JPH0280182A - Method for joining particle dispersion alloy pipe - Google Patents

Method for joining particle dispersion alloy pipe

Info

Publication number
JPH0280182A
JPH0280182A JP23051088A JP23051088A JPH0280182A JP H0280182 A JPH0280182 A JP H0280182A JP 23051088 A JP23051088 A JP 23051088A JP 23051088 A JP23051088 A JP 23051088A JP H0280182 A JPH0280182 A JP H0280182A
Authority
JP
Japan
Prior art keywords
tube
intermediate layer
alloy
round bar
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23051088A
Other languages
Japanese (ja)
Other versions
JPH0677856B2 (en
Inventor
Kazuhiro Ogawa
和博 小川
Fumio Kashimoto
文雄 樫本
Shoichiro Inoue
昭一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63230510A priority Critical patent/JPH0677856B2/en
Publication of JPH0280182A publication Critical patent/JPH0280182A/en
Publication of JPH0677856B2 publication Critical patent/JPH0677856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain a joining part of a particle dispersion alloy excellent in high-temperature strength by interposing an intermediate layer containing a melting-point lowering element between an alloy pipe and a round bar and specifying the total of clearances with respect to the inside dia. of the alloy pipe. CONSTITUTION:The round bar 2 is inserted into the ferritic particle dispersion alloy pipe 1 and the intermediate layer 3 is interposed between the alloy pipe 1 and the round bar 2. When the clearances in the radial direction between the intermediate layer 3 and the inside of the alloy pipe 1, and between the intermediate layer 3 and the outside of the round bar 2 are denoted by C1 and C2 respectively, the total of the clearances (all clearances) is made to C1+C2. These are arranged so that the clearances C1+C2 are made to <=5% of the inside dia. of the alloy pipe and then, heated and maintained at the temperature between the melting point of the intermediate layer 3 and 1200 deg. and the inside of the alloy pipe 1 is joined to the outside of the round bar 2. By this method, the joining part of the particle dispersion alloy excellent in the high-temperature strength can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粒子分散合金管の接合方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for joining particle-dispersed alloy tubes.

特に粒子分散合金の長所である高温強度を損なうことな
く強固な接合を実現する粒子分散合金管の接合方法に関
する。
In particular, the present invention relates to a method for joining particle-dispersed alloy tubes that achieves strong bonding without impairing the high-temperature strength, which is an advantage of particle-dispersed alloys.

(従来の技術) 金属材料は、高温において強度が低下する。これを克服
し高温強度を改善するため様々な合金の研究が行われて
いる。この結果、ある種のオーステナイト系ステンレス
鋼やフェライト系高合金鋼において、高温強度の優れた
材料が開発され、多く実用化されている。しかし、産業
・技術分野の高度化に従って、より高温でしかも苛酷な
状態でも使用できる耐熱材料への要求が高まっている。
(Prior Art) The strength of metal materials decreases at high temperatures. Various alloys are being researched to overcome this problem and improve high-temperature strength. As a result, materials with excellent high-temperature strength have been developed in certain types of austenitic stainless steels and ferritic high-alloy steels, and many have been put into practical use. However, as the industrial and technical fields become more sophisticated, there is an increasing demand for heat-resistant materials that can be used at higher temperatures and under more severe conditions.

特に、航空機エンジン・ガスタービン・新型原子炉など
では、設計温度の高温化がエネルギー効率の向上につな
がるため、高温材料に対する期待が大きい。
In particular, high-temperature materials are expected to be used in aircraft engines, gas turbines, new nuclear reactors, etc., as higher design temperatures lead to improved energy efficiency.

そこで合金のマトリックスに、微粒子を分散させて、高
温での強度向上をねらった粒子分散合金が有望な材料の
一つとして登場した。特公昭6〇−8296号公報の提
案する粒子分散型合金はその−例である、この公報の提
案する合金は、イントリア等の酸化物を均一に分散させ
ることによって得られ、オーステナイト系ステンレス鋼
(SUS316)に比べ、かなり高い高温クリープ強度
を実現している。
Therefore, a particle-dispersed alloy, which aims to improve strength at high temperatures by dispersing fine particles in an alloy matrix, has emerged as a promising material. The particle-dispersed alloy proposed in Japanese Patent Publication No. 60-8296 is an example of this. The alloy proposed in this publication is obtained by uniformly dispersing an oxide such as intoria, It has considerably higher high temperature creep strength than SUS316).

(発明が解決しようとする課M) 高温強度の優れた粒子分散合金を機器の構成材料として
使用しても、接合部分の強度が劣っていたのでは材料の
特性を十分に生かすことはできない。従って粒子分散合
金の場合、特に溶接・接合方法が問題となる。
(Problem M to be solved by the invention) Even if a particle-dispersed alloy with excellent high-temperature strength is used as a constituent material of a device, the characteristics of the material cannot be fully utilized if the strength of the joint is poor. Therefore, in the case of particle-dispersed alloys, welding and joining methods are particularly problematic.

粒子分散合金にも従来の溶接法(たとえばTIG溶接)
の適用が可能である。しかし、溶接熱影響部(以下HA
Zという)の高温強度が母材に比べ、低下することは避
けられない、 HAZの中でも特に、溶接熱サイクルに
より融点直下にまで加熱された領域では加熱時に母材中
に均一に分散していた微粒子が凝集粗大化する。)IA
Zでの高温強度の低下は、この微粒子の凝集粗大化によ
るものと考えられる。従って、粒子分散合金においては
、通常の溶融溶接によって母材と同等の高温強度をもつ
接合部を得ることは極めて困難である。
Conventional welding methods (e.g. TIG welding) also apply to particle dispersed alloys.
can be applied. However, the weld heat affected zone (HA
It is inevitable that the high-temperature strength of the material (referred to as Z) will be lower than that of the base metal. Especially in the HAZ, in the area heated to just below the melting point by the welding thermal cycle, the high temperature strength of the material is uniformly dispersed in the base material during heating. Fine particles aggregate and become coarse. )IA
The decrease in high-temperature strength at Z is considered to be due to the agglomeration and coarsening of these fine particles. Therefore, in particle dispersed alloys, it is extremely difficult to obtain a joint with high temperature strength equivalent to that of the base metal by ordinary fusion welding.

そこで本発明の目的は、フェライト系粒子分散合金の高
温強度を損なうことのない強固な粒子分散合金管の接合
方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for joining strong particle-dispersed alloy tubes without impairing the high-temperature strength of the ferritic particle-dispersed alloy.

(課題を解決するための手段) 本発明者らは以上の目的を達成すべ(実験・研究を重ね
るうちに次のような着想を得た。
(Means for Solving the Problems) The inventors of the present invention sought to achieve the above objectives (through repeated experiments and research, they came up with the following idea.

粒子分散合金の特徴である高温強度を損なわないために
は、分散微粒子の凝集が始まる温度以上の高温にまで合
金を加熱しないことが重要である。
In order not to impair the high-temperature strength, which is a characteristic of particle-dispersed alloys, it is important not to heat the alloy to a temperature higher than the temperature at which the dispersed fine particles begin to agglomerate.

従って通常の溶融溶接のように、材料の融点以上にまで
加熱することなく、非溶融状態で加熱接合する方法が望
ましい。このように母材の融点よりも低い温度で接合す
る方法を非溶融接合と定義すれば、この非熔融接合を粒
子分散合金管において実現する方法を採用する必要があ
る。
Therefore, it is desirable to use a method that heats and joins the materials in a non-molten state, without heating them above the melting point of the materials, as in normal fusion welding. If such a method of joining at a temperature lower than the melting point of the base material is defined as non-melting joining, then it is necessary to adopt a method of realizing this non-melting joining in a particle-dispersed alloy tube.

そこで本発明者らは、いわゆる液相拡散接合法を利用す
る事に気付いた。この接合法は接合界面に融点降下元素
を有する層を置き、中間層の熔融温度まで加熱する。こ
うして中間層のみを溶融させる。中間層内の融点降下元
素が母材側に拡散するのに伴い中間層の融点が上昇し凝
固する。こうして接合が完了する。
Therefore, the present inventors realized that a so-called liquid phase diffusion bonding method should be used. In this bonding method, a layer containing a melting point lowering element is placed at the bonding interface and heated to the melting temperature of the intermediate layer. In this way, only the intermediate layer is melted. As the melting point lowering element in the intermediate layer diffuses toward the base material, the melting point of the intermediate layer increases and solidifies. In this way, joining is completed.

そこで本発明者らは、さらに研究を続はフェライト系の
粒子分散合金に対して、液相拡散接合法の適用可能性を
確認するとともに適用の条件を明らかにした。特に接合
に必要な接合界面への加圧力(約0.1 kgf/■−
2以上)を得るため、オーステナイト系の材料を介在さ
せて、熱膨張差を与え、これによって生ずる熱応力を利
用する方法を開発し、本発明を完成した。
Therefore, the present inventors continued their research to confirm the applicability of the liquid phase diffusion bonding method to ferritic particle-dispersed alloys and to clarify the conditions for application. In particular, the pressure on the bonding interface required for bonding (approximately 0.1 kgf/■-
2 or more), we developed a method of interposing an austenitic material to provide a thermal expansion difference and utilizing the resulting thermal stress, and completed the present invention.

こうして本発明の要旨とするところは、フェライト系の
粒子分散合金管の内部にオーステナイト系材料から成る
丸棒または管を挿入して、合金管内面と丸棒外面または
管外面との間に融点降下元素を含有する中間層を、中間
層と管内面および中間層と丸棒または管の外面の間のす
きまの合計が合金管の内径の5%以下となるように配置
した後、中間層の融点以上で1200℃以下の温度に加
熱保持して、合金管の内面と丸棒または管の外面を接合
する・ことを特徴とする粒子分散合金管の接合方法であ
る。
Thus, the gist of the present invention is to insert a round rod or tube made of an austenitic material into a ferritic particle-dispersed alloy tube to reduce the melting point between the inner surface of the alloy tube and the outer surface of the round rod or tube. After arranging the intermediate layer containing the element so that the total gap between the intermediate layer and the inner surface of the tube and between the intermediate layer and the outer surface of the round bar or tube is 5% or less of the inner diameter of the alloy tube, the melting point of the intermediate layer is The above is a method for joining particle-dispersed alloy tubes, which is characterized in that the inner surface of the alloy tube and the outer surface of the round bar or tube are joined by heating and maintaining the tube at a temperature of 1200° C. or lower.

この際、加熱接合前に管外面を機械的に加圧して管径を
減少させることが好ましい。
At this time, it is preferable to mechanically pressurize the outer surface of the tube to reduce the tube diameter before heat joining.

(作用) 本発明の詳細な説明を始める前にまず、本発明における
合金管・丸棒・管・中間層の配置について説明してお(
(Function) Before starting a detailed explanation of the present invention, first, the arrangement of the alloy tube, round bar, tube, and intermediate layer in the present invention will be explained (
.

第1図は、本発明による粒子分散合金管の接合原理を示
したもので、fa)は加熱接合前の接合部の側断面図、
山)はその横断面図である。フェライト系粒子分散合金
管lの内部に丸棒または管2が挿入され、合金管1と丸
棒または管2の間に中間層3が介在している。中間層と
合金管lの内面、および丸棒または管2の外面の間の径
方向への隙間をそれぞれC1、C2とおくと、隙間の合
計(全クリアランス)は、C++CZで与えられる。さ
らに中間層3の厚さをt、とおくと、合金管1の内面と
丸棒2の外面の間の径方向への隙間はC,+C,+ t
、である。
FIG. 1 shows the principle of joining particle-dispersed alloy tubes according to the present invention, where fa) is a side sectional view of the joint before heat joining;
Mountain) is its cross-sectional view. A round rod or tube 2 is inserted into the ferritic particle-dispersed alloy tube 1, and an intermediate layer 3 is interposed between the alloy tube 1 and the round rod or tube 2. Let C1 and C2 be the gaps in the radial direction between the intermediate layer and the inner surface of the alloy tube l, and the outer surface of the round bar or tube 2, respectively, then the total gap (total clearance) is given by C++CZ. Furthermore, if the thickness of the intermediate layer 3 is t, then the gap in the radial direction between the inner surface of the alloy tube 1 and the outer surface of the round bar 2 is C, +C, + t.
, is.

次に上に述べた本発明の方法における各限定理由および
作用について順を追って説明する。
Next, the reasons and effects of each limitation in the method of the present invention described above will be explained in order.

2ニオ−ステナイト系 オーステナイト系材料とは、常温において面心立方構造
からなるいわゆるオーステナイト相のみの組織を存する
もので、具体的にはオーステナイト系ステンレス鋼また
はNi基合金などがある。これらオーステナイト系材料
は、粒子分散合金管1を構成するフェライト系材料に比
べ、熱膨張率が大きい。たとえば、オーステナイト系の
5US304とフェライト系5US405の線膨張係数
を比べるとそれぞれ1.7 Xl0−’に一’、 1.
1 Xl0−’に一’であり、オーステナイト系SO5
304はフェライト系SO5405の約1.5倍となっ
ている。この丸棒または管2の材質としてオーステナイ
ト系と限定したのはこの両者の熱膨張差に起因する熱応
力を接合に必要な接合界面への加圧力に利用するためで
ある。従って、この丸棒または管2にオーステナイト系
粒子分散合金を用いても良い。
The 2-niostenite-based austenitic material has a so-called austenite phase-only structure consisting of a face-centered cubic structure at room temperature, and specifically includes austenitic stainless steel or Ni-based alloy. These austenitic materials have a larger coefficient of thermal expansion than the ferritic materials constituting the particle-dispersed alloy tube 1. For example, when comparing the linear expansion coefficients of austenitic 5US304 and ferritic 5US405, they are 1.7 Xl0-' and 1.
1 Xl0−', austenitic SO5
304 is about 1.5 times that of ferritic SO5405. The reason why the material of the round bar or tube 2 is limited to austenite is to utilize the thermal stress caused by the difference in thermal expansion between the two to apply pressure to the joining interface necessary for joining. Therefore, this round rod or tube 2 may be made of an austenitic particle-dispersed alloy.

中間層3 液相拡散接合法を行うためには融点降下元素を含んだ中
間層3が必要である。融点降下元素としては、拡散速度
の大きい元素が好ましい。具体的には、P、B等が挙げ
られる。PやBの添加量としては、1〜5%程度、好ま
しくは1〜3%とする。中間N3の配置の方法としては
融点降下元素を含んだ金属箔を丸棒に巻き付けてインサ
ート材として用いるか、被接合材の接合面に、メツキ、
原着、イオン注入等の方法により予めP、B等をコーテ
ィングして中間層を形成させておく方法がある。
Intermediate Layer 3 In order to perform the liquid phase diffusion bonding method, an intermediate layer 3 containing a melting point lowering element is required. As the melting point lowering element, an element with a high diffusion rate is preferable. Specifically, P, B, etc. can be mentioned. The amount of P and B added is about 1 to 5%, preferably 1 to 3%. The intermediate N3 can be arranged by wrapping a metal foil containing a melting point depressing element around a round bar and using it as an insert material, or by plating or plating the joining surface of the materials to be joined.
There is a method in which an intermediate layer is formed by coating P, B, etc. in advance by a method such as original deposition or ion implantation.

中間層3の厚さtoとしては0.01μ蒙以上200μ
m以下が望ましい。中間層がこれより薄いと接合性の向
上には寄与できず、また厚過ぎると加熱接合時の融点降
下元素の拡散に長時間を有するため実用的でない。
The thickness to of the intermediate layer 3 is 0.01 μm or more and 200 μm.
m or less is desirable. If the intermediate layer is thinner than this, it cannot contribute to the improvement of bonding properties, and if it is too thick, it will take a long time for the melting point lowering element to diffuse during heat bonding, which is not practical.

1人部のクリアランス 合金管1、中間層3、丸棒または管2間の接合加熱前の
すき間(クリアランス)C++Czは、合金管内径の5
%以下好ましくは3%以下とする。クリアランスをこの
ように限定するのは、クリアランスが大きすぎると、た
とえ管と丸棒の間に熱膨張差があっても、熱応力が発生
せずに、接合界面の加圧力が確保できないためである。
Clearance for 1 person The gap (clearance) C++Cz between the alloy tube 1, the intermediate layer 3, and the round bar or tube 2 before joining and heating is equal to 5 of the inner diameter of the alloy tube.
% or less, preferably 3% or less. The reason why the clearance is limited in this way is because if the clearance is too large, even if there is a difference in thermal expansion between the tube and the round bar, thermal stress will not occur and it will not be possible to secure the pressurizing force at the joint interface. be.

また、クリアランスは、中間層の配置の可能なかぎりゼ
ロに近くても良いため下限値は特に限定しない。
Further, the clearance may be as close to zero as possible for the arrangement of the intermediate layer, so the lower limit is not particularly limited.

穆イ票支叉 中朋層3の融点以上で1200℃以下とするが融点降下
元素の量によって異なるので900〜1100℃程度が
好ましい。この範囲より低温では液相拡散接合は不可能
であり、一方、温度が高すぎると、母材の性能(高温強
度)を損なうからである。
The temperature should be higher than the melting point of the intermediate layer 3 and lower than 1200°C, but it is preferably about 900 to 1100°C since it varies depending on the amount of the melting point lowering element. This is because liquid phase diffusion bonding is impossible at a temperature lower than this range, whereas if the temperature is too high, the performance (high temperature strength) of the base material will be impaired.

援企■■嵐皿■工 接合加熱時の熱膨張差による熱応力を大きくするには、
接合前に管外面を機械的に加圧して管径を減少させるこ
とにより、クリアランスを小さくしてから接合すること
が有効であり、接合強度の向上には望ましい。
In order to increase the thermal stress caused by the difference in thermal expansion during heating of the joint,
It is effective to reduce the clearance by mechanically pressurizing the outer surface of the pipe to reduce the pipe diameter before joining, and this is desirable for improving the joining strength.

加工度が大きすぎる場合、管が偏平になったり、割れた
りする可能性があるため、管外径の減少率で5%以下と
する。
If the degree of processing is too large, the tube may become flat or cracked, so the reduction rate of the outer diameter of the tube should be 5% or less.

(実施例) 次に本発明の実施例について詳しく説明する。(Example) Next, embodiments of the present invention will be described in detail.

度金体構虞撚 まず始めに、本発明の方法による管の接合体の構成例に
ついて説明する。
Twisting Metal Body Structure First, an example of the structure of a tube joint made by the method of the present invention will be described.

第2図は、本発明により2本の粒子分散合金管lを、第
3図に示すオーステナイト系ステンレス鋼の丸棒2を介
して結合した接合体の製作例を示す。直径d 、 (m
m)を有する丸棒2の両端を機械加工によりJ径d z
 (mm)に削り、中間層3として融点降下元素として
1.5%Bを含む金属薄帯(19%Cr −7,5%S
i−残りNi)を所定厚に巻回した後、丸棒2の両端を
合金管1にそれぞれ挿入し加熱して接合体を得る。この
場合、丸棒2の径d!は合金管lの内径と薄帯厚さ、設
定クリアランス値に合せて選択し、dlはd!+311
IIとした。また第3図ta+の11.12は例えば Ni  =  30+*m 1g  =  lQmm とする。
FIG. 2 shows an example of manufacturing a joined body in which two particle-dispersed alloy tubes 1 are joined via an austenitic stainless steel round bar 2 shown in FIG. 3 according to the present invention. Diameter d, (m
J diameter d z by machining both ends of round bar 2 with
(mm), and as the intermediate layer 3, a metal ribbon containing 1.5% B as a melting point depressing element (19% Cr - 7.5% S
After winding the round bar 2 (remaining Ni) to a predetermined thickness, both ends of the round bar 2 are inserted into the alloy tube 1 and heated to obtain a joined body. In this case, the diameter d of the round bar 2! is selected according to the inner diameter of the alloy tube l, the ribbon thickness, and the set clearance value, and dl is d! +311
It was designated as II. Further, 11.12 of ta+ in FIG. 3 is, for example, Ni = 30+*m 1g = lQmm.

一方、第4図は合金管1の端部に丸棒2で栓をして得ら
れる接合体の構成例を示す、接合部の構成は第2図の場
合と同様である。
On the other hand, FIG. 4 shows an example of the construction of a joined body obtained by plugging the end of an alloy tube 1 with a round rod 2. The construction of the joint is the same as that shown in FIG. 2.

援査甚生斑 第5図に示す接合体(クリープ試験片)を本発明の方法
および比較法による種々の条件で製作し、性能を比較し
た。即ち管・丸棒・中間層の寸法・材質および加熱接合
条件を本発明の範囲内および範囲外において種々に変化
させ、高温接合強度(クリープ破断時間)を比較した。
Joints (creep test pieces) shown in Figure 5 were produced under various conditions according to the method of the present invention and the comparative method, and their performances were compared. That is, the dimensions, materials, and heating bonding conditions of the tube, round bar, and intermediate layer were varied within and outside the scope of the present invention, and the high temperature bonding strength (creep rupture time) was compared.

第5図は、接合後の状態を示したもので、図の接合体は
、合金管lの両端に第4図と同様に端部に段差部を機械
加工した1対の丸棒2を接合して得られるものである。
Figure 5 shows the state after joining, and the joined body shown in the figure has a pair of round bars 2 with stepped parts machined at both ends of the alloy tube l in the same way as shown in Figure 4. It is obtained by doing.

参照符号4は中間層の溶融・拡散・凝固により得られた
接合界面を模式的に示す、第5図における各寸法は次の
とおりである。
Reference numeral 4 schematically indicates a bonding interface obtained by melting, diffusing, and solidifying the intermediate layer, and the dimensions in FIG. 5 are as follows.

Ax  =  4On+m 7!a  =  201+w ’s  =  10mm 1.エ 80+wm なお、丸棒2の14の部分の外周面にはクリープ破断試
験用のネジを刻設する。
Ax = 4On+m 7! a = 201+w's = 10mm 1. D 80+wm Note that a screw for creep rupture test is carved on the outer peripheral surface of the portion 14 of the round bar 2.

試験片は、本発明の範囲内および範囲外において条件を
種々に変化させて製作した0次の第1表は、本発明によ
る例A1〜A15および比較例81〜B6の寸法・材質
・加熱温度等の条件とクリープ破断時間をまとめたもの
である。
Test pieces were manufactured under various conditions both within and outside the scope of the present invention. Table 1 below shows the dimensions, materials, and heating temperatures of Examples A1 to A15 according to the present invention and Comparative Examples 81 to B6. This is a summary of the conditions and creep rupture time.

第1表において IH:  高周波誘導加熱 F: 熱処理炉への装入加熱 (J++旧管外径を3%減少させる 冷間加工後、高周波誘導加熱 V :  1O−3Torrの高真空 Ar:  99.9%のA「雰囲気 NB:  接合不良 である。In table 1 IH: High frequency induction heating F: Charge heating to heat treatment furnace (Reduce J++ old pipe outer diameter by 3% High frequency induction heating after cold working V: High vacuum of 1O-3Torr Ar: 99.9% A "atmosphere" NB: Poor bonding It is.

これらの例Al−A15 、B1−82における合金管
1の材質はいづれもフェライト系粒子分散合金0DS1
である。丸棒2の材質は第1表中に示されている。
The material of the alloy tube 1 in these examples Al-A15 and B1-82 is ferritic particle dispersed alloy 0DS1.
It is. The material of the round bar 2 is shown in Table 1.

次の第2表はこれらの材質の組成を示す。Table 2 below shows the composition of these materials.

また中間層として薄帯インサートを用いる場合は、重量
%でCrを19%、Siを7,5%、Bを1.5%、残
りをNiとする厚さ50μ−または300 μ曽、幅1
01の薄帯を第2図の場合と同様にして丸棒2の外周に
巻き、合金管1内に入れて配置した。
When using a thin ribbon insert as an intermediate layer, the thickness is 50μ or 300μ, and the width is 1.
A ribbon No. 01 was wound around the outer periphery of the round bar 2 in the same manner as in the case shown in FIG. 2, and placed inside the alloy tube 1.

また、中間層の形成方法としては、薄帯インサート法の
他に、 ■丸棒外周に幅10#@の領域に、Bを蒸着後、Neイ
オンを加速電圧30kV、ビーム電流30mAにて、イ
オン注入するイオン注入法、(A13)、■硫酸ニッケ
ル+亜リン酸溶液中にて、丸棒外周に輻10−の領域に
電流密度3 X 10’ (A/da”)にて、電気メ
ツキを行いP富化層を得るPメツキ法(A12) を用いた。
In addition, as a method for forming the intermediate layer, in addition to the thin strip insert method, there are two methods for forming the intermediate layer: ■ After B is vapor-deposited on the outer periphery of the round bar in an area with a width of 10 #, Ne ions are ionized at an accelerating voltage of 30 kV and a beam current of 30 mA. Ion implantation method for implantation, (A13), ■ Electroplating in a nickel sulfate + phosphorous acid solution at a current density of 3 x 10'(A/da") on the radius 10- area on the outer periphery of the round bar. The P plating method (A12) was used to obtain a P-enriched layer.

加熱条件は第1表に示されている通りである。The heating conditions are as shown in Table 1.

即ち、10− ’Torrの高真空(V)または99.
9%のAr雰囲気(Ar)にて1000〜1300℃の
一定温度に5分間保持後、空冷した。加熱方式は、管を
直接誘導加熱する方式(Ill)または熱処理炉方式(
F)とした、なおA14の試験片には、加熱前に管外径
を3%減少させる冷間加工を加えた。
i.e., high vacuum (V) of 10-' Torr or 99.
After being held at a constant temperature of 1000 to 1300° C. for 5 minutes in a 9% Ar atmosphere (Ar), it was air cooled. Heating methods include direct induction heating of the tube (Ill) or heat treatment furnace method (Ill).
The test piece A14 designated as F) was subjected to cold working to reduce the outer diameter of the tube by 3% before heating.

高温接合強度の評価は負荷応力15 kgf/ms”で
のクリープ破断試験によって行った。破断試験は丸棒外
周に刻設されたネジを利用して管の長手方向に引張荷重
を加えて行った。
The high temperature bonding strength was evaluated by a creep rupture test with a load stress of 15 kgf/ms.The rupture test was performed by applying a tensile load in the longitudinal direction of the tube using a screw carved on the outer periphery of a round bar. .

この実験の結果は第1表に示されている。これから分か
るように本発明による接合例^1〜へ15では母材とほ
ぼ同等のクリープ強度が得られている。
The results of this experiment are shown in Table 1. As can be seen, in joining examples ^1 to 15 according to the present invention, creep strength almost equivalent to that of the base material was obtained.

しかし比較例81〜B6では、傘で示すように、合金管
の内側に入れる丸棒にフェライト系ステンレス鋼を用い
たり、中間層を用いなかったり、また、クリアランスが
大きすぎたり、接合温度が低すぎたり大きすぎたりする
。このため比較例では良好な接合は得られず、接合して
もクリープ強度は極端に低い。
However, in Comparative Examples 81 to B6, as shown by the umbrella, ferritic stainless steel was used for the round rod inserted inside the alloy tube, no intermediate layer was used, the clearance was too large, and the joining temperature was low. Too big or too big. Therefore, in the comparative example, good bonding could not be obtained, and even if bonded, the creep strength was extremely low.

(発明の効果) 本発明法は以上のように、融点降下元素を含有する中間
層を合金管と丸棒または管との間に介在させて液相拡散
接合法を利用するとともに、各部材の材質・寸法および
加熱温度等を最適範囲に規定し、挿入丸棒または管の熱
膨張差を接合に利用している。従って本発明によれば高
温強度(クリープ特性)の優れた粒子分散合金の接合部
が得られ、接合強度・気密性が必要な場合の管の接合に
利用可能である。本発明は、例えば核燃料用の被覆管の
端栓接合や二本継ぎ接合にも利用できる。
(Effects of the Invention) As described above, the method of the present invention utilizes a liquid phase diffusion bonding method by interposing an intermediate layer containing a melting point-depressing element between an alloy tube and a round bar or tube, and The material, dimensions, heating temperature, etc. are specified within the optimal range, and the difference in thermal expansion of the inserted round rod or tube is used for joining. Therefore, according to the present invention, a joint of a particle-dispersed alloy with excellent high-temperature strength (creep properties) can be obtained, and can be used for joining pipes when joint strength and airtightness are required. The present invention can also be used, for example, to join end plugs or two-piece joints of cladding tubes for nuclear fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理を示すもので、(alは、管接
合部分の同図(b)のA−A線に沿う断面図、山)は同
図1alのB−BMに沿う横断面図;第2図は、本発明
の接合部構成例を示すもので、(alは接合部の同図(
blのA−A線に沿う断面図、山ンは同図ta+のB−
B線断面図; 第3図は、第2図の接合に用いられる丸棒を示すもので
、(alは正面図、(blは端面図;第4図は、本発明
の他の接合部構成例を示す図であって、fa+は同図山
)のA−A!61断面図、(′b)は同図fatのB−
B線断面図;および 第5図は、本発明例および比較例の接合強度実験に用い
た試験片を模式的に示すもので、+alは部分破断図、
(b)は同図(blのB−BvAに沿う横断面図である
。 1: 粒子分散合金管 2: 丸棒 3: 中間層 4: 接合界面
Fig. 1 shows the principle of the present invention, (al is a cross-sectional view of the tube joint part taken along the line A-A in Fig. 1(b), and the mountain is a cross-sectional view taken along the line B-BM in Fig. 1al). Top view; Figure 2 shows an example of the structure of the joint part of the present invention, (al is the same figure of the joint part (
A cross-sectional view along the A-A line of bl, the peak is B- of ta+ in the same figure.
B-line sectional view; FIG. 3 shows the round bar used for the joining in FIG. 2, (al is a front view, (bl is an end view; FIG. This is a diagram showing an example, where fa+ is a cross-sectional view of A-A!
B-line sectional view; and FIG. 5 schematically show the test pieces used in the joint strength experiments of the present invention example and the comparative example, +al is a partially broken view,
(b) is a cross-sectional view along B-BvA of the same figure (bl). 1: Particle-dispersed alloy tube 2: Round bar 3: Intermediate layer 4: Joint interface

Claims (2)

【特許請求の範囲】[Claims] (1)フェライト系の粒子分散合金管の内部にオーステ
ナイト系材料から成る丸棒または管を挿入して、合金管
内面と丸棒外面または管外面との間に融点降下元素を含
有する中間層を、該中間層と合金管内面及び中間層と丸
棒または管の外面の間のすきまの合計が合金管の内径の
5%以下となるように配置した後、前記中間層の融点以
上で1200℃以下の温度に加熱保持して、合金管の内
面と丸棒または管の外面を接合することを特徴とする粒
子分散合金管の接合方法。
(1) A round rod or tube made of an austenitic material is inserted into a ferritic particle-dispersed alloy tube, and an intermediate layer containing a melting point-depressing element is formed between the inner surface of the alloy tube and the outer surface of the round rod or tube. , After arranging the intermediate layer and the inner surface of the alloy tube and the intermediate layer and the outer surface of the round bar or tube so that the total gap is 5% or less of the inner diameter of the alloy tube, the temperature is 1200° C. at a temperature equal to or higher than the melting point of the intermediate layer. A method for joining particle-dispersed alloy tubes, which comprises heating and maintaining the tube at the following temperature to join the inner surface of the alloy tube and the outer surface of a round bar or tube.
(2)加熱接合前に管外面を機械的に加圧して管径を減
少させる請求項1記載の粒子分散合金管の接合方法。
(2) The method for joining particle-dispersed alloy pipes according to claim 1, wherein the pipe diameter is reduced by mechanically pressurizing the outer surface of the pipe before heating and joining.
JP63230510A 1988-09-14 1988-09-14 Joining method for particle-dispersed alloy tubes Expired - Lifetime JPH0677856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63230510A JPH0677856B2 (en) 1988-09-14 1988-09-14 Joining method for particle-dispersed alloy tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63230510A JPH0677856B2 (en) 1988-09-14 1988-09-14 Joining method for particle-dispersed alloy tubes

Publications (2)

Publication Number Publication Date
JPH0280182A true JPH0280182A (en) 1990-03-20
JPH0677856B2 JPH0677856B2 (en) 1994-10-05

Family

ID=16908886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63230510A Expired - Lifetime JPH0677856B2 (en) 1988-09-14 1988-09-14 Joining method for particle-dispersed alloy tubes

Country Status (1)

Country Link
JP (1) JPH0677856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103611A (en) * 2013-04-05 2014-10-15 富士电机株式会社 Thermocompression bonding structure and thermocompression bonding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159284A (en) * 1983-03-02 1984-09-08 Hitachi Zosen Corp Production of clad steel pipe by diffusion joining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159284A (en) * 1983-03-02 1984-09-08 Hitachi Zosen Corp Production of clad steel pipe by diffusion joining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103611A (en) * 2013-04-05 2014-10-15 富士电机株式会社 Thermocompression bonding structure and thermocompression bonding method
JP2014200825A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Structure of and method for pressurization/heating joint

Also Published As

Publication number Publication date
JPH0677856B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0508414B1 (en) Joined parts of Ni-Ti alloys with different metals and joining method therefor
TWI409129B (en) Iron-chromium based brazing filler metal
JPH11170036A (en) Method for joining or padding titanium-aluminide-made parts with diffusion brazing
KR20110046502A (en) Liquid-diffusion junction pipe joint and its manufacturing method
JP2006159212A (en) Liquid phase diffusion joining method for metallic machine component, and metallic machine component
JPH0280182A (en) Method for joining particle dispersion alloy pipe
JP3259959B2 (en) Composite material and method for producing the same
US3495319A (en) Steel-to-aluminum transition joint
JP7003806B2 (en) Joined structure and its manufacturing method
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
US20230123302A1 (en) Method for welding iron-aluminum intermetallic compound microporous material and welded part made thereby
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere
JPH029779A (en) Production of ceramic-metal composite body
JPS63180377A (en) Manufacture of welding joint
JPH0386367A (en) Method for joining clad steel pipe
JPH05220587A (en) Manufacture of clad steel
JPH0515982A (en) Production of double metallic pipe
JP3020649B2 (en) Manufacturing method of clad steel
JPH03185202A (en) Manufacture of cam shaft
JPH08334229A (en) Method of manufacturing liner for combustor
JPS60152382A (en) Diffusion joining method of copper and stainless steel
EP2351928A1 (en) Common rail, common rail holder, and method for producing common rail
JPH03238169A (en) Joining method for materials for high temperature device
JPS58224086A (en) Diffusion joining method of heat resistant super alloy
JPS6263620A (en) Method for improving residual stress of hollow body