JP2754011B2 - Insulation resistance measurement method with phase compensation - Google Patents

Insulation resistance measurement method with phase compensation

Info

Publication number
JP2754011B2
JP2754011B2 JP14498288A JP14498288A JP2754011B2 JP 2754011 B2 JP2754011 B2 JP 2754011B2 JP 14498288 A JP14498288 A JP 14498288A JP 14498288 A JP14498288 A JP 14498288A JP 2754011 B2 JP2754011 B2 JP 2754011B2
Authority
JP
Japan
Prior art keywords
transformer
insulation resistance
output
current transformer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14498288A
Other languages
Japanese (ja)
Other versions
JPH01313769A (en
Inventor
辰治 松野
俊二 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP14498288A priority Critical patent/JP2754011B2/en
Publication of JPH01313769A publication Critical patent/JPH01313769A/en
Application granted granted Critical
Publication of JP2754011B2 publication Critical patent/JP2754011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電路等の絶縁抵抗測定装置回路に於ける回路
定数の変動による位相推移を補償する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for compensating for a phase shift due to a change in a circuit constant in a circuit for measuring insulation resistance of an electric circuit or the like.

(従来技術) 電気設備に安定した電力供給をはかるため,電路と大
地間の絶縁抵抗を監視し,絶縁抵抗の劣化に際しては,
いち早くその原因を察知して停電,火災等の事故に至ら
ないよう所要の手段が講じられるのが一般的であって,
その為に従来から第2図に示す如き装置を用い以下のよ
うな絶縁抵抗測定を行う方法が採用されている。
(Prior art) In order to stably supply power to electrical equipment, the insulation resistance between the electric circuit and the ground is monitored.
In general, necessary measures are taken so that the cause can be quickly detected and an accident such as a power outage or fire can be prevented.
For this purpose, a method of measuring the insulation resistance as described below using an apparatus as shown in FIG. 2 has been conventionally employed.

即ち,同図に於いてZなる負荷を有する受電トランス
の第2種工事の接地線LE,もしくは直接に電路1,2に商
用周波数とは異なる周波数1の低周波発振器OSCを連続
したトランスOTを結合して,電路1,2に測定用低周波信
号電圧を印加するとともに,前記接地線LEもしくは電
路1,2を貫通せしめた変流器ZCTによって電路と大地間に
存在する絶縁抵抗R0及び対地静電容量C0を介して前記
接地線に帰還する前記測定用低周波信号電圧による漏洩
電流を検出し,これを増幅器AMPで増幅したのち,フィ
ルタFILによって周波数1の成分のみを選択して,これ
を例えば電路と大地間に印加されている前記測定用低周
波信号電圧もしくは前記発振器OSCの出力から得た同期
検波電圧を用いて同期検波器MULTで同期検波して周波数
1の漏洩電流成分中の有効分OUT(即ち印加測定用低周
波電圧と同相の成分)を検出することにより電路の絶縁
抵抗R0に逆比例した値を測定していた。
That is, in the same figure, the transformer OT in which the ground line L E of the second type construction of the power receiving transformer having a load of Z or the low frequency oscillator OSC of the frequency 1 different from the commercial frequency is directly connected to the electric lines 1 and 2 continuously. bonded to the, applies a low-frequency signal voltage measurement paths 1 and 2, the insulation resistance R existing between earth and the electrical path through the through brought the current transformer ZCT the ground line L E or path 2 0 and detects a leakage current due to the measuring low frequency signal voltage fed back to the ground line via the earth capacity C 0, then amplified by the amplifier AMP so, select only a component of frequency 1 by a filter FIL Then, this is synchronously detected by the synchronous detector MULT using, for example, the low-frequency signal voltage for measurement applied between the electric circuit and the ground or the synchronous detection voltage obtained from the output of the oscillator OSC, and the frequency is detected.
A value inversely proportional to the insulation resistance R0 of the electric circuit was measured by detecting an effective component OUT (that is, a component having the same phase as the applied measurement low-frequency voltage) in the leakage current component of No. 1 .

しかしながら,上記同期検波を正しく実行するに当っ
て零相変流器ZCT→増幅器AMP→フィルタFILの系の還環
条件,経年変化等による位相特性の変動を正しく補償し
ないと,同期検波器MULTの出力には周波数1の漏洩電
流中の印加電圧と同相の成分が検出できず,測定誤差が
著しく発生するという欠点があった。
However, in order to properly execute the synchronous detection, if the phase characteristic fluctuations due to the zero-phase current transformer ZCT → amplifier AMP → filter FIL system return condition, aging, etc. are not correctly compensated, the synchronous detector MULT The output has the disadvantage that components in phase with the applied voltage in the leakage current at frequency 1 cannot be detected, and measurement errors occur significantly.

(発明の目的) 本発明は上述したような従来の絶縁抵抗測定方法を実
現するための前記の位相特性の変動による影響を補償し
正確な絶縁抵抗の測定を可能にし,特にポータブル型の
測定器に適した方法を提供することを目的とする。
(Object of the Invention) The present invention compensates for the influence of the above-mentioned fluctuation of the phase characteristic to realize the above-mentioned conventional insulation resistance measuring method, and enables accurate measurement of the insulation resistance. The purpose is to provide a method suitable for:

(発明の概要) 本発明はこの目的を達成しつつ電路の絶縁抵抗を測定
するために,零相変流器を電路に結合する前に,零相変
流器に電路に印加する周波数1の低周波電圧を所定値
のコンデンサで終端した導線を貫通もしくは結合すると
共に,このときの零相変流器出力を増幅したのち周波数
1の成分をフィルタを介して得,更にこの電流を上記
低周波電圧から得た電圧を用いて同期検波することによ
り得られる第1の出力値x1と,次に零相変流器を電路
に結合し必要に応じて上記コンデンサ終端を解放したと
きの該零相変流器出力に含まれる低周波電圧による漏洩
電流を上記同期検波電圧で同期検波することによって得
られる第2の出力x2と,上記漏洩電流を上記同期検波
電圧より90°移相した電圧で同期検波することにより得
られる第3の出力値x3を用いて絶縁抵抗を算出するよ
う構成する。
Summary of the Invention The present invention for measuring the electrical path of the insulation resistance while achieving this purpose, prior to coupling a zero-phase current transformer path, frequency 1 applied to the path to the ZCT A low-frequency voltage is passed or connected through a conductor terminated with a capacitor of a specified value, and the output of the zero-phase current transformer at this time is amplified.
The first output value x 1 obtained by obtaining the component 1 through a filter and further synchronously detecting this current using the voltage obtained from the low frequency voltage, and then the zero-phase current transformer And a second output x 2 obtained by synchronously detecting, with the synchronous detection voltage, a leakage current due to a low frequency voltage included in the output of the zero-phase current transformer when the capacitor terminal is released as required. When, the leakage current is configured to calculate the insulation resistance using the third output value x 3 obtained by synchronous detection at a voltage obtained by the 90 ° phase from the synchronous detection voltage.

また上記方法に若干の変更を加えることにより上記所
定値のコンデンサの代りに所定値の抵抗を用いることも
できる。また零相変流器を電路に結合する前の上記第1
の同期検波器出力が零に近づくように同期検波電圧の位
相を調整することにより同様に上記位相変動を補償する
よう変形することも可能である。
Also, by slightly modifying the above method, a resistor having a predetermined value can be used in place of the capacitor having the predetermined value. In addition, the first phase before the zero-phase current transformer is connected to the electric circuit.
By adjusting the phase of the synchronous detection voltage so that the output of the synchronous detector approaches zero, it is possible to similarly modify the phase fluctuation to compensate for the above-mentioned phase fluctuation.

(実施例) 以下,図示した実施例に基づいて本発明を詳細に説明
する。
(Examples) Hereinafter, the present invention will be described in detail based on illustrated examples.

第1図は本発明の方法を実施するために用いる装置の
第一の実施例を示す構成図である。なお第2図と同一の
記号は同一の意味をもつものとする。
FIG. 1 is a block diagram showing a first embodiment of an apparatus used to carry out the method of the present invention. The same symbols as those in FIG. 2 have the same meaning.

即ち,第1図に於いてT,12,及びLEは受電トラン
スとその低圧電路及び該電路の一方2と大地との間に接
続された接地線であり,前記電路12には負荷Zが接続
され,電路12と大地間との総合絶縁抵抗R0と総合対
地静電容量C0とが存在する。
Ie, T In Figure 1, 1, 2, and L E are connected to ground lines between the power receiving transformer and one 2 and the ground of the low-pressure path and electrical path, the path 1, 2 Is connected to a load Z, and has a total insulation resistance R 0 between the electric circuits 1 and 2 and the ground and a total ground capacitance C 0 .

かかる電路において,前記接地線LE又は電路12
注入トランスOTを結合すると共に,注入トランスOTには
商用周波数とは異なる周波数1なる低周波発振器OSCを
接続することにより電路と大地間に例えばVsinω1tな
る電圧を印加する。又,零相変流器ZCTの出力を増幅器A
MPに印加して増幅しその出力を周波数1の成分を通過
するフィルタFILを介して同期検波器MULT1,MULT2に入力
せしめ,該同期検波器MULT1の他の入力端には発振器OSC
の出力を,また同期検波器MULT2の他の入力端には発振
器出力を90°移相器を介して印加する。更に同期検波器
MULT1,MULT2の出力を演算回路MPに印加するとその出力O
UT1には絶縁抵抗値に逆比例した値が出力される。
In such path, the coupling injection transformer OT to the ground line L E or path 1, 2, the injection transformer OT between paths and ground by connecting the low-frequency oscillator OSC comprising different frequencies 1 and commercial frequency For example, a voltage of Vsinω 1 t is applied. The output of the zero-phase current transformer ZCT is
Is applied to the MP amplifies allowed inputs its output to the synchronous detector MULT 1, MULT 2 via the filter FIL which passes the components of the frequency 1, the other input terminal of the synchronous detector MULT 1 oscillator OSC
The oscillator output is applied to the other input terminal of the synchronous detector MULT 2 through a 90 ° phase shifter. Further synchronous detector
When the output of MULT 1 and MULT 2 is applied to the arithmetic circuit MP, the output O
UT 1 outputs a value that is inversely proportional to the insulation resistance value.

さて,この回路構成によって絶縁抵抗を測定するには
測定に先立ってまず零相変流器ZCTと注入トランスOTと
を互いに交叉するか又は導線Lpを両者に貫通するコンデ
ンサCを介してループ状に接続する。
In order to measure the insulation resistance by this circuit configuration, first, before the measurement, the zero-phase current transformer ZCT and the injection transformer OT cross each other or form a loop through the capacitor C which passes through the conductor Lp. Connecting.

例えば後者の如く導線LpとコンデンサCとによって注
入トランスOTと零相変流器ZCTとを結合する場合を考え
ると,前記導線Lpに流れる電流i1は電路1の印加電圧が
Vsinω1tであるから i1=ω1CVcosω1t ……(1) となる。
For example, considering the case where the injection transformer OT and the zero-phase-sequence current transformer ZCT are coupled by the conductor Lp and the capacitor C as in the latter case, the current i 1 flowing through the conductor Lp is the voltage applied to the electric circuit 1.
Because it is Vsinω 1 t i 1 = ω 1 CVcosω 1 t ...... is (1).

今,零相変流器ZCT→増幅器AMP→フィルタFILの系の
周波数1における位相シフトをθとすれば,フィルタF
ILの出力i1′は i1′=ω1CVcos(ω1t−θ) ……(2) 表わせる。又,発振器出力をesinω1tとすれば,この
ときの同期検波器MULT1の出力x1 次に,コンデンサCを開放し,零相変流器ZCTを破線
で示した如く電路12にクランプしたときのフィルタ出
力i2となる。(もし開放しないとき(4)式のC0はC0+C
となる。)このときの同期検波器MULT1の出力x2となる。この出力x2を一般に有効成分と称する。
Now, assuming that the phase shift at frequency 1 of the system of the zero-phase current transformer ZCT → the amplifier AMP → the filter FIL is θ, the filter F
The IL output i 1 ′ can be expressed as i 1 ′ = ω 1 CVcos (ω 1 t−θ) (2) If the oscillator output is esin ω 1 t, the output x 1 of the synchronous detector MULT 1 at this time is Next, when the capacitor C is opened and the zero-phase current transformer ZCT is clamped to the electric circuits 1 and 2 as shown by the broken lines, the filter output i 2 becomes Becomes (If when no opening (4) C 0 of equation C 0 + C
Becomes ) At this time, the output x 2 of the synchronous detector MULT 1 is Becomes The output x 2 is commonly referred to as the active ingredient.

又,同期検波器MULT2の他の入力単に印加される90°
移相器の出力はecosω1tとなるから同期検波器MULT2
の出力x3となる。この出力x2を一般に無効成分と称する。そし
て、上記同期検波回路MULT1,MULT2の出力x1,x2,x3は演
算回路に入力され以下の演算を行う。
The other input of the synchronous detector MULT 2 is simply applied 90 °.
Since the output of the phase shifter is ecosω 1 t, the synchronous detector MULT 2
The output x 3 of Becomes The output x 2 is commonly referred to as reactive component. The outputs x 1 , x 2 , x 3 of the synchronous detection circuits MULT 1 , MULT 2 are input to an arithmetic circuit and perform the following arithmetic operations.

先ず(3)式においてω1CVeは定数値であるから上記
出力x1を用いて と変形し,|θ|<π/2のとき が算出される。次に前記出力x2,x3と(5),(6)式
を用いて となる。即ち(9)式の演算を行なうことにより電圧V,
eが一定なら位相シフトθに関係なく絶縁抵抗R0を測定
しうることが分る。
First (3) ω 1 CVe In formula using the output x 1 from a constant value And | θ | <π / 2 Is calculated. Next, using the outputs x 2 and x 3 and equations (5) and (6), Becomes That is, the voltage V,
It can be seen that if e is constant, the insulation resistance R 0 can be measured regardless of the phase shift θ.

上記実施例では零相変流器ZCTを電路に結合する前
に,導線LpをコンデンサCで終端したが,コンデンサC
の代わりに抵抗Rを用いるとこのときのフィルタFILの
出力i1″は と表すことができる。
In the above embodiment, the conductor Lp was terminated with the capacitor C before the zero-phase current transformer ZCT was connected to the electric circuit.
When a resistor R is used in place of the above, the output i 1 ″ of the filter FIL at this time becomes It can be expressed as.

このときの同期検波器MULT2の出力X4ここで、周知の式 より、上記X4となる。(11)式からsinθは、 となり、このsinθと周知の式cos2θ+sin2θ=1か
ら、 が得られる。
At this time, the output X 4 of the synchronous detector MULT 2 is Where the well-known formula Thus, the above X 4 Becomes From equation (11), sinθ is From this sin θ and the well-known formula cos 2 θ + sin 2 θ = 1, Is obtained.

次に、抵抗Rを開放し、零相変流器ZCTを電路1、2
又は接地線LEにクランプした時のフィルタFILの出力は
(4)式のi2となる。よって、MULT1の出力X2と、MUL
T2の出力X3はそれぞれ(5)、(6)式となり、この
2、X3と(12)、(13)式のsinθとcosθとを用いて
3cosθ−X3sinθの演算を行うと と(9)式と同様の結果となり、この場合も絶縁抵抗R
0を測定し得ることが分かる。
Next, the resistor R is opened, and the zero-phase current transformer ZCT is connected to the electric circuits 1, 2
Or the output of the filter FIL when clamped to the ground line L E is the i 2 (4) below. Therefore, an output X 2 of MULT 1, MUL
The output X 3 of T 2 is given by equations (5) and (6), respectively, and X 3 cos θ−X 3 sin θ is calculated using sin θ and cos θ in equations X 2 , X 3 and (12) and (13). When you do And equation (9) are obtained, and also in this case, the insulation resistance R
It can be seen that 0 can be measured.

尚、(8)式にて|θ|<π/2の条件を付加したがθ
の範囲がフィルタの特性等からこれを満たさないときに
は発振器OSCの出力に移相器を追加し,これを介して同
期検波電圧を発生すれば,この条件が解決されることは
明らかであり,位相変動が|θ|<π/2の範囲をこえる
ことは実際にさけられるので問題はない。
Note that the condition of | θ | <π / 2 was added in equation (8),
It is clear that this condition can be solved by adding a phase shifter to the output of the oscillator OSC and generating a synchronous detection voltage through this when the range of does not satisfy this due to the characteristics of the filter, etc. It is not a problem since the fluctuations exceeding the range of | θ | <π / 2 are actually avoided.

又更に,上記同期検波出力x1((3)式),又はx4
((11)式)が零となるように発振器出力に付加した可
変移相器(図示してない)を用いて自動位相調整するこ
とも可能である。
Further, the synchronous detection output x 1 (formula (3)) or x 4
It is also possible to perform automatic phase adjustment using a variable phase shifter (not shown) added to the oscillator output so that (Equation (11)) becomes zero.

この場合同期検波器出力x2はθ=0のときVe/2R0
なるため直接絶縁抵抗の測定が可能となる。なお,上記
の如くx1又はx4を零となるように可変移相器で調整す
るのではなく,ある程度x1又はx4が小さくなるように
調整しておき,前記方法の演算を実施してもよい。
In this case the synchronous detector output x 2 becomes possible to measure directly the insulation resistance for the Ve / 2R 0 when theta = 0. Instead of adjusting in the variable phase shifter so that x 1 or x 4 as described above becomes zero, previously adjusted to a certain degree x 1 or x 4 becomes small, by executing calculation of the methods You may.

上記説明では単相2線式電路の場合について述べた
が,一端接地型の単相3線式電路,3相3線式電路にも適
用可能なことは明らかである。
In the above description, the case of a single-phase two-wire circuit has been described. However, it is apparent that the present invention can also be applied to a single-phase three-wire circuit or a three-phase three-wire circuit of a grounded type.

又方法によれば,測定に先だって位相変動を検出して
おり,ポータブルの測定器にも適するが,連続絶縁抵抗
監視装置等に用いるときには設置時にのみ位相変動の検
出を行えば,後は演算により位相変動を自動補償するこ
とができる。
According to the method, the phase fluctuation is detected prior to the measurement, and it is suitable for portable measuring instruments. However, when used in a continuous insulation resistance monitoring device, etc., if the phase fluctuation is detected only at the time of installation, the subsequent calculation Phase fluctuation can be automatically compensated.

また,上記説明では注入トランスOTを接地線LEもし
くは電路12に結合(又は貫通)したが,注入トランス
OTを受電トランスTに近接した場所にて,上記の如く設
置し零相変流器ZCTを負荷に近接した場所にて電路に貫
通させる場合,同期検波用の基準電圧は同一出願人,同
一発明者を含む特開58-10668に開示された如く,電路と
大地間に存在する印加電圧を検出し,これを用いて同期
検波する如くすれば注入トランスOTを測定毎に移動しな
くてすむことになる。但し,この場合検出された電路と
大地間に存在する電圧を用いて測定に先だってコンデン
サCもしくは抵抗Rに電流を流し,この電流を零相変流
器の一次電流として加えた後に,零相変流器を電路にク
リップし,前記方式で絶縁抵抗を測定してもよい。
The ground line L E or path 1 the injection transformer OT in the above description, 2 binding (or through) the but, injection transformer
When the OT is installed near the power receiving transformer T as described above and the zero-phase current transformer ZCT is passed through the power line near the load, the reference voltage for synchronous detection is the same applicant, the same invention. As disclosed in Japanese Patent Application Laid-Open No. 58-10668, the applied voltage existing between the electric circuit and the ground is detected and synchronous detection is performed using the detected voltage, so that the injection transformer OT does not have to be moved for each measurement. become. However, in this case, a current is applied to the capacitor C or the resistor R using the detected voltage existing between the electric circuit and the ground prior to the measurement, and this current is added as a primary current of the zero-phase current transformer. The flow resistance may be clipped to an electric circuit, and the insulation resistance may be measured by the above-described method.

(発明の効果) 上記説明の如く,従来問題となった零相変流器ZCT→
増幅器AMP→フィルタFILの系の位相シフトの影響を本発
明は補償するものであるから正確な絶縁抵抗の測定を可
能にする。
(Effect of the Invention) As described above, the zero-phase current transformer ZCT, which has been a problem in the past,
Since the present invention compensates for the influence of the phase shift of the amplifier AMP → filter FIL system, it enables accurate measurement of the insulation resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す図,第2図は従来の方法
を示す図。 T……受電トランス,ZCT……零相変流器,OT……注入ト
ランス,OSC……発振器,MULT12……同期検波器,PS……
移相器,MP……演算回路。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional method. T: Power receiving transformer, ZCT: Zero-phase current transformer, OT: Injection transformer, OSC: Oscillator, MULT 1 , 2 ... Synchronous detector, PS ...
Phase shifter, MP …… Operation circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路に低周波電圧を印加するトランスと、
その漏洩成分を抽出する変流器とを備え、該漏洩成分か
ら電路の絶縁抵抗を算出する絶縁抵抗測定方法に於い
て、漏洩電流検出に先立って前記トランスと変流器両者
を貫通する導線をコンデンサを介してループ状に接続し
た状態に於ける前記変流器出力を前記トランスに印加し
た低周波電圧と同相の信号により同期検波して得られる
出力値x1を求め、次に前記変流器を被測定電路に結合
せしめて該電路に流れる前記低周波電圧に対する漏洩電
流中の有効成分x2と無効成分x3とを求め、これらx1,
x2,x3とから当該電路の絶縁抵抗を算出したことを特徴
とする位相補償を施した絶縁抵抗測定方法。
A transformer for applying a low-frequency voltage to an electric circuit;
And a current transformer for extracting the leakage component.In an insulation resistance measuring method for calculating an insulation resistance of an electric circuit from the leakage component, a lead wire passing through both the transformer and the current transformer prior to leakage current detection. obtains an output value x 1 which is obtained by synchronous detection by the low-frequency voltage and phase signals of applying in the state connected current transformer output in a loop to the transformer through a capacitor, then the current transformer vessels seeking the active ingredient x 2 with reactive component x 3 in leakage current for said low-frequency voltage across the electric path allowed coupled to the circuit under measurement, and these x 1,
x 2, x 3 Metropolitan insulation resistance measuring method which has been subjected to phase compensation, characterized in that to calculate the insulation resistance of the electrical path from.
【請求項2】前記トランスと変流器とを貫通した導線を
終端するコンデンサを抵抗に置換すると共に、その状態
に於ける変流器出力をトランス印加信号を90°移相した
信号にて同期検波して得た値を前記値x1としたことを
特徴とする特許請求の範囲第1項記載の位相補償を施し
た絶縁抵抗測定方法。
2. A capacitor for terminating a lead wire passing through the transformer and the current transformer is replaced with a resistor, and the output of the current transformer in that state is synchronized with a signal obtained by shifting a transformer application signal by 90 °. 2. The method according to claim 1 , wherein a value obtained by the detection is set to the value x1.
【請求項3】前記値x1が最小又は零に近づくように該
値x1を得る同期検波の入力信号位相を調整したことを
特徴とする特許請求の範囲第1項又は第2項記載の位相
補償を施した絶縁抵抗測定方法。
Wherein the value x 1 claims first term range, characterized in that to adjust the synchronous detection of the input signal phase to obtain said value x 1 to approach the minimum or zero or paragraph 2, wherein Insulation resistance measurement method with phase compensation.
JP14498288A 1988-06-13 1988-06-13 Insulation resistance measurement method with phase compensation Expired - Fee Related JP2754011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14498288A JP2754011B2 (en) 1988-06-13 1988-06-13 Insulation resistance measurement method with phase compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14498288A JP2754011B2 (en) 1988-06-13 1988-06-13 Insulation resistance measurement method with phase compensation

Publications (2)

Publication Number Publication Date
JPH01313769A JPH01313769A (en) 1989-12-19
JP2754011B2 true JP2754011B2 (en) 1998-05-20

Family

ID=15374728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14498288A Expired - Fee Related JP2754011B2 (en) 1988-06-13 1988-06-13 Insulation resistance measurement method with phase compensation

Country Status (1)

Country Link
JP (1) JP2754011B2 (en)

Also Published As

Publication number Publication date
JPH01313769A (en) 1989-12-19

Similar Documents

Publication Publication Date Title
US4857830A (en) Method for measuring insulation resistance of electric line
JP2754011B2 (en) Insulation resistance measurement method with phase compensation
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP2617324B2 (en) Insulation resistance measurement method
JP3545886B2 (en) Insulation resistance measuring device
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JPS6042419B2 (en) Insulation resistance measuring device
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2646097B2 (en) Simple insulation resistance measurement method
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2896572B2 (en) Simple insulation resistance measurement method
JP2729822B2 (en) Wiring insulation resistance measurement method
JP2750690B2 (en) Leakage current detection method
JP2654549B2 (en) Simple insulation resistance measurement method
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JPS60165559A (en) Measuring method of insulation resistance and ground stray capacity
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2979226B2 (en) Measuring method of insulation resistance of load equipment
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP3194635B2 (en) Circuit insulation or ground resistance monitoring device and signal application method
JP2556980B2 (en) Electric fault detection method
JPH0366809B2 (en)
JPH07119778B2 (en) Insulation resistance measurement method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees