JP2006159212A - Liquid phase diffusion joining method for metallic machine component, and metallic machine component - Google Patents

Liquid phase diffusion joining method for metallic machine component, and metallic machine component Download PDF

Info

Publication number
JP2006159212A
JP2006159212A JP2004350214A JP2004350214A JP2006159212A JP 2006159212 A JP2006159212 A JP 2006159212A JP 2004350214 A JP2004350214 A JP 2004350214A JP 2004350214 A JP2004350214 A JP 2004350214A JP 2006159212 A JP2006159212 A JP 2006159212A
Authority
JP
Japan
Prior art keywords
liquid phase
phase diffusion
joining
bonding
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004350214A
Other languages
Japanese (ja)
Other versions
JP4456471B2 (en
Inventor
Ryuichi Honma
竜一 本間
Hiroshi Hasegawa
泰士 長谷川
Hiroshige Inoue
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004350214A priority Critical patent/JP4456471B2/en
Publication of JP2006159212A publication Critical patent/JP2006159212A/en
Application granted granted Critical
Publication of JP4456471B2 publication Critical patent/JP4456471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid phase diffusion joining method for metallic machine components, which method can shorten a joining time compared with a conventional liquid phase diffusion joining method, and can improve the joining quality, such as an uniform joining structure over the whole region of the joining, the tensile strength, the fatigue strength, etc., and the reliability compared with the conventional resistance welding method, the conventional high frequency welding method, and the conventional solid phase joining method, and is excellent in the quality of the joining portion and the productivity, and further to provide a metallic machine component assembled using the above method. <P>SOLUTION: The liquid phase diffusion joining method for metallic machine components comprises a step for arranging an amorphous alloy foil for the liquid phase diffusion joining on a bevel surface of a metallic material, a step for forming a joining portion as a primary junction by heating and pressing the amorphous alloy foil portion and the metallic material by the high frequency welding method or the non-diffusion type solid phase joining method, and a step for carrying out the liquid phase diffusion joining as a secondary junction by reheating the joining portion above the melting point of the amorphous alloy foil, and then for completing the solidifying process of the joining portion by holding the reheated state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属機械部品の製造方法および金属機械部品に関し、詳しくは、金属機械部品の液相拡散接合方法による製造方法および金属機械部品に関する。   The present invention relates to a method for manufacturing a metal machine part and a metal machine part, and more particularly to a method for manufacturing a metal machine part by a liquid phase diffusion bonding method and the metal machine part.

従来、金属材料同士の接合方法として溶接方法が主に用いられてきたが、近年、これに替わる新たな工業的接合技術として、液相拡散接合法の適用が普及しつつある。   Conventionally, a welding method has been mainly used as a method for joining metal materials, but in recent years, the application of a liquid phase diffusion joining method is becoming widespread as a new industrial joining technique.

液相拡散接合法とは、被接合材料の接合面、すなわち開先面間に、被接合材料に比較して低融点の非晶質合金箔、具体的には結晶構造の50%以上が非晶質であり、かつ拡散律速の等温凝固過程を経て接合継ぎ手を形成する能力を有する元素、例えば、B或いはPを含有し、NiないしFeの基材からなる多元合金箔を介在させた後、継ぎ手をこの非晶質合金箔の融点以上の温度に加熱・保持し、等温凝固過程で継ぎ手を形成する技術である。   In the liquid phase diffusion bonding method, an amorphous alloy foil having a low melting point compared to the material to be bonded, specifically, 50% or more of the crystal structure is non-between the bonding surfaces of the material to be bonded, that is, between the groove surfaces. After interposing a multi-element alloy foil containing a Ni or Fe base material containing an element, for example, B or P, which is crystalline and has an ability to form a joint joint through a diffusion-controlled isothermal solidification process, In this technique, the joint is heated and maintained at a temperature equal to or higher than the melting point of the amorphous alloy foil to form the joint in the isothermal solidification process.

この液相拡散接合法は、通常の溶接法に比べて低入熱で接合が可能であるため熱膨張、収縮に伴う溶接部の残留応力が殆ど生じないこと、溶接法のような溶接部の余盛りが発生しないことから接合表面が平滑で、しかも精密な接合継ぎ手を形成できるという特徴を有している。   This liquid phase diffusion bonding method can be joined with lower heat input than ordinary welding methods, so there is almost no residual stress in the weld due to thermal expansion and contraction. Since there is no surplus, the joining surface is smooth and a precise joining joint can be formed.

特に、液相拡散接合は面接合であるため、接合面の面積に依存することなく接合時間が一定で、しかも比較的短時間で接合が完了しうるという点から従来の溶接法とは全く異なった概念の接合技術である。従って、被接合材の開先面間に挿入した非晶質合金箔の融点以上の温度に継ぎ手を所定時間保持できれば、その開先形状を選ばずに、面同士の接合を実現できるという利点を有している。   In particular, since liquid phase diffusion bonding is surface bonding, it is completely different from conventional welding methods in that the bonding time is constant without depending on the area of the bonding surface and the bonding can be completed in a relatively short time. This is the concept of joining technology. Therefore, if the joint can be maintained for a predetermined time at a temperature equal to or higher than the melting point of the amorphous alloy foil inserted between the groove surfaces of the material to be bonded, it is possible to realize the bonding between the surfaces without selecting the groove shape. Have.

本出願人は、この液相拡散接合法を用いて内部に管路を備えた金属製機械部品を製造する方法について既に特許文献1、2で提案した。   The present applicant has already proposed in Patent Documents 1 and 2 a method for manufacturing a metal mechanical part having a pipe line inside by using this liquid phase diffusion bonding method.

しかし、特許文献1および2に開示された液相拡散接合は接合時間が比較的短時間であるものの、拡散律速で等温凝固が進行する以上、非晶質合金箔中の拡散原子が継ぎ手の融点を十分に上昇させるに足る量だけ被接合材中へ拡散・散逸するためには、厚さ10μmの非晶質合金箔を用いた場合で、合金箔の融点以上の温度に相当する、約900〜1300℃で約60秒以上の等温保持をする必要がある。   However, although the liquid phase diffusion bonding disclosed in Patent Documents 1 and 2 has a relatively short bonding time, the diffusion atoms in the amorphous alloy foil have a melting point of the joint as long as the isothermal solidification progresses at a diffusion rate. In order to diffuse and dissipate into the material to be joined by an amount sufficient to raise the temperature, the amorphous alloy foil having a thickness of 10 μm is used, which corresponds to a temperature equal to or higher than the melting point of the alloy foil. It is necessary to keep isothermal at ˜1300 ° C. for about 60 seconds or more.

液相拡散接合に用いる非晶質合金箔の厚さを薄くすることにより、ある程度までは接合時間を短くすることは可能となるものの、被接合材開先面の加工精度による接合欠陥および継ぎ手強度の劣化への影響が大きくなるため合金箔の厚さ低下にも限界がある。実際には、接合用箔の融点降下のために拡散原子の濃度を高めたり、被接合材料の化学成分に依存することで接合用合金箔は接合時に母材溶融を誘引し、この結果、実質的な接合用合金箔の厚みは50μmを超えることが少なくない。   Although it is possible to reduce the bonding time to some extent by reducing the thickness of the amorphous alloy foil used for liquid phase diffusion bonding, it is possible to reduce the bonding defects and joint strength due to the processing accuracy of the groove surfaces to be bonded. Since the influence on the deterioration of the alloy becomes large, there is a limit to the reduction in the thickness of the alloy foil. In fact, the alloying foil for bonding induces the base material to melt at the time of joining by increasing the concentration of diffusion atoms due to the melting point drop of the joining foil or depending on the chemical composition of the material to be joined. The thickness of a typical bonding alloy foil often exceeds 50 μm.

