JPH0283461A - Method for measuring insulation resistance compensated in effect of earth resistance - Google Patents

Method for measuring insulation resistance compensated in effect of earth resistance

Info

Publication number
JPH0283461A
JPH0283461A JP23696488A JP23696488A JPH0283461A JP H0283461 A JPH0283461 A JP H0283461A JP 23696488 A JP23696488 A JP 23696488A JP 23696488 A JP23696488 A JP 23696488A JP H0283461 A JPH0283461 A JP H0283461A
Authority
JP
Japan
Prior art keywords
frequency
output
voltage
insulation resistance
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23696488A
Other languages
Japanese (ja)
Other versions
JP2929197B2 (en
Inventor
Tatsuji Matsuno
松野 辰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP23696488A priority Critical patent/JP2929197B2/en
Publication of JPH0283461A publication Critical patent/JPH0283461A/en
Application granted granted Critical
Publication of JP2929197B2 publication Critical patent/JP2929197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To accurately measure insulation resistance from the leaked current of frequency (f) fed back to an earth line and the voltage of frequency (f) between an electric circuit and the earth by applying a measuring signal having the frequency (f) different from commercial frequency to the electric circuit. CONSTITUTION:A low frequency signal oscillator OSC of frequency (f) is connected to an earth line LE in series to apply a signal of voltage V. The output of a zero phase current transformer ZCT is passed through a filter FILT to obtain only a component of frequency f1 and said component is synchronously rectified through a synchronous detection circuit MUT1 to be inputted to an adder ADD. In the same way, the component of frequency f1 is synchronously detected in a phase different by 90 deg. by a synchronous detection circuit MUT2 to be inputted to a multiplier MULT4. The voltage between an electric circuit and the earth is detected by a high input impedance amplifier A and multiplied by the output of the oscillator OSC by a multiplier MULT3 to obtain phase difference which is, in turn, set to one input of the multiplier MULT4. The output of the multiplier MULT4 is set to the other input of the adder ADD. The output of the adder ADD becomes insulation resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電路等の絶縁抵抗を測定する方法。[Detailed description of the invention] (Industrial application field) The present invention is a method for measuring insulation resistance of electrical circuits, etc.

殊に対地浮遊容量大なる場合無視し得なくなる接地抵抗
の影響を補償した絶縁抵抗測定方法に関する。
In particular, the present invention relates to an insulation resistance measurement method that compensates for the influence of ground resistance, which cannot be ignored when stray capacitance to ground becomes large.

(従来技術) 従来、漏電等の早期発見の為には第2図に示す如き電路
の絶縁抵抗測定方法を用いるのが一般的であった。
(Prior Art) Conventionally, for early detection of electrical leakage, etc., it has been common to use a method of measuring the insulation resistance of electrical circuits as shown in FIG.

即ち、Zなろ負荷を有する受電変圧器Tの第2種接地線
LEy介して発振器O8Cから商用周波数と異なった周
波数f1なる測定用低周波信号電圧を電路L1及びL2
に印加し、前記接地線Lg?:貫通する変流器ZC’l
’によって絶縁抵抗R及び浮遊容量Cを介して帰還する
漏洩電流を検出する。
That is, a low frequency signal voltage for measurement having a frequency f1 different from the commercial frequency is transmitted from the oscillator O8C to the electric lines L1 and L2 through the second type grounding line LEy of the power receiving transformer T having a Z-shaped load.
and the ground wire Lg? : Penetrating current transformer ZC'l
' detects the leakage current that returns via the insulation resistance R and stray capacitance C.

この際前記変流器zCTの出力に含まれる周波数f1の
成分をフィルタFILTにて検出しその漏洩電流を例え
ば前記発振器O8Cの出力を用いて掛算器MULTで同
期検波して有効分電流を分離して得、これによって電路
の絶縁抵抗を測定するものであった。
At this time, a frequency f1 component included in the output of the current transformer zCT is detected by a filter FILT, and its leakage current is synchronously detected by a multiplier MULT using, for example, the output of the oscillator O8C to separate the effective component current. This was used to measure the insulation resistance of the electrical circuit.

その測定理論を第3図の等節回路を用いて更に説明する
ならば前記接地線LEの接地点Eを介して前記発掘器O
8Cに帰還する電流を工とすると であるから印加する測定信号電圧と同相の成分。
To further explain the measurement theory using the equinodal circuit shown in FIG. 3, the excavator O
If we consider the current that returns to 8C, it is a component that is in phase with the applied measurement signal voltage.

即ち上記(1)式右辺第1項に比例した値を同期検波等
の手法を用いて検出すれば絶縁抵抗Rに逆比例した測定
値を得るものである。
That is, if a value proportional to the first term on the right side of the above equation (1) is detected using a method such as synchronous detection, a measured value inversely proportional to the insulation resistance R can be obtained.

しかしながら上記(1)式からも明らかな如くこの測定
法は接地Ivl!LEに大地を介して帰還する電流を測
定するにも拘らず接地抵抗を無視しているので対地浮遊
容量Cが大きくなると接地抵抗の影響が現われ測定値が
現実の電路の絶縁抵抗とはなはだしくかけ離れたものと
なる。即ち正確な絶縁抵抗の測定が不可能になるという
欠陥があった。
However, as is clear from equation (1) above, this measurement method is effective at grounding Ivl! Although the current returning to the LE via the ground is measured, the grounding resistance is ignored, so when the stray capacitance C to ground becomes large, the influence of the grounding resistance appears, and the measured value becomes extremely different from the insulation resistance of the actual electrical circuit. Become something. That is, there was a defect that accurate measurement of insulation resistance was impossible.

(発明の目的) 本発明は上記欠点に鑑みなされたものであって、対地浮
遊容量Cの影響を受けることなく正確な絶縁抵抗測定を
行なう絶縁抵抗測定方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide an insulation resistance measuring method that accurately measures insulation resistance without being affected by the stray capacitance C to the ground.

(発明の概’ff) この目的を達成するために本発明の絶縁抵抗測定方法は
電路に商用周波数と異なる周波数f1なる低周波の測定
信号電圧を印加し、接地線に帰還する周波数ftの漏洩
電流中の有効分並びに無効分を検出すると共に上記電路
と大地間の周波数ftの電圧を検出し、該周波数f1の
電圧と上記測定信号電圧との位相差を得、前記有効分に
前記無効分と前記位相差とのff’に加算することによ
り絶縁抵抗を測定するよう手段を講する。
(Summary of the Invention 'ff) In order to achieve this object, the insulation resistance measuring method of the present invention applies a low frequency measurement signal voltage having a frequency f1 different from the commercial frequency to the electric line, and leaks a frequency ft which returns to the ground line. The effective component and the reactive component in the current are detected, and the voltage at the frequency ft between the electric circuit and the ground is detected, the phase difference between the voltage at the frequency f1 and the measurement signal voltage is obtained, and the reactive component is added to the effective component. Measures are taken to measure the insulation resistance by adding ff' between the phase difference and the phase difference.

(実施例) 以下本発明を図面に示す実施例とに基づいて詳細に説明
する。
(Example) The present invention will be described in detail below based on an example shown in the drawings.

先ず2本発明に係る絶縁抵抗測定方法を説明する前に、
その理解を助けろ為従来の手法の欠陥を少しく詳細に説
明する。
First, before explaining the insulation resistance measuring method according to the present invention,
To help you understand this, I will explain the deficiencies of the conventional method in some detail.

第4図は接地抵抗γを考慮した場合の等価回路図である
FIG. 4 is an equivalent circuit diagram in consideration of ground resistance γ.

