JPH02850B2 - - Google Patents

Info

Publication number
JPH02850B2
JPH02850B2 JP12438480A JP12438480A JPH02850B2 JP H02850 B2 JPH02850 B2 JP H02850B2 JP 12438480 A JP12438480 A JP 12438480A JP 12438480 A JP12438480 A JP 12438480A JP H02850 B2 JPH02850 B2 JP H02850B2
Authority
JP
Japan
Prior art keywords
etching
plasma
gas
chloride
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12438480A
Other languages
Japanese (ja)
Other versions
JPS5749234A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP12438480A priority Critical patent/JPS5749234A/en
Publication of JPS5749234A publication Critical patent/JPS5749234A/en
Publication of JPH02850B2 publication Critical patent/JPH02850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は、窒素とハロゲン元素との化合物、特
に塩化窒素をプラズマエツチングの反応性気体に
用い、金属または金属化合物をプラズマエツチン
グさせることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a compound of nitrogen and a halogen element, particularly nitrogen chloride, as a reactive gas for plasma etching to plasma-etch metals or metal compounds.

近年、エツチング技術を必要とする分野、例え
ば半導体集積回路の製造工程におけるエツチング
には、従来のエツチング溶液を用いたウエツトエ
ツチングの代わりに反応性ガスを用いたドライエ
ツチングが開発されつつある。
In recent years, for etching in fields that require etching techniques, such as in the manufacturing process of semiconductor integrated circuits, dry etching using a reactive gas has been developed in place of the conventional wet etching using an etching solution.

このドライエツチングは工程の簡略化等の特徴
及びデバイスの信頼性の向上を図ることができる
とされている。このため、エツチングガスはハロ
ゲン元素例えば弗素、塩素の化合物特にCF4
CCl4をプラズマ中にて分解し、F*、Cl*を発生さ
せていた。しかし同時に固体である炭素が生成さ
れ、これが半導体の信頼性向上の面ではきわめて
有害なものであることが判明した。
This dry etching is said to be capable of simplifying the process and improving device reliability. For this reason, the etching gas is a compound of halogen elements such as fluorine and chlorine, especially CF 4 ,
CCl 4 was decomposed in plasma to generate F * and Cl * . However, at the same time, solid carbon was produced, which turned out to be extremely harmful in terms of improving the reliability of semiconductors.

このため、このCF4、CCl4のガス中に0.1〜5
体積%の酸素を入れ、固体炭素をCO2ガスにして
しまうことが検討されている。
Therefore, in this CF 4 and CCl 4 gas, 0.1 to 5
It is being considered to turn solid carbon into CO 2 gas by adding vol% oxygen.

しかしこのプラズマ中での炭素と酸素との化合
は必ずしも十分であるとはいえず、基本的に半導
体集積回路に炭素化物気体を用いることは不適当
であつた。
However, the combination of carbon and oxygen in this plasma is not necessarily sufficient, and it has been fundamentally inappropriate to use carbonide gas in semiconductor integrated circuits.

本発明は化学的に安定な気体であり、また活性
化または分解せしめた時、ハロゲン元素とその副
産物が固体でなく、無害の気体である窒素のハロ
ゲン化物特に弗化窒素(NF、NF2、以下NF3
総称する)また塩化窒素(NCl、NCl2、NCl3
下NClで総称する)を用いた。さらに、このNF、
NClの水素化物である弗化アンモニユーム
(NH4F、NH4HF2)、塩化アンモニユーム
(NH4Cl)、塩化水素化窒素をプラズマ中にて活
性化、分解してN2、NH3の安定な気体と弗素、
塩素のラジカルを発生させることを他の特徴とし
ている。
The present invention uses nitrogen halides, especially nitrogen fluoride (NF, NF 2 , Nitrogen chloride (NCl, NCl 2 , NCl 3 (hereinafter collectively referred to as NCl)) was also used. Furthermore, this NF,
Ammonium fluoride (NH 4 F, NH 4 HF 2 ), ammonium chloride (NH 4 Cl), and nitrogen chloride, which are hydrides of NCl, are activated and decomposed in plasma to stabilize N 2 and NH 3 gas and fluorine,
Another feature is that it generates chlorine radicals.

ここでは第1図に示すように縦型のエツチング
系を用いた。即ちエツチング容器1には試料台4
上にて試料3が載せられている。反応性気体は
NF3を9よりまた水素または不活性ガスを10よ
り導入した。
Here, a vertical etching system was used as shown in FIG. That is, the etching container 1 has a sample stage 4.
Sample 3 is placed on top. reactive gas is
NF 3 was introduced from 9 and hydrogen or an inert gas was introduced from 10.

活性化室5にて、マイクロ波発生源6にて
2.45GHz、1.35KW最大の容量を有するマグネト
ロンよりアラニユエイター7を経て反応性ガスを
活性にする。すると NF3→N*+3F 2N*→N2 F*+Si→SiF4 の反応により試料のエツチングされるべき物が単
結晶、多結晶、アモルフアスまたはセミアモルフ
アス構造の珪素においてはSiF4となつてエツチン
グされた。またこの被エツチング材は他の珪化物
例えば窒化珪素、酸化アルミニユーム、酸化珪素
等であつてもよい。
At activation chamber 5, at microwave source 6
The reactive gas is activated through the Alanuator 7 from a magnetron with a maximum capacity of 2.45GHz and 1.35KW. Then, due to the reaction of NF 3 →N * +3F 2N * →N 2 F * +Si→SiF 4 , the material to be etched in the sample becomes SiF 4 in the case of silicon with single crystal, polycrystal, amorphous or semi-amorphous structure. Etched. The material to be etched may also be other silicides such as silicon nitride, aluminum oxide, silicon oxide, etc.

反応容器の圧力は排気口のストツプバルブ11
ニードルバルブ12またはロータリーポンプ13
により調整した。
The pressure in the reaction vessel is controlled by the stop valve 11 at the exhaust port.
Needle valve 12 or rotary pump 13
Adjusted by.

基板または基板上の被膜を選択酸化するには、
フオトレジスト例えばOMR83(東京応化製)を
用いレジストパターンにより1μ中のスリツト開
口を設け、開口部のみをエツチングすればよい。
To selectively oxidize a substrate or a coating on a substrate,
Using a photoresist such as OMR83 (manufactured by Tokyo Ohka), a slit opening of 1 μm may be provided in a resist pattern, and only the opening portion may be etched.

エツチング時の容器の圧力は0.01〜0.5torrとし
たが、一般に0.05〜0.5torrがサイドエツチもなく
微細パターンを切ることができた。
The pressure in the container during etching was set at 0.01 to 0.5 torr, but generally a fine pattern could be cut at 0.05 to 0.5 torr without side etching.

試料は100〜−30℃の範囲にて制御した。特に
これに水素を1〜10%混入して酸化珪素をエツチ
ングする時、10〜−15℃に冷やしておく方がパタ
ーンの抜けがエツチング速度を2000Å/分〜300
Å/分と下げることができ、きれいであつた。
The sample was controlled in the range of 100 to -30°C. In particular, when etching silicon oxide by mixing 1 to 10% hydrogen, it is better to cool it to 10 to -15°C to prevent pattern omission and reduce the etching rate to 2000 Å/min to 300 Å/min.
It was possible to lower it to Å/min and it was clean.

またハロゲン元素のうち塩化窒素を用いるとア
ルミニユーム、モリブデン、タングステン等の金
属またはその化合物のエツチングを実施し得る。
この塩化窒素は塩化アンモニユームと塩素との反
応により容易に作り得る液体で、減圧下では容易
に気化し、プラズマエツチング気体として用いる
ことができる。この塩化窒素とアルミニユームと
の反応の場合の反応式を以下に示す。
Furthermore, if nitrogen chloride among the halogen elements is used, metals such as aluminum, molybdenum, tungsten, or their compounds can be etched.
Nitrogen chloride is a liquid that can be easily produced by the reaction of ammonium chloride and chlorine, and is easily vaporized under reduced pressure and can be used as a plasma etching gas. The reaction formula for this reaction between nitrogen chloride and aluminum is shown below.

NCl3→N*+3Cl* 2N*→N2 3Cl*+Al→AlCl3 さらにここに水素を0.1〜10%添加してパター
ンの切れをよくしてもよい。
NCl 3 →N * +3Cl * 2N * →N 2 3Cl * +Al → AlCl 3 Furthermore, 0.1 to 10% of hydrogen may be added here to improve the sharpness of the pattern.

かくして金属またはその化合物を塩化水素によ
り珪素の弗化窒素によるプラズマエツチングと同
様に切れのよいプラズマエツチングを行うことが
できた。
In this way, it was possible to perform sharp plasma etching of metals or their compounds using hydrogen chloride, similar to the plasma etching of silicon using nitrogen fluoride.

さらにまた、本発明においては活性化室に固体
例えば粉末のNH4F、NH4HF2をおき、同時に
He、Ar等の不活性ガスを10より導入し、マイ
クロ波によりこの弗化アンモニユームを活性化分
解し、弗素ラジカルを発生させてもよい。さらに
この発生したラジカルおよびこの副産物はHe、
Arにより試料3の上面に衝突しそれを選択的に
エツチングさせることができた。
Furthermore, in the present invention, solid, for example, powdered NH 4 F, NH 4 HF 2 is placed in the activation chamber, and at the same time
An inert gas such as He or Ar may be introduced from 10, and the ammonium fluoride may be activated and decomposed using microwaves to generate fluorine radicals. Furthermore, this generated radical and this byproduct are He,
The Ar bombarded the top surface of the sample 3, allowing it to be selectively etched.

これは塩化アンモニユームを用いても同様であ
る。
This also applies to ammonium chloride.

本発明は珪素またはその化合物のプラズマエツ
チングを示した。しかしGaAs、InP、BP等のプ
ラズマエツチングにおいても同様であり、さらに
これらの酸化物、窒化物に対しても適用できる。
The present invention has demonstrated plasma etching of silicon or its compounds. However, the same applies to plasma etching of GaAs, InP, BP, etc., and can also be applied to their oxides and nitrides.

またプラズマエツチング系はマイクロ波のみで
はなく13.56MHzの高周波を加えてプラズマ化し
てもよい。また、電界を印加する方式として容量
結合型、誘導結合型、平行平板型のエツチング技
術が適用され得る。
Furthermore, in the plasma etching system, not only microwaves but also high frequency waves of 13.56 MHz may be applied to generate plasma. Further, capacitive coupling type, inductive coupling type, and parallel plate type etching techniques can be applied as a method of applying an electric field.

またこの反応性気体をスパツタエツチングまた
は反応スパツタエツチングに用いてもよいことは
いうまでもない。
It goes without saying that this reactive gas may also be used for sputter etching or reactive sputter etching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いたプラズマエツチング系
の概要を示す。
FIG. 1 shows an overview of a plasma etching system using the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化窒素、塩化水素化窒素またはフツ化窒素
を主成分とする炭素および酸素を含まない反応性
気体に水素を1〜10%添加した混合気体をプラズ
マ化し、該プラズマ化した気体により珪素、珪素
化合物、金属、金属化合物を室温以下−30℃以上
の温度に保持して、エツチングすることを特徴と
するプラズマエツチング方法。
1 A mixed gas in which 1 to 10% hydrogen is added to a carbon- and oxygen-free reactive gas containing nitrogen chloride, hydrogen chloride, or nitrogen fluoride as a main component is turned into plasma, and the plasma-formed gas is used to generate silicon and silicon. A plasma etching method characterized by etching a compound, metal, or metal compound while keeping it at a temperature of -30°C or below room temperature.
JP12438480A 1980-09-08 1980-09-08 Plasma etching method Granted JPS5749234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12438480A JPS5749234A (en) 1980-09-08 1980-09-08 Plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12438480A JPS5749234A (en) 1980-09-08 1980-09-08 Plasma etching method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2291003A Division JP2564702B2 (en) 1990-10-29 1990-10-29 Plasma etching method

Publications (2)

Publication Number Publication Date
JPS5749234A JPS5749234A (en) 1982-03-23
JPH02850B2 true JPH02850B2 (en) 1990-01-09

Family

ID=14884067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12438480A Granted JPS5749234A (en) 1980-09-08 1980-09-08 Plasma etching method

Country Status (1)

Country Link
JP (1) JPS5749234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783396B2 (en) * 1990-02-27 1995-09-06 コクヨ株式会社 Mounting stanchions such as a telephone stand

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651915B2 (en) * 1982-10-30 1994-07-06 ダイキン工業株式会社 Etching method
JPS59214226A (en) * 1983-05-19 1984-12-04 Matsushita Electric Ind Co Ltd Etching method
JPS59219470A (en) * 1983-05-25 1984-12-10 Furukawa Electric Co Ltd:The Plasma surface treatment
JPS6020516A (en) * 1983-07-14 1985-02-01 Tokyo Denshi Kagaku Kabushiki Dry etching method of silicon nitride film
JPS61144026A (en) * 1984-12-17 1986-07-01 Toshiba Corp Dry etching method
JPH0834204B2 (en) * 1986-07-02 1996-03-29 ソニー株式会社 Dry etching method
JP2660244B2 (en) * 1986-12-16 1997-10-08 株式会社 半導体エネルギー研究所 Surface treatment method
FR2613381B1 (en) * 1987-04-01 1989-06-23 Cit Alcatel METHOD OF ATTACKING A SURFACE OF A ROOM IN INDIUM PHOSPHIDE
FR2616030A1 (en) * 1987-06-01 1988-12-02 Commissariat Energie Atomique PLASMA ETCHING OR DEPOSITION METHOD AND DEVICE FOR IMPLEMENTING THE METHOD
JP2939269B2 (en) * 1989-05-24 1999-08-25 富士通株式会社 Method for manufacturing semiconductor device
JPH0725171Y2 (en) * 1990-10-09 1995-06-07 高章 吉田 Suction hairdresser
JPH0652726B2 (en) * 1991-01-18 1994-07-06 株式会社日立製作所 Dry etching method
JP2509389B2 (en) * 1991-01-18 1996-06-19 株式会社日立製作所 Dry etching equipment
US6673262B1 (en) * 1997-12-18 2004-01-06 Central Glass Company, Limited Gas for removing deposit and removal method using same
JP5140608B2 (en) * 2009-01-16 2013-02-06 株式会社アルバック Vacuum processing apparatus and vacuum processing method
JP2015060934A (en) * 2013-09-18 2015-03-30 株式会社日立ハイテクノロジーズ Plasma processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783396B2 (en) * 1990-02-27 1995-09-06 コクヨ株式会社 Mounting stanchions such as a telephone stand

Also Published As

Publication number Publication date
JPS5749234A (en) 1982-03-23

Similar Documents

Publication Publication Date Title
JPH02850B2 (en)
US5413670A (en) Method for plasma etching or cleaning with diluted NF3
US5786276A (en) Selective plasma etching of silicon nitride in presence of silicon or silicon oxides using mixture of CH3F or CH2F2 and CF4 and O2
US20060252265A1 (en) Etching high-kappa dielectric materials with good high-kappa foot control and silicon recess control
US4264409A (en) Contamination-free selective reactive ion etching or polycrystalline silicon against silicon dioxide
KR100299488B1 (en) Sediment Removal Gas and Sediment Removal Method Using the Gas
WO1982003636A1 (en) Process for dry-etching aluminum or its alloy
KR20030051786A (en) Dry etching gas and method for dry etching
JPH0363807B2 (en)
JP3006048B2 (en) Dry etching method
JPH04191379A (en) Plasma treating device
JPH01220448A (en) Method of selective etching of nitride layer
JP3253215B2 (en) Etching method and etching apparatus
WO2003056617A1 (en) Etching method and plasma etching device
JPH11186229A (en) Dry etching and manufacture of semiconductor device
US4364793A (en) Method of etching silicon and polysilicon substrates
CN112635317A (en) Etching method, method for removing damaged layer, and storage medium
Flamm et al. Basic principles of plasma etching for silicon devices
EP0791669B1 (en) Method for etching inside of cvd reaction chamber
KR20210058954A (en) Etching method, etching residue removal method, and storage medium
KR20210019398A (en) Etching method and plasma processing apparatus
JP2564702B2 (en) Plasma etching method
JPH053178A (en) Manufacture of semiconductor device
JP3611729B2 (en) Etching gas
JPH0770530B2 (en) Etching method