また、液相拡散接合における加圧応力を高めることによっても、ある程度までは接合時間を短くすることは可能となるものの、加圧応力を高くすることにより被接合材料の座屈変形が生じやすくなるため、加圧応力の増加にも限界がある。   Also, by increasing the pressure stress in liquid phase diffusion bonding, it is possible to shorten the bonding time to a certain extent, but by increasing the pressure stress, buckling deformation of the materials to be joined is likely to occur. For this reason, there is a limit to the increase in pressure stress.

したがって、特許文献1および2に開示された液相拡散接合を用いて金属製機械部品の製造する方法において、金属製機械部品の生産性の向上および製造コストの低減のために液相拡散接合の継ぎ手品質を維持しつつ接合時間を従来よりも短縮することが工業的な課題となっていた。   Therefore, in the method of manufacturing a metal machine part using the liquid phase diffusion bonding disclosed in Patent Documents 1 and 2, the liquid phase diffusion bonding is performed in order to improve the productivity of the metal machine part and reduce the manufacturing cost. It has been an industrial problem to shorten the joining time as compared with the prior art while maintaining the joint quality.

更に、特許文献3、特許文献4および特許文献5には、Al系のシリンダーヘッド本体とFe系のバルブシートの接合において液相拡散接合と通電式抵抗溶接を併用して金属部材を接合する方法と接合装置が開示されているが、何れも一次接合のみの単なる、ろう材を介在させた抵抗溶接に過ぎないものである。   Further, Patent Document 3, Patent Document 4 and Patent Document 5 disclose a method of joining metal members by using both liquid phase diffusion bonding and current-resistance resistance welding in joining an Al-based cylinder head body and an Fe-based valve seat. However, all of them are merely resistance welding with a brazing filler metal interposed between them for primary bonding only.

すなわち、特許文献3〜5で開示された方法における一次接合で生じた抵抗溶接部の未等温凝固組織を、液相拡散接合組織とするための等温凝固拡散処理を行なっていないため、接合部の組織の均一化を図れず、接合品質を十分に向上することは困難である。   That is, since the non-isothermal solidification structure of the resistance welded portion generated in the primary joining in the methods disclosed in Patent Documents 3 to 5 is not subjected to the isothermal solidification diffusion treatment to make the liquid phase diffusion joint structure, It is difficult to make the structure uniform and to sufficiently improve the bonding quality.

上述した技術では一次接合の抵抗溶接によりろう材は極く薄くなるまで加圧排出されるが、抵抗溶接では大面積の加熱溶融ができないため、被接合材の開先面積が大きくなるとともに未接合部、平均接合層厚みの増加が生じ、接合部全面にわたる組織均一化、接合品質の向上は不可能である。
更に、これらの開示技術はFeと、例えばAl等の非鉄金属の異材接合についての継ぎ手の形成技術であって、鉄鋼材料同士、特に鉄基材料同士の接合については何らの記載もない。元より、鉄基材料同士は通常の溶接が適用でき、異材継ぎ手の接合には通常の溶接技術の適用が困難であることから、鉄基材料同士を接合する技術は上記特許文献には記載されていない。
In the above-described technology, the brazing filler metal is pressurized and discharged by resistance welding in the primary joining until it becomes extremely thin. However, since resistance welding cannot heat and melt a large area, the groove area of the material to be joined becomes large and unjoined. The thickness of the joint and the average joint layer is increased, and it is impossible to make the structure uniform and improve the joint quality over the entire joint.
Furthermore, these disclosed technologies are joint forming technologies for joining different materials of Fe and non-ferrous metals such as Al, and there is no description about joining of steel materials, particularly iron base materials. Originally, normal welding can be applied between iron-based materials, and it is difficult to apply normal welding technology for joining dissimilar joints. Therefore, techniques for joining iron-based materials are described in the above-mentioned patent documents. Not.

一方、従来から接合法として、金属製機械部品の製造に多く用いられている大面積でも接合可能な接合技術として、例えば高周波溶接法あるいは摩擦圧接法が知られている。   On the other hand, as a joining method, for example, a high-frequency welding method or a friction welding method is known as a joining technique that can be joined even in a large area that is often used for manufacturing metal mechanical parts.

高周波溶接法は、例えば、金属材料の突き合わせシーム溶接あるいは電縫溶接に用いられ、接触子あるいは誘導子などの給電子により、金属材料に高周波電流を流し、高周波の表皮効果と近接効果により、突き合わせ面が大面積であっても極めて効率的にを加熱、圧接できる溶接法である。このため、高周波溶接法は、通常の抵抗溶接法に比べて、加熱効率が高いため溶接機も小型化が可能で、また連続溶接が可能であり、原理的に接合面積の制限はない。
また、摩擦圧接法は、非拡散型固相接合法の一種であり、接合面を突き合わせて加圧し、その接触面を機械的に相対運動させ、その摩擦熱を熱源とする接合法である。摩擦圧接法は、通電加熱を用いないため、抵抗溶接に比べて大きな電源を必要とせず、また、原理的に大面積の接合が可能である。
The high-frequency welding method is used, for example, for butt seam welding or electro-welding welding of metal materials, and by applying high-frequency current to the metal material by supplying electrons such as a contactor or an inductor, the high-frequency skin effect and proximity effect make a butt match. This is a welding method that can be heated and pressed very efficiently even if the surface has a large area. For this reason, the high-frequency welding method has higher heating efficiency than the ordinary resistance welding method, so that the welding machine can be reduced in size and continuous welding is possible, and there is no restriction on the joint area in principle.
The friction welding method is a kind of non-diffusion-type solid phase bonding method, and is a bonding method in which the bonding surfaces are brought into contact with each other and pressurized, the contact surfaces are mechanically moved relative to each other, and the frictional heat is used as a heat source. Since the friction welding method does not use current heating, it does not require a large power source as compared with resistance welding, and in principle, a large area can be joined.

しかし、上記高周波溶接や摩擦圧接法のみを用いて金属製機械部品を製造する場合には、接合条件の変動により、例えば、接合部での酸化物系介在物の残留による接合欠陥が発生する場合がある。
また、これらの接合法単独で継ぎ手強度を得るためには、接合面の溶融や塑性変形による接合面の密着が必要であるため、接合部近傍には変形が生じ、溶接部において微細な割れが発生したり、開先端部が未接合状態で残存することにより、継ぎ手性能、特に疲労強度の低下の原因となっていた。
この対策として、従来、例えば、材料設計の変更や溶接部形状の改善のための後処理を必要とし、継ぎ手設計の自由度の制約、コストの増大などの問題があった。
However, when manufacturing metal mechanical parts using only the above-mentioned high frequency welding or friction welding method, due to fluctuations in joining conditions, for example, joint defects due to residual oxide inclusions at the joints may occur. There is.
In addition, in order to obtain joint strength by these joining methods alone, it is necessary to bond the joint surface by melting or plastic deformation of the joint surface, so that deformation occurs in the vicinity of the joint, and minute cracks occur in the weld. Occurrence or remaining of the open tip portion in an unbonded state has caused a decrease in joint performance, particularly fatigue strength.
As countermeasures, conventionally, for example, post-processing for changing the material design or improving the shape of the welded portion is required, and there have been problems such as restriction on the degree of freedom in joint design and increase in cost.

これに加えて、高周波溶接法、摩擦圧接法では接合部幅が極めて狭く、しかも開先変形が生じる場合もあるため、非破壊検査による品質保証がし難い等の理由から、特に信頼性が要求される継ぎ手の接合において抵抗溶接における接合品質の向上が工業的な技術的課題である。   In addition, the high-frequency welding method and friction welding method require extremely high reliability because the joint width is extremely narrow and groove deformation may occur, making it difficult to ensure quality through nondestructive inspection. The improvement of the joint quality in resistance welding is an industrial technical problem in the joining of joints.

特願2001―384765号公報Japanese Patent Application No. 2001-384765 特開2001―321963号公報JP 2001-321963 A 特開平11―90619号公報JP-A-11-90619 特開平11―90620号公報Japanese Patent Laid-Open No. 11-90620 特開平11―90621号公報Japanese Patent Application Laid-Open No. 11-90621

本発明は、上述した従来技術が抱える問題点に鑑みて、従来の液相拡散接合法に比べて接合時間の短縮化が可能であり、従来の抵抗溶接法、高周波溶接、固相接合法に比べて接合部全面にわたって接合組織の均一化および引張強度、疲労強度等の継ぎ手品質・信頼性の向上を達成し、継ぎ手部の品質と生産性に優れた金属機械部品の液相拡散接合方法およびそれを用いて組み立てた金属機械部品を提供することを目的とする。   In view of the above-described problems of the conventional technology, the present invention can shorten the bonding time compared to the conventional liquid phase diffusion bonding method, and can be applied to conventional resistance welding, high frequency welding, and solid phase bonding methods. Compared to the entire joint area, the joint structure is made uniform and the joint quality and reliability such as tensile strength and fatigue strength are improved, and the liquid phase diffusion bonding method for metal machine parts with excellent joint quality and productivity and An object of the present invention is to provide a metal machine part assembled using the same.

本発明は、上記課題を解決するためになされたもので、その要旨は次のとおりである。
(1)金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、高周波溶接法により前記非晶質合金箔と前記金属材料とを加熱圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。
(2)金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、非拡散型固相接合法により前記非晶質合金箔と前記金属材料とを加熱圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。
(3)前記固相接合法は、摩擦圧接法、超音波接合法、および、爆発圧接法の何れかであることを特徴とする(2)に記載の金属機械部品の液相拡散接合方法。
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) An amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and the amorphous alloy foil and the metal material are heated and pressure-welded by high-frequency welding as a primary bonding. Forming a part, and then performing a liquid phase diffusion bonding in which the joint part is reheated to a temperature equal to or higher than the melting point of the amorphous alloy foil and then held to complete the solidification process of the joint part as a secondary joining. A liquid phase diffusion bonding method for metal machine parts.
(2) An amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and the amorphous alloy foil and the metal material are heated by a non-diffusion type solid phase bonding method as primary bonding. Liquid phase diffusion to form a joint part by pressure welding, and then hold the joint part again after the reheating above the melting point of the amorphous alloy foil to complete the solidification process of the joint part as secondary joining A liquid phase diffusion bonding method for metal mechanical parts, characterized by performing bonding.
(3) The liquid phase diffusion bonding method for metal machine parts according to (2), wherein the solid phase bonding method is any one of a friction welding method, an ultrasonic bonding method, and an explosion pressure welding method.

(4)前記一次接合により形成される接合合金層の面積が300mm2以上であることを特徴とする(1)〜(3)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(5)前記二次接合による再加熱した後の保持時間が30秒以上であることを特徴とする(1)〜(4)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(6)前記非晶質合金箔の組成が、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、Vを0.1〜10.0原子%含有することを特徴とする(1)〜(5)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(7)前記一次接合による前記非晶質合金箔と前記金属材料との加熱圧接の時間が100秒以下であることを特徴とする(1)〜(6)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(4) The liquid phase diffusion bonding method for metal machine parts according to any one of (1) to (3), wherein an area of the bonding alloy layer formed by the primary bonding is 300 mm 2 or more. .
(5) The liquid phase diffusion bonding method for metal machine parts according to any one of (1) to (4), wherein a holding time after reheating by the secondary bonding is 30 seconds or more. .
(6) The composition of the amorphous alloy foil is based on Ni or Fe, and contains 0.1 to 20.0 atomic percent of one or more of B, P and C as diffusion atoms, respectively. Further, the liquid phase diffusion bonding method for metal machine parts according to any one of (1) to (5), further comprising 0.1 to 10.0 atomic% of V.
(7) The metal according to any one of (1) to (6), wherein a time of heating and pressing between the amorphous alloy foil and the metal material by the primary bonding is 100 seconds or less. Liquid phase diffusion bonding method for machine parts.

(8)前記一次接合による前記非晶質合金箔と前記金属材料との加熱圧接における加圧力が10〜1000MPaであることを特徴とする(1)〜(7)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(9)前記一次接合により形成した継ぎ手部の断面組織における未等温凝固組織の加圧方向の厚みが、平均で10μm以下であることを特徴とする(1)〜(8)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(10)前記一次接合により形成した継ぎ手部の継ぎ手効率が0.5〜1.0であることを特徴とする(1)〜(9)の何れか1項に記載の金属機械部品の液相拡散接合方
法。
(11)前記継ぎ手部の凝固過程の完了後、0.1〜50℃/秒の冷却速度で冷却して継ぎ手組織を制御することを特徴とする(1)〜(10)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(12)金属材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品であり、該金属機械部品の接合ままの金属組織における旧オーステナイト結晶の最大粒径は500μm以下であることを特徴とする金属機械部品。
(8) The pressurizing force in the heat-pressure welding between the amorphous alloy foil and the metal material by the primary joining is 10 to 1000 MPa, (1) to (7) Liquid phase diffusion bonding method for metal machine parts.
(9) The thickness in the pressurizing direction of the non-isothermal solidified structure in the cross-sectional structure of the joint portion formed by the primary joining is 10 μm or less on average and any one of (1) to (8) A liquid phase diffusion bonding method for metal mechanical parts as described in 1 above.
(10) The liquid phase of the metal machine component according to any one of (1) to (9), wherein the joint efficiency of the joint portion formed by the primary joining is 0.5 to 1.0. Diffusion bonding method.
(11) Any one of (1) to (10), wherein after the solidification process of the joint portion is completed, the joint structure is controlled by cooling at a cooling rate of 0.1 to 50 ° C./second. A liquid phase diffusion bonding method for metal mechanical parts as described in 1 above.
(12) A metal machine part comprising a joint formed by a liquid phase diffusion bonding with a metal material, wherein the maximum grain size of the prior austenite crystal in the metal structure of the metal machine part as bonded is 500 μm or less. Metal machine parts.

本発明によれば、液相拡散接合を用いて継ぎ手を形成して機械金属部品を製造する際に、金属材料の開先間に液相拡散接合用非晶質合金箔を介在させ、一次接合として、高周波溶接法、または、非拡散型固相接合法により非晶質合金箔を加熱圧接して、接合部全面にわたって非晶質合金箔が溶融、凝固して形成される極めて薄い厚みの接合合金層を設け、引き続き、非晶質合金箔の融点以上の再加熱温度で、後液相拡散接合の等温凝固過程を付与することで組織の均質性と、引張強度、靭性、疲労強度等の良好な機械的特性を有し、変形量の少ない継ぎ手を得ることができる。その結果、継ぎ手品質及び信頼性の高い金属機械部品を高い生産性で製造することができる。   According to the present invention, when manufacturing a mechanical metal part by forming a joint using liquid phase diffusion bonding, an amorphous alloy foil for liquid phase diffusion bonding is interposed between the grooves of the metal material to perform primary bonding. As a result, the amorphous alloy foil is heated and pressed by high-frequency welding or non-diffusion type solid-phase bonding, and the amorphous alloy foil is melted and solidified over the entire bonded portion. By providing an alloy layer and subsequently applying an isothermal solidification process of post-liquid phase diffusion bonding at a reheating temperature above the melting point of the amorphous alloy foil, the homogeneity of the structure, tensile strength, toughness, fatigue strength, etc. A joint having good mechanical properties and a small amount of deformation can be obtained. As a result, metal parts having high joint quality and high reliability can be manufactured with high productivity.

本発明法は、従来、通常の機械加工、研削、穿孔では製造できない形状の金属機械部品、更には生産性が低く、材料歩留まりの低い高コストの金属機械部品を、高生産性で、かつ低コストで製造できる全く新しい金属機械部品の溶接技術を提供するものであり、液相拡散接合の適用により達成しうる金属機械部品の機能向上と供給に大きく寄与しうるものである。   The method of the present invention can be applied to high-productivity and low-cost metal machine parts that cannot be manufactured by conventional machining, grinding, and drilling, and high-cost metal machine parts that have low productivity and low material yield. It provides a completely new welding technology for metal machine parts that can be manufactured at low cost, and can greatly contribute to the improvement and supply of functions of metal machine parts that can be achieved by applying liquid phase diffusion bonding.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明法は、被接合材料として金属材料を用い、この金属材料端部に形成された開先面間に液相拡散接合用の非晶質合金箔を介在させて突合せた後、一次接合として、高周波溶接法、または、非拡散型固相接合法により接合部全面にわたって前記非晶質合金箔と前記金属材料とを加熱圧接して継ぎ手部を形成する。   In the method of the present invention, a metal material is used as a material to be joined, and after abutting with an amorphous alloy foil for liquid phase diffusion joining between the groove surfaces formed at the end of the metal material, the primary joining is performed. The amorphous alloy foil and the metal material are heated and pressed over the entire surface of the joint by high-frequency welding or non-diffusion solid-phase joining to form a joint.

この一次接合では、短時間で接合開先面表層を効率的に加熱可能で、かつ大面積に適用できる接合方法、例えば、高周波溶接法、または、非拡散型固相接合法が用いられる。なお、非拡散型固相接合法とは、短時間で加熱・圧接が可能な、例えば、摩擦圧接法、爆発圧接、超音波接合などが適用可能である。   In this primary bonding, a bonding method capable of efficiently heating the surface of the bonding groove surface in a short time and applicable to a large area, for example, a high frequency welding method or a non-diffusion type solid phase bonding method is used. As the non-diffusion type solid-phase bonding method, for example, a friction welding method, an explosion welding method, an ultrasonic bonding method, or the like that can be heated and pressed in a short time can be applied.

この一次接合では、溶接入熱によって被接合材料の開先面と液相拡散接合用合金箔は加熱され、一部溶融し、かつその加圧応力でアップセットされて加熱溶融時に生成した酸化物および開先表面に存在していた爽雑物を溶融メタルと共に接合面外に排出される。   In this primary bonding, the groove surface of the material to be joined and the alloy foil for liquid phase diffusion bonding are heated by welding heat input, partially melted, and upset by the pressure stress, and the oxide generated at the time of heat melting Further, the extraneous matter present on the groove surface is discharged out of the joint surface together with the molten metal.

また、一次接合において、被接合材料の開先面間に挿入する液相拡散接合用の非晶質合金箔は、被接合材料である鉄鋼材料に比較して低融点であり、箔の体積の50%以上が非晶質の構造を有する非晶質合金箔が用いられる。   In primary bonding, the amorphous alloy foil for liquid phase diffusion bonding inserted between the groove surfaces of the material to be bonded has a lower melting point than the steel material as the material to be bonded, and the volume of the foil An amorphous alloy foil having an amorphous structure of 50% or more is used.

被接合材の開先面間に900〜1200℃程度の被接合材料に比べて低融点の液相拡散接合用合金箔を介在して一次接合により加圧圧接することによって、開先面に液相拡散接合用合金箔が均一に溶融されると同時に、加熱溶融で生成した酸化物および開先表面に残留していた爽雑物を溶融メタルと共に接合面外に排出される効果が促進される。   Compared with the material to be joined at 900 to 1200 ° C. between the groove surfaces of the material to be joined, a liquid phase diffusion bonding alloy foil having a low melting point is interposed and pressure-welded by primary joining so that a liquid phase is formed on the groove surface. The diffusion bonding alloy foil is uniformly melted, and at the same time, the effect of discharging the oxide generated by heat melting and the extraneous matter remaining on the groove surface together with the molten metal to the outside of the bonding surface is promoted.

なお、本発明における液相拡散接合用の非晶質合金箔の組成は、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、一次接合の際に接合面間において生成された酸化物を低融点化する作用を有するVを0.1〜10.0原子%含有するものであることが好ましい。   The composition of the amorphous alloy foil for liquid phase diffusion bonding in the present invention is based on Ni or Fe, and one or more of B, P and C as diffusion atoms is 0.1. It contains ˜20.0 atomic%, and further contains 0.1 to 10.0 atomic% of V having an effect of lowering the melting point of the oxide generated between the joint surfaces during the primary joining. Is preferred.

液相拡散接合用合金箔中のB、P及びCは、二次接合としての液相拡散接合を達成するために必要な等温凝固を実現させるための拡散元素として、あるいは融点を被接合材よりも低くするために必要な元素であり、その作用を充分に得るために0.1原子%以上含有する必要があるが、過度に添加すると、結晶粒に粗大な硼化物、金属化合物、または、炭化物が生成し接合部強度が低下するためその上限を20.0原子%とするのが好ましい。   B, P, and C in the alloy foil for liquid phase diffusion bonding are used as diffusion elements for realizing isothermal solidification necessary for achieving liquid phase diffusion bonding as secondary bonding, or have a melting point higher than that of the material to be bonded. In order to sufficiently obtain its action, it is necessary to contain 0.1 atomic% or more, but if added excessively, a coarse boride, metal compound, or Since carbides are generated and the joint strength is reduced, the upper limit is preferably made 20.0 atomic%.

液相拡散接合用合金箔中のVは、一次接合時に開先面間で生成した酸化物あるいは残留酸化物(Fe23)と瞬時に反応し、低融点複合酸化物(V25−Fe23、融点:約800℃以下)に変える作用を有し、一次接合時の加圧応力により低融点複合酸化物を溶融金属とともに溶融・排出し、接合部の酸化物系介在物を低減する効果がえられる。この作用・効果は、特に酸素濃度0.1%以上の酸化雰囲気下で接合する場合に顕著に発揮され、この作用・効果を充分に得るためには、Vを0.1原子%以上含有させるのが好ましい。一方、Vを10.0原子%を超えて過度に添加すると、V系酸化物の個数が増加し残留酸化物が却って増加し、また、液相拡散接合用合金箔の融点を高め、二次接合としての液相拡散接合を困難とするため、その上限を10.0原子%とするのが好ましい。 V in the alloy foil for liquid phase diffusion bonding reacts instantaneously with the oxide or residual oxide (Fe 2 O 3 ) generated between the groove surfaces during the primary bonding, and a low melting point composite oxide (V 2 O 5). -Fe 2 O 3 , melting point: about 800 ° C. or less), and melts and discharges the low melting point composite oxide together with the molten metal by the pressure stress at the time of primary joining, and oxide inclusions at the joint The effect of reducing is obtained. This action / effect is remarkably exhibited particularly when bonding is performed in an oxidizing atmosphere having an oxygen concentration of 0.1% or more. In order to sufficiently obtain this action / effect, V is contained in an amount of 0.1 atomic% or more. Is preferred. On the other hand, when V is added excessively exceeding 10.0 atomic%, the number of V-based oxides increases and the residual oxides increase, and the melting point of the alloy foil for liquid phase diffusion bonding is increased. In order to make liquid phase diffusion bonding as bonding difficult, the upper limit is preferably 10.0 atomic%.

また、本発明において一次接合として用いられる接合法は、開先面全体を短時間で効率的に加熱圧接が可能である、高周波溶接法、または、非拡散型固相接合法が用いられる。また、非拡散型固相接合法としては、摩擦圧接、爆発圧接、および、超音波接合のいずれかの接合法が好ましい。
高周波溶接法は、例えば、金属材料の突き合わせシーム溶接あるいは電縫溶接に用いられ、接触子あるいは誘導子などの給電子により、金属材料に高周波電流を流し、高周波の表皮効果と近接効果により、突き合わせ面が大面積であっても極めて効率的にを加熱、圧接できる溶接法である。このため、高周波溶接法は、通常の抵抗溶接法に比べて、加熱効率が高いため溶接機も小型化が可能で、連続的に溶接できるため原理的に接合面積の制限はなく、例えば鋼管を長手方向へ接合する場合など、開先面が細長い時に特に有効である。なおその際の溶接条件は開先面の形状や面積を考慮して適切な投入熱量と加圧力をその都度選択する必要があるが、電源の周波数に関しては開先面の表層のみを効率的に加熱するために50kHz以上が好ましい。
また、非拡散型固相接合法の一種である摩擦圧接法は、接合面を突き合わせて加圧し、その接触面を機械的に相対運動させ、その摩擦熱を熱源とする接合法である。摩擦圧接法は、通電加熱を用いないため、抵抗溶接に比べて大きな電源を必要とせず、また、原理的に大面積の接合が可能(通常市販装置では、直径:約100mm以上、面積:約7500mm2以上の接合が可能)である。その際部材の形状が軸対称で、かつ接合界面が回転軸に垂直の場合に適用可能で、被接合材料同士の電気的性質が著しく異なる場合や部材中に接合面よりも断面積が小さい箇所が存在し、抵抗発熱が発生する可能性がある場合など電気的な制約や高電流による磁界の発生が問題となる場合には摩擦圧接法が有効である。
非拡散型固相接合法として、上記摩擦圧接法以外に、爆発圧接、および、超音波接合も同様に適用でき、これらの接合法は、非接合材料の形状や設備制約等によって適宜最良の方法を選択すればよく特に限定する必要はない。例えば、爆発圧接は常温接合であるため、被接合材料を加熱すると脆い金属間化合物を生成する組成の場合に有効であり、また一度の爆発で多層接合が可能であるため、接合面が複数層存在する場合に有効な手段である。
非拡散型固相接合法とは、液相拡散接合法や固相拡散接合法に代表される元素の拡散現象を利用した拡散型固相接合法は含まれない。液相拡散接合法や固相拡散接合法は、接合時間が数時間程度必要であり、本発明の接合継ぎ手の生産性向上の目的から本発明の一次接合に適用する接合法としては適さない。
In addition, as a joining method used as primary joining in the present invention, a high-frequency welding method or a non-diffusion type solid-phase joining method, which can efficiently heat-weld the entire groove face in a short time, is used. Further, as the non-diffusion type solid phase bonding method, any one of friction welding, explosion welding, and ultrasonic bonding is preferable.
The high-frequency welding method is used, for example, for butt seam welding or electric seam welding of metal materials, and by applying a high-frequency current to the metal material by supplying electrons such as a contactor or an inductor, the high-frequency skin effect and proximity effect make a butt contact. This is a welding method that can be heated and pressed very efficiently even if the surface has a large area. For this reason, the high-frequency welding method has a higher heating efficiency than the normal resistance welding method, so the welding machine can be downsized and can be continuously welded. This is particularly effective when the groove surface is elongated, such as when joining in the longitudinal direction. It is necessary to select the appropriate heat input and pressure each time considering the shape and area of the groove surface as the welding conditions at that time, but with regard to the frequency of the power source, only the surface layer of the groove surface is efficiently used. In order to heat, 50 kHz or more is preferable.
The friction welding method, which is a kind of non-diffusion type solid-phase bonding method, is a bonding method in which bonding surfaces are brought into contact with each other and pressurized, the contact surfaces are mechanically moved relative to each other, and the friction heat is used as a heat source. Since the friction welding method does not use current heating, it does not require a large power source compared to resistance welding, and in principle can be joined in a large area (usually a commercially available device has a diameter of about 100 mm or more and an area of about: 7500 mm 2 or more can be joined). Applicable when the shape of the member is axisymmetric and the bonding interface is perpendicular to the rotation axis, and where the electrical properties of the materials to be joined differ significantly, or where the cross-sectional area is smaller than the bonding surface in the member The friction welding method is effective when there is a problem of electrical restrictions or the generation of a magnetic field due to a high current, such as when there is a possibility of resistance heating.
In addition to the friction welding method, explosion welding and ultrasonic bonding can be applied in the same manner as the non-diffusion type solid-phase bonding method. These bonding methods are appropriately the best method depending on the shape of the non-bonding material, equipment constraints, etc. There is no need to specifically limit. For example, explosive pressure welding is room temperature bonding, so it is effective in the case of a composition that generates brittle intermetallic compounds when the material to be joined is heated. It is an effective means when it exists.
The non-diffusion-type solid-phase bonding method does not include a diffusion-type solid-phase bonding method using a diffusion phenomenon of an element represented by a liquid-phase diffusion bonding method or a solid-phase diffusion bonding method. The liquid phase diffusion bonding method and the solid phase diffusion bonding method require several hours of bonding time, and are not suitable as the bonding method applied to the primary bonding of the present invention for the purpose of improving the productivity of the bonding joint of the present invention.

上記一次接合により、被接合材の開先面間に介在した液相拡散接合用の非晶質合金箔は加熱、一部溶融した後、凝固して形成される接合合金層が形成される。本発明では、一次接合として、高周波溶接法、または、非拡散型固相接合法を用いるため、被接合材のサイズが大きく、開先面が大きくなる場合でも、短時間で、開先面の全面にわたり大面積で薄い厚みの接合合金層を形成することが可能である。
接合継ぎ手の生産性および接合品質の両方を向上させる観点から、一次接合時間は100秒以下とし、接合合金層の面積は300mm2以上とし、接合合金層の厚みを10μm以下とするのが好ましい。
By the primary bonding, the amorphous alloy foil for liquid phase diffusion bonding interposed between the groove surfaces of the materials to be bonded is heated, partially melted, and then solidified to form a bonded alloy layer. In the present invention, since the high-frequency welding method or the non-diffusion-type solid phase bonding method is used as the primary bonding, even when the size of the material to be bonded is large and the groove surface becomes large, the groove surface can be formed in a short time. It is possible to form a bonding alloy layer having a large area and a thin thickness over the entire surface.
From the viewpoint of improving both productivity and quality of the joint, it is preferable that the primary joining time is 100 seconds or less, the area of the joining alloy layer is 300 mm 2 or more, and the thickness of the joining alloy layer is 10 μm or less.

また、一次接合における加圧応力は、開先面間の液相拡散接合用の非晶質合金箔を溶融、凝固して形成される接合合金層の厚みを10μm以下までに低減し、二次接合としての液相拡散接合の接合時間を短縮化するためには、10MPa以上必要であり、一方、過度に加圧応力が高いと接合継ぎ手の変形が生じるため1000MPa以下とする必要がある。したがって抵抗溶接の加圧応力は、10〜1000MPaとするのが好ましい。なお、接合継ぎ手の変形程度は、被接合材料の溶接温度でのヤング率によって変化するため、加圧応力の上限は被接合材料の材質によって調整するのがよりこのましい。   Further, the pressure stress in the primary joining reduces the thickness of the joining alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion joining between the groove surfaces to 10 μm or less, and the secondary joining. In order to shorten the bonding time of the liquid phase diffusion bonding as the bonding, 10 MPa or more is necessary. On the other hand, when the pressure stress is excessively high, deformation of the joint is generated, and therefore it is necessary to set the pressure to 1000 MPa or less. Therefore, the pressure stress in resistance welding is preferably 10 to 1000 MPa. Since the degree of deformation of the joint is changed by the Young's modulus at the welding temperature of the material to be joined, it is more preferable to adjust the upper limit of the pressure stress depending on the material of the material to be joined.

更に、一次接合により形成した継ぎ手部の継ぎ手効率(鉄鋼材料の開先面の面積/非晶質合金箔と鉄鋼材料を加熱圧接した後の継ぎ手部位の面積)は、開先の形状に起因する接合後の継ぎ手拘束効果を加味し、継ぎ手の静的引張り強さを母材並み以上の引張り強さを確保するために0.5以上必要であり、また、加熱圧接時の高加圧応力によって継ぎ手部位が膨潤する結果、継ぎ手部面積が母材部断面積より広くなる場合を考慮し、良好な継ぎ手特性を得るためにその上限を1.0とすることが好ましい。   Furthermore, the joint efficiency (the area of the groove surface of the steel material / the area of the joint portion after heat-welding the amorphous alloy foil and the steel material) of the joint portion formed by the primary joining is caused by the shape of the groove. In consideration of the joint restraint effect after joining, the joint must have a static tensile strength of 0.5 or more in order to ensure a tensile strength equal to or higher than that of the base material. Considering the case where the joint part area is larger than the cross-sectional area of the base material part as a result of swelling of the joint part, the upper limit is preferably set to 1.0 in order to obtain good joint characteristics.

上記に示した一次接合により、被接合材の開先面間に挿入した液相拡散接合用の非晶質合金箔を短時間で溶融圧接することによって、非晶質合金が溶融、凝固して形成される極めて薄い厚みの接合合金層を形成できる。本発明者らによる実験では、光学顕微鏡による継ぎ手断面組織の観察結果から、一次接合で得られた非晶質合金箔が溶融、凝固した組織からなる接合合金層の厚みは最大で7μm以下、平均厚みで3μm以下となることを確認している。   By the primary bonding shown above, the amorphous alloy foil for liquid phase diffusion bonding inserted between the groove surfaces of the materials to be bonded is melt-welded in a short time, so that the amorphous alloy is melted and solidified. An extremely thin bonding alloy layer can be formed. In the experiment by the present inventors, from the observation result of the joint cross-sectional structure by the optical microscope, the thickness of the bonded alloy layer composed of the structure obtained by melting and solidifying the amorphous alloy foil obtained by the primary bonding is a maximum of 7 μm or less, the average It has been confirmed that the thickness is 3 μm or less.

このように極めて薄い液相拡散接合用の非晶質合金が溶融、凝固して形成される接合合金層は、その後の二次接合としての液相拡散接合において、非晶質合金箔の融点以上の温度で約15秒間保持することにより実質的に等温凝固はほぼ終了し、約30秒間の保持であれば、被接合材料として通常炭素鋼を用いる場合では、完全な等温凝固組織を得られることを、拡散方程式による推定計算および実験により確認している。   The bonding alloy layer formed by melting and solidifying the extremely thin amorphous alloy for liquid phase diffusion bonding in this way is equal to or higher than the melting point of the amorphous alloy foil in the liquid phase diffusion bonding as the subsequent secondary bonding. The isothermal solidification is substantially completed by holding for about 15 seconds at a temperature of about 30 seconds, and if it is held for about 30 seconds, a complete isothermal solidification structure can be obtained when carbon steel is normally used as the material to be joined. Is confirmed by calculation and experiments using a diffusion equation.

図1は、液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層(本発明法の場合は一次接合後の合金層、従来法の場合は加圧溶融後の合金層)の厚みと、その合金層の等温凝固が終了するまでの保持時間(未等温凝固組織が観察できなくなるまでの保持時間)との関係を示した図である。   FIG. 1 shows an alloy layer formed by melting and solidifying an amorphous alloy foil for liquid phase diffusion bonding (in the case of the present invention, an alloy layer after primary bonding, in the case of the conventional method, an alloy after pressure melting) FIG. 5 is a diagram showing the relationship between the thickness of the layer) and the holding time until the isothermal solidification of the alloy layer is completed (the holding time until the non-isothermal solidified structure cannot be observed).

従来の液相拡散接合法では、加圧力の増加により液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層の厚みをある程度まで低減することは可能であるが、加圧力の増加により継ぎ手変形が発生するため、図1に示すようにその合金層の厚みは10μm以下に薄くすることは困難であり、液相拡散接合の等温凝固が完了するまでの保持時間は100秒以上必要であった。仮に、従来法で等温凝固保持時間を100秒以下にした場合には、接合合金層に非晶質合金箔の未等温凝固組織が残留してしまい、継ぎ手の強度、靱性などの特性は母材に比較して著しく低下してしまうという問題が生じる。
一方、図2は、金属機械部品の接合部における開先面積と最適条件で一次接合した場合に接合界面に存在する接合合金層の厚みとの関係を示した図である。
一次接合に抵抗溶接を用いた場合、開先面積が300mm2を超えた付近から開先面積の増大と共に一次接合後に形成される接合界面の合金層の厚みが急激に増加する。これは溶接機電源の能力の関係上、開先面の電流密度が低下する結果、非晶質合金箔が溶融し、加圧過程と共に開先面外に排出される非晶質合金箔の量が少なくなるためである。また開先面同士が僅かでも傾いて接触すると、最初に接触した部分に入熱が集中してしまい、他の部分が十分に加熱されないと言った問題が開先面積を大きくした場合にしばしば生じる。
In the conventional liquid phase diffusion bonding method, it is possible to reduce the thickness of the alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding to an extent by increasing the applied pressure. Since joint deformation occurs due to an increase in pressure, it is difficult to reduce the thickness of the alloy layer to 10 μm or less as shown in FIG. 1, and the holding time until the isothermal solidification of liquid phase diffusion bonding is completed is 100. Needed more than a second. If the isothermal solidification holding time is set to 100 seconds or less by the conventional method, the non-isothermal solidified structure of the amorphous alloy foil remains in the bonded alloy layer, and characteristics such as joint strength and toughness are the base material. There arises a problem that it is remarkably reduced as compared with the above.
On the other hand, FIG. 2 is a diagram showing the relationship between the groove area at the joint of the metal machine component and the thickness of the joining alloy layer present at the joint interface when primary joining is performed under the optimum conditions.
When resistance welding is used for primary joining, the thickness of the alloy layer at the joint interface formed after the primary joining increases rapidly as the groove area increases from the vicinity where the groove area exceeds 300 mm2. This is because the current density on the groove surface decreases due to the ability of the power source of the welder, so that the amorphous alloy foil melts and is discharged out of the groove surface during the pressurizing process. This is because there is less. Also, if the groove surfaces are in contact with each other even if they are slightly inclined, the heat input concentrates on the first contacted part, and the problem that the other part is not sufficiently heated often occurs when the groove area is increased. .

これに対して、本発明法では、一次接合(高周波溶接)により、液相拡散接合用の非晶質合金箔が溶融、凝固して生成した接合合金層の平均厚みは開先面積が300mm2を超える大面積の開先条件でも7μm以下に低減することができる。したがって、この一次接合に続く二次接合(液相拡散接合)により液相拡散接合の等温凝固が完了する(接合合金層の未等温凝固組織が完全に消失する)までの保持時間を30秒以下に短縮することができる。本発明者らの実験では、図に示すように、一次接合(高周波溶接)により接合合金層の平均厚みを3μmまで薄くすることができることを確認し、この場合には二次接合(液相拡散接合)により15秒の保持時間で等温凝固が完了する(接合合金層の未等温凝固組織が完全に消失する)ことが期待できる。以上から、本発明法により従来の液相拡散性接合に比べて同等以上の継ぎ手品質を維持しつつ接合時間を大幅に短縮し、生産性の向上が期待できる。 On the other hand, in the method of the present invention, the average thickness of the bonded alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding by primary bonding (high frequency welding) has a groove area of 300 mm 2. Can be reduced to 7 μm or less even in groove conditions of a large area exceeding. Therefore, the holding time until the isothermal solidification of the liquid phase diffusion bonding is completed by the secondary bonding (liquid phase diffusion bonding) subsequent to the primary bonding (the non-isothermal solidification structure of the bonded alloy layer completely disappears) is 30 seconds or less. Can be shortened. In our experiments, as shown in the figure, it was confirmed that the average thickness of the bonded alloy layer can be reduced to 3 μm by primary bonding (high frequency welding). In this case, secondary bonding (liquid phase diffusion) It can be expected that the isothermal solidification is completed with a holding time of 15 seconds (the non-isothermal solidification structure of the bonded alloy layer is completely lost). From the above, the method of the present invention can greatly reduce the bonding time while maintaining the same or better joint quality as compared with the conventional liquid phase diffusive bonding, and can be expected to improve the productivity.

図3は、本発明法の二次接合(液相拡散接合)における等温凝固保持時間と接合継ぎ手強度との関係を示した図である。   FIG. 3 is a diagram showing the relationship between the isothermal solidification holding time and the joint strength in the secondary joining (liquid phase diffusion joining) of the method of the present invention.

なお、接合継ぎ手強度は、継ぎ手を接合面から引き離す方向に引張り試験を実施した場合の母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。   The joint joint strength was expressed as the ratio of the tensile strength of the joint joint to the tensile strength of the base material when the tensile test was performed in the direction in which the joint was pulled away from the joint surface. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken.

実際の接合では、本発明の一次接合により開先面に形成される液相拡散接合用非晶質合金箔が溶融、凝固して生成される接合合金層の厚みは、開先面の位置によってバラツキが生じるが、図3から、二次接合(液相拡散接合)における等温凝固保持時間を少なくとも30秒以上とすることにより継ぎ手の引張り試験結果は母材破断となり、母材の引張強さ以上の良好な継ぎ手強度が得られる。   In actual bonding, the thickness of the bonding alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding formed on the groove surface by the primary bonding of the present invention depends on the position of the groove surface. Although variation occurs, it can be seen from FIG. 3 that when the isothermal solidification retention time in secondary bonding (liquid phase diffusion bonding) is at least 30 seconds or more, the tensile test result of the joint becomes the base material fracture, which exceeds the tensile strength of the base material. Good joint strength can be obtained.

本発明法では、上記実験結果を踏まえ、従来の液相拡散接合法と同等以上の継ぎ手強度を確保するために二次接合(液相拡散接合)の等温凝固保持時間を30秒以上とするのが好ましい。   In the method of the present invention, based on the above experimental results, the isothermal solidification holding time of the secondary bonding (liquid phase diffusion bonding) is set to 30 seconds or more in order to ensure a joint strength equal to or higher than that of the conventional liquid phase diffusion bonding method. Is preferred.

なお、二次接合(液相拡散接合)の等温凝固保持時間は、増加するとともに所定の継ぎ手強度を安定して得ることができるが、過度に等温凝固保持時間を増加すると、継ぎ手の金属組織の旧γ結晶粒径が粗大化し、継ぎ手の靭性が低下するためその上限は100秒以下とするのがより好ましい。   In addition, the isothermal solidification holding time of the secondary bonding (liquid phase diffusion bonding) increases and a predetermined joint strength can be stably obtained. However, if the isothermal solidification holding time is excessively increased, the metal structure of the joint is increased. Since the old γ crystal grain size becomes coarse and the toughness of the joint decreases, the upper limit is more preferably 100 seconds or less.

本発明では、二次接合後、つまり、液相拡散接合の等温凝固が終了後に、さらに、被接合材料の鋼種に応じて冷却速度を制御することにより所望の金属組織、例えば、炭素鋼であれば、フェライト+パーライト、フェライト、ベイナイト、マルテンサイト等の金属組織が得られ、また、オーステナイト鋼であれば接合時に生じる析出物などの介在物を再固溶する作用により良好な金属組織を有する接合継ぎ手を得ることが可能となる。   In the present invention, after the secondary joining, that is, after the isothermal solidification of the liquid phase diffusion joining is completed, the desired metal structure such as carbon steel can be obtained by controlling the cooling rate according to the steel type of the material to be joined. For example, ferrite + pearlite, ferrite, bainite, martensite and other metal structures can be obtained, and if it is austenitic steel, it has a good metal structure due to the effect of re-dissolving inclusions such as precipitates generated during bonding A joint can be obtained.

本発明では、金属機械部品に要求される継ぎ手の強度、靭性の向上のために最低限必要な低温変態組織(ベイナイトまたはマルテンサイト)割合を確保するために、二次接合後、つまり、液相拡散接合の等温凝固が終了後の冷却速度を0.1℃/秒以上とするのが好ましく、過度の冷却は、靭性、延性の低下などの原因となるため冷却速度の上限を50℃/秒とするのが好ましい。上記冷却速度の制御により、フェライト鋼同士、オーステナイト鋼同士、またはフェライト鋼とオーステナイト鋼の異材継ぎ手であっても、健全かつ親和性の高い継ぎ手を形成することができる。   In the present invention, in order to ensure the minimum required low-temperature transformation structure (bainite or martensite) ratio for improving the strength and toughness of the joints required for metal mechanical parts, after the secondary joining, that is, the liquid phase It is preferable to set the cooling rate after completion of isothermal solidification of diffusion bonding to 0.1 ° C./second or more. Excessive cooling causes a decrease in toughness and ductility, so the upper limit of the cooling rate is 50 ° C./second. Is preferable. By controlling the cooling rate, even a ferritic steel, austenitic steel, or a dissimilar joint between ferritic steel and austenitic steel can form a healthy and highly compatible joint.