この場合接地点Eを介して発掘器OSCに帰還する電流
を11としこれを I + = (A+ j B ) V   −(2)と
する。このとき →Rとすると であり(2)式で接地抵抗γを無視すれば前記(1)式
と同一になることはいうまでもない。
In this case, the current returned to the excavator OSC via the ground point E is 11, which is I + = (A+ j B ) V - (2). In this case, if →R, then it goes without saying that if the grounding resistance γ is ignored in equation (2), it becomes the same as equation (1).

さて、(3)式において、対地浮遊容量C=0のときA
は一工−となるが一般にR)γであるかR+γ らAは1/Rと考えてよく前記(2)式の同相分はV/
Rとなシ、同相分を検出することにより絶縁抵抗を測定
することができる。しかし浮遊容量Cが太きいときには
同相分を検出しても(3)式で示される如く正しい絶縁
抵抗を測定していないことになる。
Now, in equation (3), when the stray capacitance to ground C=0, A
is one step -, but generally R) γ or R + γ and A can be considered to be 1/R, and the in-phase component of the above equation (2) is V/
Insulation resistance can be measured by detecting the in-phase component of R. However, when the stray capacitance C is large, even if the in-phase component is detected, the correct insulation resistance will not be measured as shown by equation (3).

このような誤差が実際上どの程度になるかを以下に示す
The actual extent of such errors will be shown below.

一般にR)γであるから(3)式においてR+rと表し
得る。
Generally R) γ, so it can be expressed as R+r in formula (3).

ここで例えば ft=20Hz、C=−5zlF。Here, for example, ft=20Hz, C=-5zlF.

γ=100Ωとすると (ω1Cγ)=(2πX20X5X10  X100)
2主3.95 x 10−’ となり(ω1Cγ)(1である。
If γ = 100Ω, (ω1Cγ) = (2πX20X5X10 X100)
2 main 3.95 x 10-' (ω1Cγ) (1).

したがって(4)式は とみなしてよい。Therefore, equation (4) is It can be considered as

従ッテ9例えばfl=20Hz 、C=5μF、R=1
00にΩ、γ=100Ωの場合前記(5)式の()内は
1+(ω1C)■tγ=4.95 となり、同相分から検出されるべき絶縁抵抗値100 
KΩは 100にΩ/4.95 =20.2 KΩ と
して測定されてしまうことになる。
For example, fl=20Hz, C=5μF, R=1
00Ω and γ = 100Ω, the value in parentheses in the above equation (5) becomes 1 + (ω1C) tγ = 4.95, and the insulation resistance value to be detected from the in-phase component is 100Ω.
KΩ will be measured as 100Ω/4.95 = 20.2 KΩ.

斯くの如く、従来の接tlt1.抵抗を無視した絶縁抵
抗測定方法では対地浮遊容量が大きい場合極めて測定誤
差が大きくなる欠陥を有すること前述の通)である。更
に対地浮遊容量には一般電子機器の電源回路に付加され
るノイズフィルタのキャパシタンスも含まれるので今後
対地浮遊客引は大きくなっていく傾向にあるから従来の
方法ではますます正確な測定結果が得られないことにな
る。
As such, the conventional contact tlt1. As mentioned above, an insulation resistance measurement method that ignores resistance has the drawback that the measurement error becomes extremely large when the stray capacitance to ground is large. Furthermore, the stray capacitance to the ground includes the capacitance of noise filters added to the power supply circuits of general electronic equipment, so the stray capacitance to the ground is likely to increase in the future, so conventional methods cannot provide increasingly accurate measurement results. You will not be able to do so.

この問題を解決する為本発明に於いては以下の如き手法
欠とろ。
In order to solve this problem, the following method is required in the present invention.

即ち2周波数flの印加信号によって得られる同相分’
gig1  とすると前記(2)弐及び(5)式から がイQられる。
In other words, the in-phase component' obtained by the applied signals of two frequencies fl
If gig1 is set, then equations (2) and (5) above are expressed as follows.

一方、(3)式から印加信号と90°位相のずれた成分
Bは であり、又、一般にR>Tであるため と表わされ、更には(ωI Cr ) < 1  であ
るのでB≧ω C・・・・・・・・ (力 となるので接地抵抗rの影響は実用上はとんど受けない
ことになる。
On the other hand, from equation (3), the component B that is 90° out of phase with the applied signal is , and it can be expressed that generally R>T, and furthermore, since (ωI Cr ) < 1, B≧ω C... (Since it becomes a force, the influence of grounding resistance r is hardly affected in practice.

従ってf=なろ印加信号によって得られろ無効分ig2
とすれば(7)式から ig、=:ω1cv    ・・・・・・・・・(8)
となる。
Therefore, f = the invalid component ig2 obtained by the applied signal
Then, from equation (7), ig, =:ω1cv (8)
becomes.

ところで電路と大地間に存在する周波数ftの電圧Eけ 12=V−11γ  ・・・・・・・・・(9)であり
、 (61、+81式から漏洩電流工1は■ l1=1−+(ω1C)γV十」ω、Cv  ・・・・
・・・・・ (ト)と弄されるから(転)式ヲ(9)式
に代入するとE=(1−−−(ω1Cγ) −Jω1C
γ)■ ・・・・・・・・・ (6)となり、r/R(
1、(鮨Cγ)(1であるのでE=(1−jω1Cγ)
■  ・・・・・・・・・(2)が得られろ。電路と大
地間に存在する周波数flの電圧Eと測定信号電圧■と
の位相差ψは−ψ=−ω、Cr  であり ω、Cr<
1  であるためψ=−ωICγ   ・・・・・・・
・・(至)となる。
By the way, the voltage of frequency ft existing between the electric circuit and the ground Eke12=V-11γ (9), (From equations 61 and +81, the leakage current factor 1 is ■ l1=1- +(ω1C)γV0”ω, Cv...
・・・・・・ Since (g) is confused, substituting the (conversion) equation into equation (9) gives E=(1−−−(ω1Cγ) −Jω1C
γ)■ ・・・・・・・・・ (6), and r/R(
1, (Sushi Cγ) (1, so E = (1-jω1Cγ)
■ ・・・・・・・・・(2) should be obtained. The phase difference ψ between the voltage E of frequency fl existing between the electric circuit and the ground and the measurement signal voltage ■ is -ψ=-ω, Cr, and ω, Cr<
1, so ψ=-ωICγ...
... (to).

したがって、(6)式のigに(8)式の1g2と(至
)式のψの積を加算すると ■ 。  °°゛°°°゛(2) となるので接地抵抗γの影響なく絶縁抵抗を測定しうろ
ことが分かる。
Therefore, if we add the product of 1g2 in equation (8) and ψ in equation (to) to ig in equation (6), we get ■. °°゛°°°゛(2) Therefore, it can be seen that the insulation resistance can be measured without the influence of the grounding resistance γ.

上述したような理論に基づいて測定を実際に行なうため
には以下の如くすればよい。
In order to actually carry out measurements based on the above-mentioned theory, the following steps can be taken.

第1図は本発明に係る絶縁抵抗測定方法を実現する為の
回路の一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a circuit for realizing the insulation resistance measuring method according to the present invention.

即ち、接地線Lr、に周波数flなろ低周波信号発生用
の発振器O8Cを直列に接続して、電圧■なろ電圧を印
加する。−万前記零相変流器ZCT出力を周波数fl成
分を検出するフィルタFILTに印加して、商用周波成
分と分離し該フィルタFIL’l’のm力を第1の同期
検波回路M[JLTlの一万の入力端に入力せしめろと
共に前記発振器O8Cの出力を第1の同期検波回路MU
L’ptの第2の入力端に入力せしめる。かくして第1
の同期検波回路MULTIの出力を第1のローパスフィ
ルタLPF’rに印加し直流分のみを得れば、前述の(
6)式に和尚する有効分ig1が得られる。
That is, an oscillator O8C for generating a low frequency signal having a frequency of fl is connected in series to the ground line Lr, and a voltage of about 1 is applied. - The output of the zero-phase current transformer ZCT is applied to the filter FILT that detects the frequency fl component, and is separated from the commercial frequency component. The output of the oscillator O8C is inputted to the input terminal of the first synchronous detection circuit MU.
It is input to the second input terminal of L'pt. Thus the first
By applying the output of the synchronous detection circuit MULTI to the first low-pass filter LPF'r and obtaining only the DC component, the above (
6) An effective component ig1 is obtained that satisfies the equation.

一方、前記バンドパスフィルタBPFの出力を分岐して
第2の同期検波回路MULT2の一万の入力端に入力せ
しめると共に前記発振器O8Cの出力な移相器PSに印
加して90°位相を推移せしめその出力を第2の同期検
波回路MLIL’l’tの第2の入力端に入力せしめろ
。かくして第2の同期検波回路MULT2の出力を第2
のローパスフィルpLPFzに印加し直流分のみ乞得れ
ば前述の(8)式に相当する無効分ig2が得られろ。
On the other hand, the output of the band pass filter BPF is branched and inputted to the input terminal of the second synchronous detection circuit MULT2, and also applied to the phase shifter PS, which is the output of the oscillator O8C, to shift the phase by 90°. Input the output to the second input terminal of the second synchronous detection circuit MLIL'lt. In this way, the output of the second synchronous detection circuit MULT2 is
If only the DC component is obtained by applying it to the low-pass filter pLPFz, the reactive component ig2 corresponding to the above-mentioned equation (8) can be obtained.

更に接地(11i1電路L2と大地E8との間の電圧E
を高入力インピーダンス増幅器Aで検出し。
Furthermore, the voltage E between the ground (11i1 electric circuit L2 and the earth E8)
is detected by high input impedance amplifier A.

その出力を位相差検出のためのかけ算器MUL’l’3
の一万の入力端に印加し、他方の入力端には発揚器O8
C出力を印加する。
The output is multiplier MUL'l'3 for phase difference detection.
10,000 input terminal, and the other input terminal is an oscillator O8.
Apply C output.

斯くして前記かけ算器MTJL’l’sの出力をo −
バスフィルタLPFaに加えろことにより得ろ直流分は
日式に相当する位相差ψとなる。これは(2)式からも
明らかなように電圧eの振幅は〔1+(ω1Cγ)2J
2T’−1であるから電路と大地間に存在する周波数f
lの電圧eと測定用低周波信号電圧■との大きさは変わ
らないが位相のみψだけシフトしているので1発揚器O
8C出力と高入力インピーダンス増幅器器Aの出力に得
られる周波数f1の電圧eとをかけ算器MLIL’l’
sに印加することにより位相差ψを得るものである。
Thus, the output of the multiplier MTJL'l's becomes o −
The DC component obtained by adding it to the bus filter LPFa becomes a phase difference ψ corresponding to the Japanese type. As is clear from equation (2), the amplitude of voltage e is [1+(ω1Cγ)2J
2T'-1, so the frequency f that exists between the electric line and the ground
The magnitude of the voltage e of l and the low frequency signal voltage for measurement ■ is the same, but only the phase is shifted by ψ.
8C output and the voltage e of frequency f1 obtained at the output of high input impedance amplifier A, multiplier MLIL'l'
The phase difference ψ is obtained by applying it to s.

mKローパスフィルタLPFsの出力をかけ算器MLJ
LT 4の一入力端に印加し、他の入力端にはローパス
フィルタLPFzの出力を印加すれば該MULT4の出
力は1g2Xψとなシ該MTJLT4出力を加算器AD
Dに印加すると共に更に該加算6ADD Kローパスフ
ィルタLPF 1の出力を加えることにより加算器AD
Dの出力0[JTはOLIT=ig  ”g2ψ となるので絶縁抵抗を測定することが可能となる。
The output of the mK low-pass filter LPFs is the multiplier MLJ.
If the voltage is applied to one input terminal of LT4 and the output of the low-pass filter LPFz is applied to the other input terminal, the output of the MULT4 becomes 1g2Xψ.The output of the MTJLT4 is applied to the adder AD.
By adding the output of the adder 6ADD K low-pass filter LPF1 to
Since the output of D is 0 [JT is OLIT=ig ``g2ψ'', the insulation resistance can be measured.

同、実施例に於いては説明簡単の為単相2線の場合を示
したが本発明はこれに限定する必然性は全くなく一端接
地の単相3線或は3相3線の場合であっても同一の原理
に基づいて実施可能なことは明らかであろう。
Similarly, in the embodiment, a single-phase, two-wire case is shown for ease of explanation, but the present invention is not necessarily limited to this, and the present invention may be applied to a single-phase, three-wire case with one end grounded, or a three-phase, three-wire case. It will be clear that any method can be implemented based on the same principle.

なお、上記実施例においては零相電流の検出に零相変流
器を用いているが接地線Lgを切断しこれに低抵抗を直
列接続しこの抵抗の両端電圧をもって零相電流を検出し
てもよい。また電路への低周波電圧の印加に当っては接
地線LEを切断してこれに発掘器を直列に挿入接続する
のではなく、接地線を発振器出力のトランスを貫通させ
る等してもよい。高入力インピーダンス増幅器Aの出力
に大きな商用周波成分が含まれるときは、商用周波成分
除去フィルタを増幅器Aと同期検波器MLILT8の一
万の大力間に入れろことがのぞましい。
In the above embodiment, a zero-sequence current transformer is used to detect the zero-sequence current, but it is also possible to cut the grounding wire Lg, connect a low resistance in series with it, and detect the zero-sequence current using the voltage across this resistance. Good too. Furthermore, when applying a low frequency voltage to the electric circuit, instead of cutting the ground line LE and inserting and connecting the excavator in series thereto, the ground line may be passed through an oscillator output transformer. When the output of the high input impedance amplifier A contains a large commercial frequency component, it is desirable to insert a commercial frequency component removal filter between the amplifier A and the synchronous detector MLILT8.

(発明の効果) 本発明は以上説明した如き手法によって電路の絶縁抵抗
を測定するものであるから接地抵抗の影響を完全にキャ
ンセルすることが可能となるのみならず発掘器等の出力
抵抗の影響をも接地抵抗に加味して補償するので対地浮
遊容量が大きい電路等の絶縁抵抗を正確に測定する上で
著しい効果を発揮する。
(Effects of the Invention) Since the present invention measures the insulation resistance of an electric circuit using the method described above, it is possible to completely cancel the influence of ground resistance as well as the influence of output resistance of excavators, etc. Since it also takes into account the grounding resistance and compensates for it, it is extremely effective in accurately measuring the insulation resistance of electrical circuits with large stray capacitances to the ground.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る絶縁抵抗測定方法を実現する為の
一実施例を示すブロック図、第2図は従来の絶縁抵抗測
定方法を説明する図、第3図は等価回路図、第4図は接
地抵抗を考慮した場合の等価回路図である。 T・・・・・・・・変圧器、    Ll及びL2・・
・・・・・・・電路、    LE・・・・・・・・接
地g 、    osc・・・・・・・・発録器、  
  LPFl、2.a・・・・・・・・ローパスフィル
タ、    ADD・・・・・・・・・加jl[。 F工LT・・・・・・・・・フィルタ、     PS
・・・・・・・・・90°移相6.    A−・・・
・・・・・高入力インピーダンス増幅器。
FIG. 1 is a block diagram showing an embodiment of the insulation resistance measuring method according to the present invention, FIG. 2 is a diagram explaining a conventional insulation resistance measuring method, FIG. 3 is an equivalent circuit diagram, and FIG. The figure is an equivalent circuit diagram when grounding resistance is considered. T......Transformer, Ll and L2...
......Electric circuit, LE......Grounding g, osc......Emitter,
LPFl, 2. a・・・・・・Low pass filter, ADD・・・・・・Additional jl[. F Engineering LT・・・・・・Filter, PS
...90° phase shift 6. A-...
...High input impedance amplifier.

Claims (1)

【特許請求の範囲】[Claims] 電路に商用周波数と異なる周波数f_1なる低周波の測
定信号電圧を印加し、接地線に帰還する周波数f_1の
漏洩電流中の有効分並びに無効分を検出すると共に上記
電路と大地間の周波数f_1の電圧を検出する絶縁抵抗
測定方法に於いて、前記電路と大地間の電圧と上記測定
信号電圧との位相差を検出し、前記有効分に前記無効分
と前記位相差との積を加算することにより絶縁抵抗を測
定することを特徴とした接地抵抗の影響を補償した絶縁
抵抗測定方法。
A low-frequency measurement signal voltage with a frequency f_1 different from the commercial frequency is applied to the electric line, and the effective and reactive components of the leakage current at the frequency f_1 that returns to the ground line are detected, and the voltage at the frequency f_1 between the electric line and the earth is detected. In the insulation resistance measuring method for detecting the voltage between the electric circuit and the ground and the measurement signal voltage, the phase difference between the voltage and the measurement signal voltage is detected, and the product of the reactive component and the phase difference is added to the effective component. An insulation resistance measurement method that compensates for the influence of grounding resistance, which is characterized by measuring insulation resistance.
JP23696488A 1988-09-21 1988-09-21 Insulation resistance measurement method that compensates for the effect of ground resistance Expired - Fee Related JP2929197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23696488A JP2929197B2 (en) 1988-09-21 1988-09-21 Insulation resistance measurement method that compensates for the effect of ground resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23696488A JP2929197B2 (en) 1988-09-21 1988-09-21 Insulation resistance measurement method that compensates for the effect of ground resistance

Publications (2)

Publication Number Publication Date
JPH0283461A true JPH0283461A (en) 1990-03-23
JP2929197B2 JP2929197B2 (en) 1999-08-03

Family

ID=17008376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23696488A Expired - Fee Related JP2929197B2 (en) 1988-09-21 1988-09-21 Insulation resistance measurement method that compensates for the effect of ground resistance

Country Status (1)

Country Link
JP (1) JP2929197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006375A1 (en) 2007-01-31 2008-08-21 Fuji Jukogyo Kabushiki Kaisha monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006375A1 (en) 2007-01-31 2008-08-21 Fuji Jukogyo Kabushiki Kaisha monitoring system

Also Published As

Publication number Publication date
JP2929197B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US4638242A (en) Method and device for measuring insulation deterioration of electric line
US4560922A (en) Method for determining the direction of the origin of a disturbance affecting an element of an electrical energy transfer network
JPH0283461A (en) Method for measuring insulation resistance compensated in effect of earth resistance
JPH01143971A (en) Method for measuring insulation resistance
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JPH0458582B2 (en)
JP2764584B2 (en) Measurement method of insulation resistance of branch circuit
JP2750705B2 (en) Insulation resistance measurement method
JPH079447B2 (en) Insulation resistance measuring method and device
JP2896572B2 (en) Simple insulation resistance measurement method
JPH0354311B2 (en)
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JP2614449B2 (en) Insulation resistance measurement method compensated for ground resistance
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPS5815166A (en) Insulation failure detecting method
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JPS5810668A (en) Detecting method for place of imperfect insulation
JPH0352831B2 (en)
JP2754011B2 (en) Insulation resistance measurement method with phase compensation
JPS61239170A (en) Insulation resistance measuring instrument for hot-line cable way
JPS6146113A (en) Insulating resistance measuring method
JPS60165559A (en) Measuring method of insulation resistance and ground stray capacity

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees