JPH0458582B2 - - Google Patents

Info

Publication number
JPH0458582B2
JPH0458582B2 JP1246484A JP1246484A JPH0458582B2 JP H0458582 B2 JPH0458582 B2 JP H0458582B2 JP 1246484 A JP1246484 A JP 1246484A JP 1246484 A JP1246484 A JP 1246484A JP H0458582 B2 JPH0458582 B2 JP H0458582B2
Authority
JP
Japan
Prior art keywords
resistance
insulation resistance
component
ground
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1246484A
Other languages
Japanese (ja)
Other versions
JPS60155981A (en
Inventor
Tatsuji Matsuno
Yoshio Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP1246484A priority Critical patent/JPS60155981A/en
Publication of JPS60155981A publication Critical patent/JPS60155981A/en
Publication of JPH0458582B2 publication Critical patent/JPH0458582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電路等の絶縁抵抗を測定する方法、殊
に対地浮遊容量大なる場合無視し得なくなる接地
抵抗を補償した絶縁抵抗測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring insulation resistance of electrical circuits, etc., and particularly to an insulation resistance measuring method that compensates for ground resistance, which cannot be ignored when stray capacitance to ground is large.

(従来技術) 従来、漏電等の早期発見の為には第1図に示す
如き電路の絶縁抵抗測定方法を用いるのが一般的
であつた。
(Prior Art) Conventionally, it has been common to use a method for measuring the insulation resistance of electrical circuits as shown in FIG. 1 for early detection of electrical leakage and the like.

即ち、Zなる負荷を有する受電変圧器Tの第2
種接地線LEを介して発振器OSCから商用周波数
と異なつた周波数1なる測定用低周波信号電圧を
電路L1及びL2に印加し、前記接地線LEを貫通す
る変流器ZCTによつて絶縁抵抗R及び浮遊容量
Cを介して帰還する漏洩電流を検出する。
That is, the second
A low frequency signal voltage for measurement with a frequency 1 different from the commercial frequency is applied from the oscillator OSC to the electric lines L 1 and L 2 via the grounding wire L E , and the current transformer ZCT passing through the grounding wire L E Then, the leakage current that is fed back via the insulation resistance R and the stray capacitance C is detected.

この際前記変流器ZCTの出力に含まれる周波
1の成分をフイルタFILTにて検出しその漏洩
電流中の有効分を例えば前記発振器OSCの出力
を用いて掛算器MULTで同期検波して電路の絶
縁抵抗を測定するものであつた。
At this time, the frequency 1 component included in the output of the current transformer ZCT is detected by a filter FILT, and the effective component of the leakage current is synchronously detected by a multiplier MULT using the output of the oscillator OSC, for example, to convert the electric circuit. It was used to measure insulation resistance.

その測定理論を第2図の等価回路を用いて更に
説明するならば前記接地線LEの接地点Eを介し
て前記発振器OSCに帰還する電流をIとすると I=V/R+jω1CV(但しω1=2π1) ……(1) であるから印加する交流電圧と同相の成分、即ち
上記(1)式右辺第1項に比例した値を同期検波等の
手法を用いて検出すれば絶縁抵抗Rに逆比例した
測定値を得るものである。
To further explain the measurement theory using the equivalent circuit shown in Figure 2, if the current that returns to the oscillator OSC via the grounding point E of the grounding wire L E is I, then I = V / R + jω 1 CV (however, ω 1 = 2π 1 ) ...(1) Therefore, if the component in phase with the applied AC voltage, that is, the value proportional to the first term on the right side of equation (1) above, is detected using a method such as synchronous detection, insulation can be achieved. A measurement value that is inversely proportional to the resistance R is obtained.

しかしながら上記(1)式からも明らかな如くこの
測定法は接地線LEに大地を介して帰還する電流
を測定するにも拘らず接地抵抗を無視しているの
で対地浮遊容量Cが大きくなると接地抵抗の影響
が現われ測定値が現実の電路の絶縁抵抗とはなは
だしくかけ離れたものとなる、即ち正確な絶縁抵
抗の測定が不可能になるという欠陥があつた。
However, as is clear from equation (1) above, this measurement method ignores the grounding resistance even though it measures the current that returns to the grounding wire L E via the ground. There was a defect in that the influence of resistance appeared and the measured value became extremely different from the insulation resistance of the actual electric circuit, that is, it became impossible to accurately measure the insulation resistance.

(発明の目的) 本発明は上記欠点に鑑みなされたものであつ
て、対地浮遊容量Cの影響を受けることなく正確
な絶縁抵抗測定を行なう絶縁抵抗測定方法を提供
することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide an insulation resistance measuring method that accurately measures insulation resistance without being affected by the stray capacitance C to ground.

(発明の概要) この目的を達成する為に本発明は電路に1なる
低周波数の測定信号電圧を印加し、前記接地線に
帰還する前記両周波数の漏洩電流を検出した上で
その有効分ならびに無効分(印加した信号電圧と
90°位相の異なる成分)を同期検波によつて抽出
すると共に前記有効分から前記無効分を2乗した
値に既知の接地抵抗値で重み付けを与えた値を差
し引くことによつて活線状態の電路の絶縁抵抗を
測定するようにした絶縁抵抗測定方法を提供せん
とするものである。
(Summary of the Invention) In order to achieve this object, the present invention applies a measurement signal voltage of a low frequency of 1 to the electrical circuit, detects the leakage current of both frequencies that returns to the grounding line, and then detects the leakage current of the two frequencies that returns to the grounding line. Reactive component (applied signal voltage and
Components with a 90° phase difference) are extracted by synchronous detection, and a value obtained by weighting the square of the reactive component from the effective component with a known grounding resistance value is subtracted from the active component. It is an object of the present invention to provide an insulation resistance measuring method for measuring the insulation resistance of a.

(実施例) 以下本発明を図面に示す実施例とに基づいて詳
細に説明する。
(Example) The present invention will be described in detail below based on an example shown in the drawings.

先ず、本発明に係る絶縁抵抗測定方法を説明す
る前に、その理解を助ける為従来の手法の欠陥を
少しく詳細に説明する。
First, before explaining the insulation resistance measuring method according to the present invention, the deficiencies of the conventional method will be explained in some detail to aid understanding.

第3図は接地抵抗γを考慮した場合の等価回路
図である。
FIG. 3 is an equivalent circuit diagram in consideration of ground resistance γ.

この場合接地点Eを介して発振器OSCに帰還
する電流をI1としこれを I1=(A+jB)V ……(2) とする。このとき A=(R+γ)+(ω1CR)2・γ/(R+γ)2+(
ω1CRγ)2……(3) B=ω1CR2/(R+γ)2+(ω1CRγ)2 ……(3) であり(2)式で接地抵抗γを無視すれば前記(1)式と
同一になることはいうまでもない。
In this case, the current returned to the oscillator OSC via the ground point E is I1 , and this is I1 =(A+jB)V (2). At this time, A=(R+γ)+(ω 1 CR) 2・γ/(R+γ) 2 +(
ω 1 CR γ) 2 ...(3) B = ω 1 CR 2 / (R + γ) 2 + (ω 1 CR γ) 2 ... (3) If you ignore the grounding resistance γ in equation (2), the above (1) ) It goes without saying that it is the same as the formula.

さて、(3)式において、対地浮遊容量C=0のと
きAは1/R+γとなるが一般にR≫γであるから
Aは1/Rと考えてもよく前記(2)式の同相分は
V/Rとなり、同相分を検出することにより絶縁
抵抗を測定することができる。しかし浮遊容量C
が大きいときには同相分を検出しても(3)式で示さ
れる如く正しい絶縁抵抗を測定していないことに
なる。
Now, in equation (3), when the stray capacitance to ground C=0, A becomes 1/R+γ, but since generally R≫γ, A can be considered to be 1/R. The component is V/R, and the insulation resistance can be measured by detecting the in-phase component. However, stray capacitance C
When is large, even if the in-phase component is detected, the correct insulation resistance will not be measured as shown by equation (3).

このような誤差が実際上どの程度になるかを以
下に示す。
The actual extent of such errors will be shown below.

一般にR≫γであるから(3)式においてR+γ→
Rとすると AR+(ω1CR)2γ/R2+(ω1CRγ)2 =1+(ω1C)2Rγ/R{1+(ω1Cγ)2}……
(4) と表し得る。
In general, R≫γ, so in equation (3), R+γ→
If R is AR+(ω 1 CR) 2 γ/R 2 +(ω 1 CRγ) 2 =1+(ω 1 C) 2 Rγ/R{1+(ω 1 Cγ) 2 }...
(4)

ここで例えば、1=20Hz、C=5μF、γ=100Ω
とすると (ω1Cγ)2=(2π×20×5×10-6×100)2 3.95×10-3 となり(ω1CR)2≪1である。
For example, 1 = 20Hz, C = 5μF, γ = 100Ω
Then, (ω 1 Cγ) 2 = (2π×20×5×10 -6 ×100) 2 3.95×10 -31 CR) 2 ≪1.

したがつて(4)式は A1/R{1+(ω1C)2Rγ} ……(5) とみなしてよい。 Therefore, formula (4) can be regarded as A1/R{1+(ω 1 C) 2 Rγ} ...(5).

従つて、例えば1=20Hz、C=5μF、R=
100KΩ、γ=100Ωの場合前記(5)式の{ }内は 1+(ω1C)2Rγ=4.95 となり、同相分から検出されるべき絶縁抵抗値
100KΩは、100KΩ/4.95=20.2KΩとして測定さ
れてしまうことになる。
Therefore, for example, 1 = 20Hz, C = 5μF, R =
In the case of 100KΩ and γ = 100Ω, the value inside { } in the above equation (5) is 1 + (ω 1 C) 2 Rγ = 4.95, which is the insulation resistance value that should be detected from the common mode component.
100KΩ will be measured as 100KΩ/4.95=20.2KΩ.

斯くの如く、従来の接地抵抗を無視した絶縁抵
抗測定方法では対地浮遊容量が大きい場合極めて
測定誤差が大きくなる欠陥を有すること前述の通
りである。更に対地浮遊容量には一般電子機器の
電源回路に付加されるノイズフイルタのキヤパシ
タンスも含まれるので今後対地浮遊容量が大きく
なつていく傾向にあるから従来の方法ではますま
す正確な測定結果が得られないことになる。
As described above, the conventional method of measuring insulation resistance that ignores ground resistance has the drawback that the measurement error becomes extremely large when the stray capacitance to ground is large. Furthermore, stray capacitance to ground includes the capacitance of noise filters added to the power supply circuits of general electronic devices, so stray capacitance to ground is likely to increase in the future, making it difficult to obtain increasingly accurate measurement results using conventional methods. There will be no.

この問題を解決する為本発明に於いては以下の
如き手法をとる。
In order to solve this problem, the present invention takes the following approach.

即ち、周波数1の印加信号によつて得られる同
相分、即ち有効分をig1とすると前記(2)及び(5)式
から ig1=V/R{1+(ω1C)2Rγ} =V/R+(ω1C)2γV ……(6) となる。
That is, if the in-phase component, that is, the effective component obtained by the applied signal of frequency 1 is ig 1 , then from equations (2) and (5) above, ig 1 = V/R {1 + (ω 1 C) 2 Rγ} = V/R+(ω 1 C) 2 γV ...(6).

一方、(3)式から印加信号と90°位相のずれた成
分Bは、 B=ω1CR2/(R+γ)2+ω1CRγ)2 一般にR≫γなるから ω1C/1+(ω1Cγ)2 また (ω1Cγ)2≪1 なるから Bω1C ……(7) となり、接地抵抗γの影響は実用上ほとんど受け
ないことになる。
On the other hand, from equation (3), the component B that is 90° out of phase with the applied signal is: B=ω 1 CR 2 /(R+γ) 21 CRγ) 2Generally , R≫γ, so ω 1 C/1+(ω 1 Cγ) 2 Also, since (ω 1 Cγ) 2 ≪1, Bω 1 C ...(7) Therefore, the influence of the grounding resistance γ is practically unaffected.

従つて1なる印加信号によつて得られる無成分
をig2とすれば(7)式から ig2=ω1CV ……(8) となり、ig2を2乗し、重み係数kを掛け(6)式に
示す有効分ig2から差し引くと ig1−k(ig22 =V/R+(ω1C)2γV−k(ω1C)2V2 =V/R+(ω1C)2(γ−kV)V ……(9) となる。ここで接地抵抗γは一般に実測により知
ることが可能であるから重み係数kを k=γ/V ……(10) の如く選ぶことにより、(9)式の第2項は零となり
第1項のV/Rから絶縁抵抗に逆比例した値を、
接地抵抗γ、対地浮遊容量Cの影響を除去して測
定しうることが理解されよう。
Therefore, if the component-free obtained by an applied signal of 1 is ig 2 , then from equation (7), ig 2 = ω 1 CV ... (8), and ig 2 is squared and multiplied by the weighting coefficient k ( Subtracting from the effective component ig 2 shown in formula 6), ig 1 - k (ig 2 ) 2 = V/R + (ω 1 C) 2 γV-k (ω 1 C) 2 V 2 = V/R + (ω 1 C) ) 2 (γ−kV)V ……(9). Here, since the grounding resistance γ can generally be known through actual measurement, by selecting the weighting coefficient k as k=γ/V (10), the second term in equation (9) becomes zero and the first term The value inversely proportional to the insulation resistance from V/R of
It will be understood that the measurement can be performed while removing the effects of the ground resistance γ and the ground stray capacitance C.

このような測定方法を実現する為には以下の如
くすればよい。
In order to realize such a measurement method, the following steps may be taken.

第4図は本発明に係る絶縁測定方法を実現する
為の回路の一実施例を示す図である。
FIG. 4 is a diagram showing an embodiment of a circuit for realizing the insulation measuring method according to the present invention.

即ち、接地線LEに周波数1なる低周波信号発生
用の発振器OSCを直列に接続して、電圧Vなる
電圧を印加する。一方前記零相変流器ZCT出力
を中心周波数1なるバンド・パスフイルタBPFに
印加して、商用周波成分と分離し該バンド・パス
フイルタBPFの出力を第1の同期検波回路
MULT1の一方の入力端に入力せしめると共に前
記発振器OSCの出力を第1の同期検波回路
MULT1の第2の入力端に入力せしめる。かくし
て第1の同期検波回路MULT1の出力を第1のロ
ーパスフイルタLPF1に印加し直流分のみを得れ
ば、前述の(6)式に相当する信号ig1が得られる。
That is, an oscillator OSC for generating a low frequency signal with a frequency of 1 is connected in series to the ground line L E , and a voltage V is applied to the ground line L E. On the other hand, the zero-phase current transformer ZCT output is applied to a band pass filter BPF with a center frequency of 1 to separate it from the commercial frequency component, and the output of the band pass filter BPF is applied to a first synchronous detection circuit.
The output of the oscillator OSC is input to one input terminal of MULT 1 , and the output of the oscillator OSC is input to the first synchronous detection circuit.
Input it to the second input terminal of MULT 1 . Thus, by applying the output of the first synchronous detection circuit MULT 1 to the first low-pass filter LPF 1 and obtaining only the DC component, a signal ig 1 corresponding to the above-mentioned equation (6) can be obtained.

一方、前記バンドパスフイルタBPFの出力を
分岐して第2の同期検波回路MULT2の一方の入
力端に入力せしめると共に前記発振器OSCの出
力を移相器PSに印加して90°位相を推移せしめそ
の出力を第2の同期検波回路MULT2の第2の入
力端に入力せしめる。かくして第2の同期検波回
路MULT2の出力を第2のローパスフイルタ
LPF2に印加し直流分のみを得れば前述の(8)式に
相当する信号ig2が得られる。第2のローパスフ
イルタLPF2に得られたig2を2乗回路SQに印加
することにより、2乗回路SQの出力には(ig22
が得られる。2乗回路SQの出力を重み係数kな
る係数回路COに印加する。第1のローパスフイ
ルタ出力を引算器SUBの第1の入力端に印加す
ると共に引算器SUBの第2の入力端に係数回路
COの出力を印加することにより引算器SUBの出
力OUTには、(9)式に相当する信号が得られる。
ここで前記係数回路COの係数kを(10)式の如く、
接地抵抗γに比例した値に設定することにより引
算器SUBの出力には絶縁抵抗値Rに逆比例した
値を得ることができる。
On the other hand, the output of the band pass filter BPF is branched and input to one input terminal of the second synchronous detection circuit MULT 2 , and the output of the oscillator OSC is applied to the phase shifter PS to shift the phase by 90°. The output thereof is input to the second input terminal of the second synchronous detection circuit MULT2 . In this way, the output of the second synchronous detection circuit MULT 2 is passed through the second low-pass filter.
If only the DC component is obtained by applying it to LPF 2 , a signal ig 2 corresponding to the above-mentioned equation (8) can be obtained. By applying ig 2 obtained by the second low-pass filter LPF 2 to the square circuit SQ, the output of the square circuit SQ is (ig 2 ) 2
is obtained. The output of the squaring circuit SQ is applied to a coefficient circuit CO having a weighting coefficient k. The first low-pass filter output is applied to the first input terminal of the subtracter SUB, and the coefficient circuit is applied to the second input terminal of the subtractor SUB.
By applying the output of CO, a signal corresponding to equation (9) is obtained at the output OUT of the subtracter SUB.
Here, the coefficient k of the coefficient circuit CO is expressed as equation (10),
By setting a value proportional to the grounding resistance γ, a value inversely proportional to the insulation resistance value R can be obtained as the output of the subtracter SUB.

尚、接地抵抗γは接地線の接地工事を行つた竣
工時の値に対し若干の経年変化があるため、適切
な時期に接地抵抗を測定しこの値をもつて前記係
数回路の係数kを変更することがのぞましい。
In addition, since the grounding resistance γ changes slightly over time from the value at the time of completion of the grounding work of the grounding wire, measure the grounding resistance at an appropriate time and use this value to change the coefficient k of the coefficient circuit. It is desirable to do so.

更に実施例からも明らかな如く本発明の測定方
法を実現する測定用回路は極めて簡単、従つて安
価に供給可能であるから工場、各家庭等の電路の
絶縁状態自動監視システムに適用する際殊に効果
的である。
Furthermore, as is clear from the examples, the measuring circuit that implements the measuring method of the present invention is extremely simple and can be supplied at low cost, making it particularly suitable for application to automatic insulation monitoring systems for electrical circuits in factories, households, etc. effective.

尚、実施例に於いては説明簡単の為単相2線の
場合を示したが本発明はこれに限定する必然性は
全くなく単相3線或は3相3線の場合であつても
同一の原理に基づいて実施可能なことは明らかで
あろう。
In the embodiment, a single-phase, two-wire case is shown for ease of explanation, but the present invention is not necessarily limited to this, and the same applies even in the case of a single-phase, three-wire or three-phase, three-wire case. It is clear that this method can be implemented based on the principle of

なお、上記実施例においては零相電流の検出に
零相変流器を用いているが接地線LEを切断しこ
れに低抵抗を直列接続しこの抵抗の両端電圧をも
つて零相電流を検出してもよい。また電路への低
周波電圧の印加に当つては接地線LEを切断して
これに発振器を直列に挿入接続するのではなく、
接地線を発振器出力のトランスを貫通させる等し
てもよい。
In the above embodiment, a zero-sequence current transformer is used to detect the zero-sequence current, but the grounding wire L E is cut off, a low resistance is connected in series with it, and the voltage across this resistance is used to detect the zero-sequence current. May be detected. Also, when applying low frequency voltage to the electrical circuit, instead of cutting the grounding wire L E and inserting and connecting the oscillator in series with it,
The grounding wire may be passed through the oscillator output transformer.

(発明の効果) 本発明は以上説明した如き手法によつて電路の
絶縁抵抗を測定するものであるから接地抵抗の影
響を完全にキヤンセルすることが可能となるのみ
ならず発振器等の出力抵抗の影響をも接地抵抗に
加味して補償するので対地浮遊容量増大の傾向に
ある電子回路を含んだ電路等の絶縁抵抗を正確に
測定する上で著しい効果を発揮する。
(Effects of the Invention) Since the present invention measures the insulation resistance of an electric circuit using the method described above, it is possible not only to completely cancel the influence of grounding resistance, but also to reduce the output resistance of an oscillator, etc. Since the influence is also compensated for by adding it to the ground resistance, it is extremely effective in accurately measuring the insulation resistance of electric circuits, etc., including electronic circuits, which tend to increase stray capacitance to the ground.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁抵抗測定方法を説明するブ
ロツク図、第2図はその等価回路図、第3図は接
地抵抗を考慮した場合の等価回路図、第4図は本
発明に係る絶縁抵抗測定方法を実現する為の一実
施例を示すブロツク図である。 T……変圧器、L1及びL2……電路、LE……接
地線、OSC……発振器、MULT……同期検波回
路、LPF1,2……ローパスフイルタ、SUB……引
算回路、BPF……バンドパスフイルタ、PS……
90°移相器。
Fig. 1 is a block diagram explaining the conventional insulation resistance measurement method, Fig. 2 is its equivalent circuit diagram, Fig. 3 is an equivalent circuit diagram when earthing resistance is considered, and Fig. 4 is the insulation resistance according to the present invention. FIG. 2 is a block diagram showing an embodiment for implementing a measurement method. T...Transformer, L1 and L2 ...Electric circuit, L E ...Grounding wire, OSC...Oscillator, MULT...Synchronous detection circuit, LPF 1,2 ...Low pass filter, SUB...Subtraction circuit, BPF……Band pass filter, PS……
90° phase shifter.

Claims (1)

【特許請求の範囲】[Claims] 1 電路に商用周波数と異なる周波数1なる低周
波の測定信号電圧を印加し接地線に帰還する周波
1の漏洩電流を検出しその有効分ならびに無効
分を夫々同期検波により抽出すると共に前記有効
分と前記無効分の2乗値に接地抵抗値で重みを付
した値との差を求めることによつて接地抵抗を補
償して電路の絶縁抵抗を測定するようにしたこと
を特徴とする絶縁抵抗測定方法。
1. Apply a low frequency measurement signal voltage of frequency 1 different from the commercial frequency to the electric line, detect the leakage current of frequency 1 that returns to the grounding line, extract the effective component and reactive component by synchronous detection, and extract the effective component and the Insulation resistance measurement characterized in that the insulation resistance of the electrical circuit is measured by compensating for ground resistance by calculating the difference between the square value of the reactive component and a value weighted by a ground resistance value. Method.
JP1246484A 1984-01-25 1984-01-25 Insulation resistance measurement Granted JPS60155981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246484A JPS60155981A (en) 1984-01-25 1984-01-25 Insulation resistance measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246484A JPS60155981A (en) 1984-01-25 1984-01-25 Insulation resistance measurement

Publications (2)

Publication Number Publication Date
JPS60155981A JPS60155981A (en) 1985-08-16
JPH0458582B2 true JPH0458582B2 (en) 1992-09-17

Family

ID=11806077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246484A Granted JPS60155981A (en) 1984-01-25 1984-01-25 Insulation resistance measurement

Country Status (1)

Country Link
JP (1) JPS60155981A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940389B2 (en) * 2012-06-25 2016-06-29 日置電機株式会社 AC resistance measuring device and AC resistance measuring method
KR101471341B1 (en) * 2014-10-29 2014-12-09 서울과학기술대학교 산학협력단 Method for calculating grounding resistance using neutral-returning current in transmission and distribution system

Also Published As

Publication number Publication date
JPS60155981A (en) 1985-08-16

Similar Documents

Publication Publication Date Title
JPH0458582B2 (en)
JPH1078461A (en) Measuring method for insulation resistance
JPH0552466B2 (en)
JPH0473553B2 (en)
JPH0352831B2 (en)
JP2929197B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2750707B2 (en) Insulation resistance measurement method compensated for ground resistance
JPH01143971A (en) Method for measuring insulation resistance
JPH079447B2 (en) Insulation resistance measuring method and device
JP2750690B2 (en) Leakage current detection method
JP2614449B2 (en) Insulation resistance measurement method compensated for ground resistance
JP2696513B2 (en) Electrical capacitance measurement method for ground
JP2750705B2 (en) Insulation resistance measurement method
JP2612703B2 (en) Insulation resistance measurement method with canceling ground resistance
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JP2764582B2 (en) Simple insulation resistance measurement method
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPH0721523B2 (en) Insulation resistance measurement method that compensates for fluctuations in circuit constants
JP2979226B2 (en) Measuring method of insulation resistance of load equipment
JPS637349B2 (en)
JPH028529B2 (en)
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.
JP2896572B2 (en) Simple insulation resistance measurement method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees