KR100725320B1 - Method for preparing of metal matrix composites - Google Patents

Method for preparing of metal matrix composites Download PDF

Info

Publication number
KR100725320B1
KR100725320B1 KR1020050129061A KR20050129061A KR100725320B1 KR 100725320 B1 KR100725320 B1 KR 100725320B1 KR 1020050129061 A KR1020050129061 A KR 1020050129061A KR 20050129061 A KR20050129061 A KR 20050129061A KR 100725320 B1 KR100725320 B1 KR 100725320B1
Authority
KR
South Korea
Prior art keywords
shape memory
memory alloy
composite material
metal
composite
Prior art date
Application number
KR1020050129061A
Other languages
Korean (ko)
Inventor
이규창
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020050129061A priority Critical patent/KR100725320B1/en
Application granted granted Critical
Publication of KR100725320B1 publication Critical patent/KR100725320B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

A method for manufacturing a metal matrix composite is provided to improve mechanical properties of the composite by manufacturing a metal matrix composite using a shape memory alloy, and applying pre-strain to the metal matrix composite and heat-treating the metal matrix composite such that the shape memory alloy is returned to an originally memorized shape, thereby generating compressive residual stress in a matrix metal of the composite. In a method for manufacturing a metal matrix composite in which a shape memory alloy made from Ti-Ni fibers is used as a reinforcement, the method comprises: compositing the shape memory alloy with a matrix metal to manufacture a composite; heat-treating the composite in a shape memory temperature range of the shape memory alloy; applying pre-strain to the composite in a superelastic strain range of the shape memory alloy; and reheating the composite at a martensite phase/austenite phase transformation temperature or more of the shape memory alloy. The matrix metal is aluminum or magnesium with a fusion point of 700 deg.C or less.

Description

금속복합재료의 제조방법 {METHOD FOR PREPARING OF METAL MATRIX COMPOSITES}METHOD FOR MANUFACTURING METAL COMPOSITE {METHOD FOR PREPARING OF METAL MATRIX COMPOSITES}

도 1은 본 발명에 따른 형상기억합금으로 강화된 금속복합재료의 설개개념도이다.1 is a schematic view of a metal composite material reinforced with a shape memory alloy according to the present invention.

도 2는 본 발명의 일실시예에 따라 제조한 금속복합재료의 단면조직을 나타낸 사진이다.Figure 2 is a photograph showing the cross-sectional structure of the metal composite material prepared according to an embodiment of the present invention.

도 3은 본 발명의 일실시예에 따라 제조한 금속복합재료의 예변형율에 따른 응력-변형곡선을 나타낸 그래프이다.3 is a graph showing a stress-strain curve according to the prestrain of the metal composite material prepared according to the embodiment of the present invention.

* 도면의 주요 부호에 대한 설명 *Description of the main symbols in the drawings

1: 모재 금속 2: 형상기억합금의 오스테나이트상1: base metal 2: austenite phase of shape memory alloy

3: 형상기억합금의 마르텐사이트상 4: 예변형: 0 %3: Martensitic phase of shape memory alloy 4: Prestrain: 0%

5: 예면형 3 % 6: 예변형: 5 %5: Preform 3% 6: Preform: 5%

본 발명은 금속복합재료의 제조방법에 관한 것으로, 더욱 상세하게는 금속복합재료의 물성을 좌우하는 복합재료 내부의 강화재로 사용되는 형상기억합금 섬유 에 예변형(pre-strain)을 부가하여 기계적 특성을 현저히 향상시킨 금속복합재료의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a metal composite material, and more particularly, mechanical properties by adding a pre-strain to the shape memory alloy fiber used as a reinforcing material in the composite material, which influences the physical properties of the metal composite material. The present invention relates to a method for producing a metal composite material which is significantly improved.

금속복합재료는 경량이면서 고강도와 고강성을 가지고 있기 때문에 항공우주 분야 뿐 아니라, 자동차 경량화 부품으로도 많이 사용되고 있다. Metal composites are lightweight, have high strength and high rigidity, so they are widely used not only for aerospace, but also for automobile lightweight components.

금속복합재료는 연한 금속기지에 단단한 세라믹 강화재(단섬유, 휘스커, 입자 등)를 분산시켜 인장강도, 탄성률 등의 기계적 성질이 크게 개선된다. Metal composite materials disperse hard ceramic reinforcing materials (short fibers, whiskers, particles, etc.) on soft metal bases, thereby greatly improving mechanical properties such as tensile strength and elastic modulus.

그러나, 금속과 세라믹은 서로 혼합할 때 젖음성(wettability)이 좋지 않기 때문에 미리 세라믹으로 예비성형체(preform)를 만들고, 여기에 금속을 용해하여 용탕단조법이라 하는 방법을 이용하여 기계적인 압력에 의해 금속을 예비성형체 내부에 침투시켜 금속복합재료를 제조하고 있다(일본공개특허공보 소63-128965호). 또한, 장섬유를 이용하여 금속복합재료를 제조할 때는 미리 섬유로 만든 천이나 매트를 이용하거나, 섬유 표면에 프라즈마를 이용하여 용사코팅하여 예비성형체를 제조하고, 이를 분말야금법이나 용탕단조법을 이용하여 금속복합재료를 제조하고 있다.However, since the wettability is poor when the metal and the ceramic are mixed with each other, the preform is made of the ceramic in advance, and the metal is dissolved by the mechanical pressure using a method called molten forging. The metal composite material is manufactured by penetrating the inside of the preform (Japanese Patent Laid-Open No. 63-128965). In addition, when manufacturing a metal composite material using long fibers, a preform is manufactured by using a cloth or mat made of fibers in advance or by thermal spray coating using a plasma on the surface of the fiber, and using powder metallurgy or molten metal forging. To produce a metal composite material.

이와 같이 제조한 금속복합재료는 모재로 사용되는 알루미늄이나 마그네슘 등이 대부분이며, 강화재로 사용하는 단섬유나 장섬유에 의해 모재 금속보다 기계적 특성이 향상된다. 이러한 복합재료는 재료 그 자체에서 복합화에 의해 기계적 특성을 향상시키고자 하는 것으로, 열 처리 등에 의해 강도를 높이고자 하였다(일본공개특허공보 소62-256954호). 따라서, 일단 제조된 금속복합재료 자체의 기계적 특성을 향상시키는데는 한계가 있으며, 더 높은 기계적 특성을 얻기 위해서는 새로운 조합의 모재와 강화재를 선정하여 새로이 제조하여야 한다는 문제점이 있었다.The metal composite material thus prepared is mostly aluminum or magnesium used as the base material, and the mechanical properties of the metal composite material are improved by the short fibers or long fibers used as the reinforcing material. Such a composite material is intended to improve mechanical properties by compounding in the material itself, and to increase strength by heat treatment or the like (Japanese Patent Laid-Open No. 62-256954). Therefore, there is a limit to improve the mechanical properties of the prepared metal composite material itself, there is a problem in that a new manufacturing by selecting a new combination of the base material and reinforcing material in order to obtain higher mechanical properties.

한편, 장섬유 강화 복합재료를 제조하기 위해서는 장섬유를 이용하여 만들어진 천이나 매트 등을 이용하여 예비성형체를 제조한 후, 알루미늄 용탕을 금형내에 충진된 예비성형체 위에 주입하고, 기계적 압력을 이용하여 예비성형체 내에 알루미늄 용탕을 침투시키거나, 또는 천이나 매트로 된 예비성형체에 금속분말을 함께 첨가하여 분말야금법을 이용한 소결 방법에 의해 복합재료를 제조한다.Meanwhile, in order to manufacture a long fiber reinforced composite material, after manufacturing a preform using a cloth or a mat made of long fiber, aluminum molten metal is injected onto a preform filled in a mold, and preliminary using a mechanical pressure. The molten aluminum is impregnated into the molded body, or a metal powder is added to the cloth or mat preform to prepare a composite material by a sintering method using powder metallurgy.

이와 같이 제조된 금속복합재료는 기계적 특성을 향상시키기 위하여 복합재료 제조 후에 2차 열처리를 행하나, 2차 열처리 후의 기계적 특성은 더 이상 증가시키기 어렵다는 문제점이 있었다.The metal composite material thus prepared is subjected to the secondary heat treatment after the manufacture of the composite material in order to improve the mechanical properties, but there is a problem that the mechanical properties after the secondary heat treatment are no longer increased.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 금속복합재료의 물성을 좌우하는 복합재료 내부의 강화재로 사용되는 형상기억합금 섬유에 예변형(pre-strain)을 부가하여 기계적 특성을 현저히 향상시킨 금속복합재료의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention significantly improves the mechanical properties by adding a pre-strain to the shape memory alloy fiber used as a reinforcing material in the composite material that influences the properties of the metal composite material. It is an object of the present invention to provide a method for producing a metal composite material.

본 발명의 다른 목적은 형상기억합금을 이용하여 금속복합재료 제조한 후 예변형을 가하고 열처리를 행하여 형상기억합금을 원래의 기억된 형태로 되돌아오게 함으로써 복합재료의 모재 금속 내부에 압축잔류응력이 발생되어 기계적 특성을 향상시킬 수 있는 금속복합재료의 제조방법을 제공하는 것이다.Another object of the present invention is to produce a metal composite material using a shape memory alloy and then subjected to a preform deformation and heat treatment to return the shape memory alloy to the original memory form, the compression residual stress is generated inside the base metal of the composite material To provide a method for producing a metal composite material that can improve the mechanical properties.

상기 목적을 달성하기 위하여, 본 발명은 금속복합재료의 제조방법에 있어서, 형상기억합금 강화재와 모재 금속을 복합화하여 복합재료를 제조한 후, 상기 복합재료를 형상기억 열처리하고 예변형한 뒤 재가열하는 것을 특징으로 하는 금속복합재료의 제조방법을 제공한다.In order to achieve the above object, the present invention is a method of manufacturing a metal composite material, after the composite shape of the shape memory alloy reinforcing material and the base metal to produce a composite material, the shape memory heat treatment and pre-deformation of the composite material and then reheating Provided is a method for producing a metal composite material.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 금속과의 복합화 후에 형상기억합금에 예변형을 부가하여 복합재료를 제조하고, 이어서 예변형을 주고 열처리를 행하면 형상기억합금 자체가 온도에 반응하여 예변형을 준 만큼 원래의 형태로 되돌아오기 때문에 복합재료의 모재 내부에 압축잔류응력이 발생하게 되며, 이에 따른 압축잔류응력을 이용하여 형상기억합금 강화 복합재료를 제조하면 기계적 특성이 향상된 복합재료의 제조가 가능함을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.The present inventors prepared a composite material by adding a preform strain to the shape memory alloy after complexing with a metal, and then performing a preform strain and performing heat treatment to return the original form as much as the shape memory alloy itself reacted with the temperature to give the preform strain. Compression residual stress is generated inside the base material of the composite material, and it is confirmed that the manufacturing of shape memory alloy-reinforced composite material using the compressive residual stress enables the production of composite materials with improved mechanical properties. The invention was completed.

본 발명의 금속복합재료는 종래 복합재료의 강화재로 사용하는 세라믹 섬유나 장섬유를 대신하여 온도에 민감하게 반응하여 저온에서는 강화섬유가 연하여 쉽게 변형되지만, 온도가 올라가면 상변태에 의하여 본래의 형태로 회복되는 형상기억합금을 이용하였다. 구체적으로, 본 발명은 형상기억합금 강화재와 모재 금속을 복합화하여 복합재료를 제조한 후, 상기 복합재료를 형상기억 열처리하고 예변형한 뒤 재가열하는 것을 특징으로 한다.The metal composite material of the present invention reacts sensitively to temperature in place of the ceramic fiber or long fiber used as a reinforcing material of the conventional composite material, but at low temperature, the reinforcing fiber is soft and easily deformed. The shape memory alloy to recover was used. Specifically, the present invention is characterized by manufacturing a composite material by complexing a shape memory alloy reinforcing material and a base metal, and then reheating the composite material after shape memory heat treatment, prestraining.

본 발명에 사용되는 상기 형상기억합금은 Ti와 Ni의 양을 적절히 조절, 혼합하는 통상의 Ti-Ni 섬유를 사용할 수 있으며, 특히 Ti 50 중량% 및 Ni 50 중량%를 함유하는 Ti-Ni 섬유를 사용하는 것이 좋다.The shape memory alloy used in the present invention may be used a conventional Ti-Ni fiber to properly adjust and mix the amount of Ti and Ni, in particular Ti-Ni fiber containing 50% by weight of Ti and 50% by weight of Ni It is good to use.

본 발명에 사용되는 상기 모재 금속은 통상의 금속복합재료에 사용되는 금속을 모두 사용할 수 있으며, 특히 융점이 700 ℃ 이하인 알루미늄, 마그네슘 등을 사용하는 것이 좋다.The base metal used in the present invention may use all of the metals used in the conventional metal composite material, in particular, it is preferable to use aluminum, magnesium or the like having a melting point of 700 ° C or less.

상기 형상기억합금은 온도의 변화에 따라 저온에서는 마르텐사이트상으로 변형이 쉽고 연한 반면, 고온이 되면 오스테나이트상으로 상변태가 일어나 강하면서 변형이 어렵다. 저온에서 쉽게 변형시킨 형상기억합금을 오스테나이트상 변태 온도 이상으로 가열하면 변형되었던 형상기억합금이 본래의 형태로 돌아오려 하는 회복력이 발생하게 된다.The shape memory alloy is easily and softly deformed into the martensite phase at low temperatures according to the change in temperature, while the shape memory alloy is strong and difficult to deform into the austenite phase. When the shape memory alloy easily deformed at a low temperature is heated above the austenite phase transformation temperature, the shape memory alloy that is deformed is restored to its original form.

상기와 같은 형상기억합금 강화재와 모재 금속을 복합화하여 제조한 복합재료는 이후 형상기억 열처리하고 예변형한 후, 재가열을 실시하여 최종 기계적 특성이 향상된 금속복합재료로 제조된다. The composite material prepared by complexing the shape memory alloy reinforcement material and the base metal as described above is then manufactured into a metal composite material having improved final mechanical properties by performing shape memory heat treatment, predeformation, and reheating.

상기 열처리는 본 발명에서 사용되는 상기 형상기억합금의 형상기억온도 범위에서 실시하는 것이 좋으며, 상기 예변형은 본 발명에서 사용되는 상기 형상기억합금이 초탄성을 갖는 변형량 범위에서 실시하는 것이 좋으며, 상기 재가열은 형상기억합금의 마르텐사이트상/오스테나이트상 변태 온도 이상에서 실시하는 것이 좋다.The heat treatment is preferably carried out in the shape memory temperature range of the shape memory alloy used in the present invention, the preliminary deformation is preferably carried out in the deformation range of the shape memory alloy used in the present invention has a super elasticity, The reheating is preferably carried out above the martensite phase / austenite phase transformation temperature of the shape memory alloy.

본 발명은 형상기억합금 강화재와 모재 금속을 복합화하여 복합재료를 제조한 후, 상기 복합재료를 형상기억 열처리하고 예변형한 뒤 재가열하는 것을 특징으로 한다.The present invention is characterized by manufacturing a composite material by complexing a shape memory alloy reinforcement material and a base metal, and then reheating the composite material after shape memory heat treatment, prestraining.

또한, 본 발명의 금속복합재료에서 강화재로 사용되는 형상기억합금의 내부 에 압축잔류응력을 발생시키기 위하여 가공열처리 과정과 강화기구를 도 1에 모식적으로 나타내었다.In addition, the processing heat treatment process and the reinforcing mechanism is schematically shown in Figure 1 to generate a compression residual stress in the shape memory alloy used as a reinforcing material in the metal composite material of the present invention.

도 1에 도시한 형상기억합금으로 강화된 금속복합재료의 설계개념에 따르면, According to the design concept of the metal composite material reinforced with the shape memory alloy shown in Figure 1,

(a)단계에서 가공 제작한 TiNi/Al 형상기억 복합재료를 (b)단계에서 TiNi 형상기억합금의 형상기억온도에서 30 분간 가열 열처리하는 방법으로 형상기억합금 섬유에 형상기억 열처리를 실시하여 형상기억합금 섬유를 마르텐사이트상(3)으로 제조한다. 이와 같이 마르텐사이트상(3)이 된 형상기억합금 섬유는 매우 연화되어 모재 금속인 알루미늄(1)보다 더 낮은 강도를 갖게 된다. 이후, (c)단계에서 인장하중을 가하여 예변형을 가하면 모재 금속인 알루미늄(1)은 소성변형되지만, 형상기억합금 섬유는 마르텐사이트상(3) 그대로의 초탄성 영역에 있게 된다. 이와 같이 예변형이 가해진 복합재료를 (d)단계에서 다시 오스테나이트상(2) 온도 이상으로 재가열하면 형상기억합금 섬유는 마르텐사이트상(3)에서 오스테나이트상(2)으로의 역변태가 일어남으로써 (d)단계에서 가하여진 탄성 영역에 해당되는 예변형은 형상기억효과에 의하여 수축되어 원래의 (b)상태로 되돌아간다. 이에 반하여, 모재 금속인 알루미늄(1)은 온도변화에 따라 변형이 일어나지 않으므로 구속을 받게 되어 섬유 내부에는 인장응력이 발생하고, 모재 금속 내부에는 역으로 압축응력이 발생하게 되어 결과적으로 금속복합재료가 강화되게 된다.The shape memory is subjected to shape memory heat treatment to the shape memory alloy fiber by heat-treating the TiNi / Al shape memory composite material fabricated in step (a) for 30 minutes at the shape memory temperature of the TiNi shape memory alloy in step (b). Alloy fibers are made in the martensitic phase (3). In this manner, the shape memory alloy fiber that has become the martensite phase 3 is softened to have a lower strength than aluminum (1), which is the base metal. Subsequently, in the step (c), when the prestrain is applied by the tensile load, the base metal aluminum 1 is plastically deformed, but the shape memory alloy fiber is in the superelastic region of the martensite phase 3 as it is. When the prestrained composite material is reheated above the austenite phase (2) temperature in step (d), the shape memory alloy fibers undergo reverse transformation from the martensite phase (3) to the austenitic phase (2). As a result, the preform deformation corresponding to the elastic region applied in step (d) is contracted by the shape memory effect and returned to the original (b) state. On the contrary, since the base metal (1) is not deformed due to temperature change, it is constrained so that tensile stress is generated inside the fiber and conversely, compressive stress is generated inside the base metal. Will be strengthened.

상기와 같은 본 발명에 따르면 형상기억합금을 이용하여 금속복합재료 제조한 후, 형상기억합금 섬유에 예변형(pre-strain)을을 가하고 열처리를 행하여 형상기억합금을 원래의 기억된 형태로 되돌아오게 함으로써 복합재료의 모재 금속 내부 에 압축잔류응력이 발생되어 기계적 특성을 향상시킬 수 있다.According to the present invention as described above, after the metal composite material is manufactured using the shape memory alloy, a pre-strain is applied to the shape memory alloy fibers and subjected to heat treatment to return the shape memory alloy to its original memory. As a result, compressive residual stress is generated in the base metal of the composite material, thereby improving mechanical properties.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

강화재로 사용되는 형상기억합금으로 Ti 50 중량%(원자비) 및 Ni 50 중량%(원자비)로 함유된 직경 200 ㎛인 형상기억합금 섬유를 이용하여 용탕단조법에 따라 복합재료를 제조하였다. 이때, 형상기억합금 섬유를 이용하여 복합재료를 제조하기 전에 5 부피%를 갖도록 예비성형체 제조용 지그를 이용하여 일방향으로 섬유를 배열하고, 모재 금속으로 Al-Mg-Si 합금인 AA6061 합금을 사용하였다. 즉, AA6061 합금을 700 ℃에서 용해한 후, 용탕단조장치의 금형내에 형상기억합금 섬유로 제조된 예비성형체를 충진하고, 이 예비성형체 위에 알루미늄 용탕을 주입하고 75 MPa의 압력으로 응고가 될 때까지 가압하였다. 가압 후, 복합화된 복합재료를 수냉에 의하여 냉각시킨 후, 인장시편으로 기계가공하였다. 그 다음, 인장시편 내부의 형상기억합금 섬유에 형상기억 열처리를 500 ℃에서 30 분간 행하고, 얼음물을 이용해 급냉시켰다. 또한, 인장시편에 예변형을 부여하기 위하여 인장시험기를 이용하여 3 %와 5 %의 예변형을 부여한 후, 압축잔류응력을 발생시키기 위하여 90 ℃로 재가열하여 최종 금속복합재료를 제조하였다.Composite materials were prepared according to the molten metal forging method using a shape memory alloy fiber having a diameter of 200 μm contained in Ti 50 wt% (atomic ratio) and Ni 50 wt% (atomic ratio) as a reinforcing material. At this time, before manufacturing the composite material using the shape memory alloy fibers to arrange the fibers in one direction using a pre-molding jig to have a 5% by volume, the AA6061 alloy of Al-Mg-Si alloy was used as the base metal. That is, after dissolving the AA6061 alloy at 700 ° C., a preform made of shape memory alloy fibers is filled into the mold of the molten metal forging apparatus, and aluminum molten metal is injected onto the preform and pressurized until it solidifies at a pressure of 75 MPa. It was. After pressing, the composited composite material was cooled by water cooling and then machined into tensile specimens. Then, shape memory heat treatment was performed on the shape memory alloy fibers inside the tensile test specimen at 500 ° C. for 30 minutes, and quenched with ice water. In addition, after giving a 3% and 5% prestrain by using a tensile tester to give a prestrain to the tensile test specimen, the final metal composite material was prepared by reheating to 90 ℃ to generate a compressive residual stress.

상기 제조한 금속복합재료의 단면조직을 도 2에 나타내었으며, 90 ℃에서 행 한 인장시험결과를 도 4에 나타내었다.The cross-sectional structure of the prepared metal composite material is shown in FIG. 2, and the tensile test results at 90 ° C. are shown in FIG. 4.

도 4에 나타낸 바와 같이, 5 부피%인 복합재료를 이용하여 예변형율에 따른 인장시험 결과 예변형이 증가할수록 인장강도가 200 MPa에서 260 MPa로 30 % 향상되었음을 확인할 수 있었으며, 이는 예변형에 의해 도입된 복합재료 내부의 압축잔류응력에 의하여 인장강도가 증가된 것임을 알 수 있었다.As shown in FIG. 4, as a result of the tensile test using the composite material having 5% by volume, the tensile strength was increased by 30% from 200 MPa to 260 MPa as the strain was increased. It can be seen that the tensile strength is increased by the compressive residual stress inside the introduced composite material.

본 발명에 따르면 형상기억합금을 이용하여 금속복합재료 제조한 후, 형상기억합금 섬유에 예변형(pre-strain)을을 가하고 열처리를 행하여 형상기억합금을 원래의 기억된 형태로 되돌아오게 함으로써 복합재료의 모재 금속 내부에 압축잔류응력이 발생되어 기계적 특성을 향상시킬 수 있다.According to the present invention, after fabricating a metal composite material using a shape memory alloy, a pre-strain is applied to the shape memory alloy fibers and subjected to heat treatment to return the shape memory alloy to its original memory. Compressive residual stress is generated in the base metal of the metal to improve the mechanical properties.

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .

Claims (6)

Ti-Ni 섬유로 된 형상기억합금을 강화재로 사용하는 금속복합재료의 제조방법에 있어서,In the manufacturing method of a metal composite material using a shape memory alloy made of Ti-Ni fibers as a reinforcing material, 상기 형상기억합금과 모재 금속을 복합화하여 복합재료를 제조한 후, 상기 복합재료를 형상기억합금의 형상기억온도 범위에서 열처리하고, 형상기억합금의 초탄성 변형량 범위에서 예변형한 뒤, 형상기억합금의 마르텐사이트상/오스테나이트상 변태 온도 이상에서 재가열하는 것을 특징으로 하는 금속복합재료의 제조방법.After manufacturing the composite material by complexing the shape memory alloy and the base metal, the composite material is heat-treated in the shape memory temperature range of the shape memory alloy, and preformed and deformed in the superelastic deformation amount range of the shape memory alloy, and then the shape memory alloy A method for producing a metal composite material, characterized by reheating at or above the martensite phase / austenite phase transformation temperature. 삭제delete 제1항에 있어서,The method of claim 1, 상기 모재 금속이 융점이 700 ℃ 이하인 알루미늄 또는 마그네슘인 것을 특징으로 하는 금속복합재료의 제조방법.The method of producing a metal composite material, characterized in that the base metal is aluminum or magnesium having a melting point of 700 ° C. or less. 삭제delete 삭제delete 삭제delete
KR1020050129061A 2005-12-23 2005-12-23 Method for preparing of metal matrix composites KR100725320B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050129061A KR100725320B1 (en) 2005-12-23 2005-12-23 Method for preparing of metal matrix composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050129061A KR100725320B1 (en) 2005-12-23 2005-12-23 Method for preparing of metal matrix composites

Publications (1)

Publication Number Publication Date
KR100725320B1 true KR100725320B1 (en) 2007-06-07

Family

ID=38358434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050129061A KR100725320B1 (en) 2005-12-23 2005-12-23 Method for preparing of metal matrix composites

Country Status (1)

