方向に配向す
る高弾性炭素繊維とより構成された。
Figure 2 shows the relationship between the number of days of immersion of high modulus carbon fibers in nitric acid and the specific surface area of high modulus carbon fibers, and Figure 3 shows the relationship between the specific surface area of high modulus carbon fibers and the fibers of high modulus carbon fibers in composite materials. The relationship between the bending strength in the direction perpendicular to the orientation direction is shown, and FIG. 4 also shows the relationship between the number of days of immersion and the bending strength. The composite material subjected to the bending test was composed of an aluminum alloy matrix and unidirectionally oriented high modulus carbon fibers with a fiber volume fraction of 50%.

第2〜第4図から明らかなように、高弾性炭素繊維の比
表面積を4〜6m2/gに設定することによって、複合
材の前記曲げ強さを向上させることができる。
As is clear from FIGS. 2 to 4, the bending strength of the composite material can be improved by setting the specific surface area of the high modulus carbon fiber to 4 to 6 m2/g.

これは高弾性炭素繊維表面の粗面化に伴いその繊維とマ
トリックスとの接合面積が増加し、また高弾性炭素繊維
およびマトリックス間において、官能基の付与により活
性化された高弾性炭素繊維表面とマトリックスとの反応
生成物であるAf。
This is because the bonding area between the fiber and the matrix increases as the surface of the high-modulus carbon fiber becomes rough, and the surface of the high-modulus carbon fiber is activated by adding functional groups between the high-modulus carbon fiber and the matrix. Af, which is a reaction product with the matrix.

C1を媒介とした接合力が得られるからである。This is because bonding force mediated by C1 can be obtained.

このようにして、複合材の異方性が改善されるものであ
る。
In this way, the anisotropy of the composite material is improved.

た−し、表面処理の過多に伴い前記比表面積が6%/g
を上回ると、高弾性炭素繊維表面の凹、凸部への応力集
中が起こり易くなって前記曲げ強さが低下する。一方、
表面処理の過少に伴い前記比表面積が4rrr/gを下
回ると、高弾性炭素繊維表面における官能基の飽和が比
較的短時間で達成されることに起因して比表面積当りの
官能基濃度が高くなり、その結果、AI!、4C3が集
中的に多量に生成されて前記曲げ強さが低下する。
However, due to excessive surface treatment, the specific surface area is 6%/g.
If it exceeds , stress concentration on concave and convex portions on the surface of the high modulus carbon fiber tends to occur, and the bending strength decreases. on the other hand,
If the specific surface area is less than 4rrr/g due to insufficient surface treatment, the concentration of functional groups per specific surface area will be high because saturation of the functional groups on the surface of the high modulus carbon fiber will be achieved in a relatively short time. As a result, AI! , 4C3 are produced intensively in large quantities, resulting in a decrease in the bending strength.

これらの点を考慮すると、表面処理時間、したがって濃
硝酸への浸漬日数は2〜5日程度が適当である。
Considering these points, it is appropriate that the surface treatment time, and therefore the number of days of immersion in concentrated nitric acid, be about 2 to 5 days.

以下、具体例について説明する。A specific example will be explained below.

炭素繊維として、引張強さ270kg/a+” 、弾性
率40000 kg/+na+”の高弾性炭素繊維を用
い、この繊維を86°Cの濃硝酸に96時間(4日間)
浸漬し、次いで40kHzの超音波を照射しながら水洗
し、その後乾燥炉にて真空下で120°C124時間乾
燥した。
Highly elastic carbon fiber with a tensile strength of 270 kg/a+" and an elastic modulus of 40,000 kg/+na+" was used as the carbon fiber, and this fiber was soaked in concentrated nitric acid at 86°C for 96 hours (4 days).
The sample was immersed, then washed with water while being irradiated with 40kHz ultrasonic waves, and then dried in a drying oven at 120°C under vacuum for 124 hours.

前記表面処理を施された高弾性炭素繊維F、に、バイン
ダとしてアクリル系樹脂および添加粉末として1〜5μ
mの純A2粉末を加えた後、この繊維を一方向に配向さ
せた繊維体積率50%の角棒状繊維成形体を成形し、こ
の繊維成形体にH2ガス中にて500℃、1時間の焼成
処理を施した。
To the surface-treated high-elastic carbon fiber F, an acrylic resin as a binder and 1 to 5 μm as an additive powder are added.
After adding m of pure A2 powder, the fibers were oriented in one direction to form a rectangular rod-shaped fiber molded body with a fiber volume ratio of 50%, and this fiber molded body was heated in H2 gas at 500°C for 1 hour. Fired.

前記繊維成形体に、Arガス中にて600℃、10分間
の予熱処理を施した後、その繊維成形体を280℃の金
型に設置し、マトリックスとしてAI!、−3i系アル
ミニウム合金を用い、湯温760°C1加圧力900k
g/cJ、加圧時間75秒間の条件の下で複合材CIを
鋳造した。
After preheating the fiber molded article at 600°C for 10 minutes in Ar gas, the fiber molded body was placed in a mold at 280°C, and AI! was used as a matrix. , using -3i aluminum alloy, hot water temperature 760°C, pressure 900k
The composite material CI was cast under the conditions of g/cJ and pressurization time of 75 seconds.

比較のため、陽極酸化処理により表面に0H1COOH
を付与された高弾性炭素繊維F、を用い、前記と同一条
件にて複合材C2を鋳造し、また表面処理を施されてい
ない高弾性炭素繊維F、を用い、前記と同一条件にて複
合材C3を鋳造した。
For comparison, 0H1COOH is applied to the surface by anodizing.
A composite material C2 was cast using high modulus carbon fiber F, which was given with Material C3 was cast.

前記各炭素繊維F1〜F、の物性は表■の通りであり、
また各複合材C3〜C1の物性は表■の通りである。
The physical properties of each of the carbon fibers F1 to F are as shown in Table 3,
Further, the physical properties of each of the composite materials C3 to C1 are as shown in Table 2.

表    I 表 ■ 向を意味し、また15°方向は繊維配向方向に対して1
5°傾いた方向を意味し、さらに90°方向は繊維配向
方向に直交する方向を意味する。
Table I Table■ means the direction, and the 15° direction is 1° with respect to the fiber orientation direction.
A direction inclined by 5° is meant, and a 90° direction means a direction perpendicular to the fiber orientation direction.

表■から明らかなように、本発明複合材C1は他の複合
材Ct、Csに比べて疲労強度が向上し、また異方性も
改善されている。これは、濃硝酸を用いた表面処理によ
り、高弾性炭素繊維とマトリックスとの接合強度が向上
し、これに伴い疲労亀裂に対する伝播抵抗が増大したこ
とに起因する。
As is clear from Table 2, the composite material C1 of the present invention has improved fatigue strength and anisotropy compared to other composite materials Ct and Cs. This is due to the fact that the surface treatment using concentrated nitric acid improved the bonding strength between the high modulus carbon fibers and the matrix, thereby increasing the propagation resistance against fatigue cracks.

また本発明複合材C3は、他の複合材Ci、Caに比べ
て高温下での長時間保持後の耐熱性が向上いため、Af
fi4 C3の生成が高弾性炭素繊維表面において分散
されることに起因する。一方、複合いため、All!、
C3の生成が集中的に、且つ過剰表■の異方性において
、0°方向は繊維配向力に進行し脆弱となる。
In addition, the composite material C3 of the present invention has improved heat resistance after being held at high temperatures for a long time compared to other composite materials Ci and Ca.
This is due to the formation of fi4 C3 being dispersed on the surface of the high modulus carbon fiber. On the other hand, because it is complex, All! ,
When C3 is intensively produced and the anisotropy is excessive, the fiber orientation force in the 0° direction progresses and becomes brittle.

C1発明の効果 本発明によれば、炭素繊維とマトリックスとの接合強度
を向上させて異方性を改善され、また耐熱性の優れた高
強度な前記複合材を提供することができ、これにより前
記複合材の利用分野を拡張することが可能である。
C1 Effects of the Invention According to the present invention, it is possible to provide a high-strength composite material that has improved anisotropy by improving the bonding strength between the carbon fibers and the matrix, and has excellent heat resistance. It is possible to expand the field of application of the composite material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高弾性炭素繊維表面の説明図、第2図は前記炭
素繊維の硝酸への浸漬日数と前記炭素繊維の比表面積と
の関係を示すグラフ、第3図は前記炭素繊維の比表面積
と複合材における前記炭素繊維の繊維配向方向に直交す
る方向の曲げ強さとの関係を示すグラフ、第4図は前記
浸漬日数と前記曲げ強さとの関係を示すグラフである。 ■・・・炭素繊維、2・・・表面 第2図 高弾性炭素繊維の硝酸への侵4日数 第1図 第3図
Figure 1 is an explanatory diagram of the surface of the high modulus carbon fiber, Figure 2 is a graph showing the relationship between the number of days the carbon fiber is immersed in nitric acid and the specific surface area of the carbon fiber, and Figure 3 is the specific surface area of the carbon fiber. FIG. 4 is a graph showing the relationship between the number of days of immersion and the bending strength in the direction orthogonal to the fiber orientation direction of the carbon fibers in the composite material. ■...Carbon fiber, 2...Surface Fig. 2 Number of 4 days of immersion of high modulus carbon fiber in nitric acid Fig. 1 Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)軽合金よりなるマトリックスと、該マトリックス
と複合する炭素繊維とより構成された繊維強化軽合金複
合材において、前記炭素繊維の表面を粗面化すると共に
該表面に、それと前記マトリックスとの反応性を向上さ
せる官能基を付与したことを特徴とする繊維強化軽合金
複合材。
(1) In a fiber-reinforced light alloy composite material composed of a matrix made of a light alloy and carbon fibers composited with the matrix, the surface of the carbon fibers is roughened and the surface is coated with the matrix. A fiber-reinforced light alloy composite material characterized by the addition of functional groups that improve reactivity.
(2)前記炭素繊維表面の粗面化および前記官能基の付
与は、該炭素繊維を硝酸に浸漬することにより行われる
、第(1)項記載の繊維強化軽合金複合材。
(2) The fiber-reinforced light alloy composite material according to item (1), wherein the roughening of the carbon fiber surface and the provision of the functional group are performed by immersing the carbon fiber in nitric acid.
(3)前記粗面化に伴う前記炭素繊維の比表面積は、4
〜6m^2/gである、第(1)または第(2)項記載
の繊維強化軽合金複合材。
(3) The specific surface area of the carbon fiber due to the roughening is 4
The fiber-reinforced light alloy composite material according to item (1) or item (2), which is ~6 m^2/g.
JP24270088A 1988-09-28 1988-09-28 Fiber reinforced light alloy composite material Pending JPH0293032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24270088A JPH0293032A (en) 1988-09-28 1988-09-28 Fiber reinforced light alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24270088A JPH0293032A (en) 1988-09-28 1988-09-28 Fiber reinforced light alloy composite material

Publications (1)

Publication Number Publication Date
JPH0293032A true JPH0293032A (en) 1990-04-03

Family

ID=17092945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24270088A Pending JPH0293032A (en) 1988-09-28 1988-09-28 Fiber reinforced light alloy composite material

Country Status (1)

Country Link
JP (1) JPH0293032A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116620B2 (en) 2002-04-25 2006-10-03 Hitachi, Ltd. System and method for controlling recording state transitions in an information recording apparatus
JP2008513318A (en) * 2004-06-23 2008-05-01 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized single-walled carbon nanotubes
JP2009149972A (en) * 2007-12-21 2009-07-09 Sungkyunkwan Univ Foundation For Corporate Collaboration Method for encapsulating carbon material into aluminum
JP2009161849A (en) * 2008-01-04 2009-07-23 Sungkyunkwan Univ Foundation For Corporate Collaboration METHOD FOR EFFICIENT Al-C COVALENT BOND FORMATION BETWEEN ALUMINUM AND CARBON MATERIAL
US7854945B2 (en) 1994-12-08 2010-12-21 Hyperion Catalysis International, Inc. Functionalized nanotubes
CN105239025A (en) * 2015-11-17 2016-01-13 梅庆波 Preparation method of carbon fiber reinforced titanium alloy composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854945B2 (en) 1994-12-08 2010-12-21 Hyperion Catalysis International, Inc. Functionalized nanotubes
US7116620B2 (en) 2002-04-25 2006-10-03 Hitachi, Ltd. System and method for controlling recording state transitions in an information recording apparatus
US7269112B2 (en) 2002-04-25 2007-09-11 Hitachi, Ltd. Information recording apparatus
US8040768B2 (en) 2002-04-25 2011-10-18 Hitachi, Ltd. Information recording apparatus
JP2008513318A (en) * 2004-06-23 2008-05-01 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized single-walled carbon nanotubes
JP2009149972A (en) * 2007-12-21 2009-07-09 Sungkyunkwan Univ Foundation For Corporate Collaboration Method for encapsulating carbon material into aluminum
JP2009161849A (en) * 2008-01-04 2009-07-23 Sungkyunkwan Univ Foundation For Corporate Collaboration METHOD FOR EFFICIENT Al-C COVALENT BOND FORMATION BETWEEN ALUMINUM AND CARBON MATERIAL
CN105239025A (en) * 2015-11-17 2016-01-13 梅庆波 Preparation method of carbon fiber reinforced titanium alloy composite material
CN105239025B (en) * 2015-11-17 2017-04-19 迈克瑞(珠海)复合材料有限公司 Preparation method of carbon fiber reinforced titanium alloy composite material

Similar Documents

Publication Publication Date Title
CN103992490B (en) The preparation method of aramid fiber and epoxy composite material and MXene modification liquid
JPH0293032A (en) Fiber reinforced light alloy composite material
CN112144272A (en) Method for surface modification of carbon fiber chemical nickel plating
CN1256388C (en) Process for preparing rare-earth modified carbon fiber/polyimide composite material
JPS61197472A (en) Manufacture of sic continuous fiber reinforced sic compositebody
JPS59107913A (en) Manufacture of composite carbon-carbon material
JPS60125375A (en) Metal-ceramic joined body and manufacture thereof
KR100725320B1 (en) Method for preparing of metal matrix composites
US3876444A (en) Method of treating high strength carbon fibers
Goldwasser et al. The mechanical behavior of polysulfone matrix composites reinforced with amorphous metal ribbons
CN114575151A (en) Carbon fiber based on biological matrix surface modification, preparation method and composite material
CN109735753B (en) High-strength corrosion-resistant heat-resistant magnesium alloy material and preparation method thereof
CN108329649B (en) Preparation method of titanium dioxide-silane coupling agent synergistically reinforced carbon cloth reinforced resin-based friction material
JPH0557837A (en) Composite prepreg
JPS62263375A (en) Surface treatment of carbon fiber
Song et al. Analyzing Hysteresis and Thermal Expansion Coefficient of M40/AZ91D during Thermal Cycling
JPS61132675A (en) Surface treatment of carbon fiber
Kawagoishi et al. Effect of Heat Treatments on the Fatigue Crack Growth Properties of an Aluminum Casting Alloy. Rotating Bending of Squeeze-Cast Aluminum Alloy AC 4 CH
JPH03185181A (en) Method for treating surface of carbon fiber
Kawagoishi et al. Notch sensitivity of squeeze cast aluminum alloy in rotating bending fatigue
JPH04165032A (en) Alumina-boria whisker reinforced al base composite
Harris Developments in Particulate and Short Fiber Composites
李宁 et al. Corrosion Behavior of B 4 C/6061Al Composite for Neution Absorption in Boric Acid Solution
JPH029762A (en) Production of carbon fiber reinforced composite material
Holt Recent Developments in Aluminum Alloy Technology for Aerospace Applications