Country Link
KR (1) KR100725320B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006526A (en) * 2015-07-08 2017-01-18 서울대학교산학협력단 Fabricating method for phase transformable alloy with controlling absorbed energy and alloys fabricated by the method
CN107761018A (en) * 2017-11-08 2018-03-06 北京理工大学 A kind of preparation method of TiNi shape-memory alloy wires enhancing composite material of magnesium alloy
CN113290244A (en) * 2021-06-04 2021-08-24 吉林大学 Preparation method of impact-resistant self-recovery bionic composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568366A (en) * 1991-09-09 1993-03-19 Toshiba Corp Cogenerating system
JPH06278235A (en) * 1993-03-26 1994-10-04 Mitsubishi Heavy Ind Ltd Shape memory alloy fiber reinforced metal
JPH0752265A (en) * 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Production of fiber-reinforced composite material
US5508116A (en) 1995-04-28 1996-04-16 The United States Of America As Represented By The Secretary Of The Navy Metal matrix composite reinforced with shape memory alloy
KR20020051461A (en) * 2000-12-22 2002-06-29 신현준 Fabrication method of metal matrix composite using shape memory alloys as reinforcing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568366A (en) * 1991-09-09 1993-03-19 Toshiba Corp Cogenerating system
JPH06278235A (en) * 1993-03-26 1994-10-04 Mitsubishi Heavy Ind Ltd Shape memory alloy fiber reinforced metal
JPH0752265A (en) * 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Production of fiber-reinforced composite material
US5508116A (en) 1995-04-28 1996-04-16 The United States Of America As Represented By The Secretary Of The Navy Metal matrix composite reinforced with shape memory alloy
KR20020051461A (en) * 2000-12-22 2002-06-29 신현준 Fabrication method of metal matrix composite using shape memory alloys as reinforcing agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006526A (en) * 2015-07-08 2017-01-18 서울대학교산학협력단 Fabricating method for phase transformable alloy with controlling absorbed energy and alloys fabricated by the method
KR101701622B1 (en) 2015-07-08 2017-02-02 서울대학교산학협력단 Fabricating method for phase transformable alloy with controlling absorbed energy and alloys fabricated by the method
CN107761018A (en) * 2017-11-08 2018-03-06 北京理工大学 A kind of preparation method of TiNi shape-memory alloy wires enhancing composite material of magnesium alloy
CN113290244A (en) * 2021-06-04 2021-08-24 吉林大学 Preparation method of impact-resistant self-recovery bionic composite material

Similar Documents

Publication Publication Date Title
Liu et al. A study on the residual stress during selective laser melting (SLM) of metallic powder
Fan et al. Metallic glass matrix composite with precipitated ductile reinforcement
Furuya et al. Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite
US8016955B2 (en) Magnesium based amorphous alloy having improved glass forming ability and ductility
Bae et al. Plasticity in Ni 59 Zr 20 Ti 16 Si 2 Sn 3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders
CN101705457B (en) Method and device for preparing large-size bulk amorphous composite materials
TWI565543B (en) Material with high resistance against wearing and the process for its production
CN114507833B (en) TB8 titanium alloy bar with gradient layer alpha-phase structure and preparation method thereof
JP3859504B2 (en) Method of strengthening titanium aluminide metal material and metal material to which the method is applied
KR100725320B1 (en) Method for preparing of metal matrix composites
Kim et al. Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites
KR20180006861A (en) TiNiNb ALLOY AND FOR IT USED THERMAL CONTRACTION RING FIXING COUPLING
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
KR20020051461A (en) Fabrication method of metal matrix composite using shape memory alloys as reinforcing agent
KR100431828B1 (en) Fabrication method of metal metrix composite reinforced by shape memory alloy
Park et al. A study on the fabrication of TiNi/Al6061 shape memory composite material by hot-press method and its mechanical property
US7253219B2 (en) Functional composite material using shape memory alloy and production method therefor
KR100513584B1 (en) High Strength Magnesium Composite Materials with Excellent Ductility and Manufacturing Process for Them
CN113802072A (en) Deformation induced zirconium based alloy
KR100497189B1 (en) Fabrication method of metal matrix composite
JPH06278235A (en) Shape memory alloy fiber reinforced metal
JPH03226504A (en) Manufacture of high density titanium alloy powder sintered product
CN110408747B (en) Method for reducing residual stress and improving hardness of GT35 steel bonded hard alloy
KR100252279B1 (en) The manufacturing method for composite material
RU2026156C1 (en) Method of manufacturing friction discs

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130530

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140529

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180515

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190503

Year of fee payment: 13