なお、本発明法において、上述の冷却後に、さらに、金属組織を調質する目的で、再加熱して焼き入れ、焼き戻し、焼き入れ+焼き戻し、などの熱処理を単独でまたは複数回繰り返したり、組み合わせたりして適用することも可能であり、この場合には継ぎ手組織はより一層均質化されて、本発明の効果を更に高めることができる。   In the method of the present invention, after the cooling described above, for the purpose of further tempering the metal structure, heat treatment such as reheating and quenching, tempering, quenching + tempering, etc. may be repeated alone or multiple times. In this case, the joint structure can be further homogenized and the effect of the present invention can be further enhanced.

なお、残留オーステナイトを忌避する材料では深冷化処理も有効であり、時効による変形を抑制することができる。   In addition, a deep cooling process is also effective in the material which repels a retained austenite, and can suppress the deformation | transformation by aging.

上記に示した本発明の実施形態により、従来の単独の抵抗溶接法、高周波溶接などに比べて継ぎ手の変形量を低減でき、金属機械部品の組み立てを行なう場合など、穿孔、切削、切断などの通常の機械加工を駆使しても加工できない形状の機械部品、或いは組み合わせの困難な難溶接材料の異材継ぎ手を含む機械部品、更には削り出しのよって大きな材料コストの上昇が起こるような機械部品の組み立てに適用することが可能で、生産性の向上、更にはコスト低減などの効果も同時に得ることができる。さらに、本発明の実施形態により、一次接合後に接合面に微小な割れが発生した場合でも、その後の二次接合(液相拡散接合)により未溶融非晶質合金箔をさらに溶融し割れに流入させて微小な割れを修復でき、さらに未等温凝固組織からな合金層を完全な等温凝固組織に変える効果が得られるため従来の抵抗溶接法に比べて継手強度及び疲労強度などが高く、品質に優れた接合継ぎ手を得ることができる。   According to the embodiment of the present invention described above, the amount of deformation of the joint can be reduced as compared with the conventional single resistance welding method, high frequency welding, etc., such as when assembling metal machine parts, drilling, cutting, cutting, etc. Machine parts with shapes that cannot be machined using normal machining, or machine parts that contain dissimilar joints of difficult-to-combine materials that are difficult to combine, and machine parts that cause a significant increase in material costs due to machining. The present invention can be applied to assembling, and effects such as productivity improvement and cost reduction can be obtained at the same time. Further, according to the embodiment of the present invention, even when a minute crack occurs on the joint surface after the primary joining, the unmelted amorphous alloy foil is further melted and flows into the crack by the subsequent secondary joining (liquid phase diffusion joining). It is possible to repair minute cracks, and since the effect of changing the alloy layer from an unisothermally solidified structure to a completely isothermally solidified structure is obtained, the joint strength and fatigue strength are higher than the conventional resistance welding method, and the quality is improved. An excellent joint can be obtained.

また、発明の実施形態により、従来の単独の液相拡散接合法に比べて同等以上の継ぎ手品質を維持しつつ、非晶質合金箔の等温凝固保持時間、つまり、接合継ぎ手を非晶質合金箔の融点以上の再加熱温度で保持する時間を大幅に短縮することが可能であることから、従来に比べて、接合継ぎ手の等温凝固保持における結晶粒径の成長による粗大化が大幅に抑制できる。その結果、本発明法により組み立てられた金属材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品は、接合ままの金属組織における旧γ粒の最大粒径が500μm以下と小さく、従来の液相拡散接合法で得られる継ぎ手(最大粒径1mmを上回る結晶粒径)に比べて靱性を向上することができる。   Further, according to the embodiment of the invention, the isothermal solidification retention time of the amorphous alloy foil, that is, the joint joint is made of an amorphous alloy while maintaining the joint quality equal to or higher than that of the conventional single liquid phase diffusion joining method. Since it is possible to significantly reduce the time for holding at the reheating temperature above the melting point of the foil, it is possible to greatly suppress the coarsening due to the growth of the crystal grain size in the isothermal solidification holding of the joint joint compared to the conventional case. . As a result, the metal mechanical part composed of the metal material assembled by the method of the present invention and the joint portion formed by liquid phase diffusion bonding has a small maximum particle size of the old γ grain in the as-bonded metal structure as 500 μm or less. The toughness can be improved as compared with the joint obtained by the liquid phase diffusion bonding method (crystal grain size exceeding the maximum grain size of 1 mm).

したがって、従来の液相拡散接合で組み立てられた金属機械部品において、さらに継ぎ手靭性を向上するために必要とされるQTなどの熱処理を簡略することができ生産性とともに製造コストを低減することが可能となる。   Therefore, it is possible to simplify the heat treatment such as QT required for further improving joint toughness in metal parts assembled by conventional liquid phase diffusion bonding, and to reduce the manufacturing cost as well as the productivity. It becomes.

本発明の効果を以下の実施例により説明する。
表1に示す記号A〜Cの3種類の化学成分と融点を有する液相拡散用の非晶質合金箔と、表2に示す記号a〜cの化学成分を有する鉄鋼、Ni合金からなる被接合材料を用いて、表3〜7に示す接合条件で金属機械部品を製造した。
得られた金属機械部品は、接合面から引き離す方向での引っ張り試験を行い、継手強度の評価をおこなった。また、金属機械部品の接合応力加圧方向での変形量を測定し、変形量の評価も合わせて行なった。また、応力範囲:20〜200MPa、繰り返し数:1000万回(15Hz)で金属機械部品の内圧疲労試験を行い、疲労強度の評価は、亀裂および破断が生じなかったものを合格、亀裂および破断が生じたものを不合格とした。その結果を表3及び表4に示す。
なお、表3及び表4において、継手強度の評価は、母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。
The effects of the present invention are illustrated by the following examples.
An amorphous alloy foil for liquid phase diffusion having three kinds of chemical components of symbols A to C shown in Table 1 and a melting point, steel and Ni alloy having chemical components of symbols a to c shown in Table 2 Using the joining material, metal machine parts were manufactured under the joining conditions shown in Tables 3-7.
The obtained metal mechanical component was subjected to a tensile test in a direction away from the joint surface, and the joint strength was evaluated. Further, the amount of deformation of the metal machine part in the direction in which the joining stress was applied was measured, and the amount of deformation was also evaluated. In addition, an internal pressure fatigue test is performed on a metal machine part at a stress range of 20 to 200 MPa and a repetition rate of 10 million times (15 Hz). The result was rejected. The results are shown in Tables 3 and 4.
In Tables 3 and 4, the joint strength was evaluated by the ratio of the tensile strength of the joint joint to the tensile strength of the base material. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken.

なお、表3および表4に示すNo.1〜10は、以下に示すような要領で金属機械部品を製造した。図4および図5は、角断面の配管本体1の内部管路3の長手方向中央部の上面に形成された分岐口4に、別の分岐管2を接合することにより、内部にT分岐配管を有する金属機械部品を製造する場合の実施例を説明するために模式図である。なお、図4は、金属機械部品の斜視図であり、図5は、分岐管2の中心軸を通り、内部管路3の中心軸に垂直な断面図を示す。   In addition, No. 1-10 shown in Table 3 and Table 4 manufactured the metal machine component in the way as shown below. 4 and 5 show a T-branch pipe inside by joining another branch pipe 2 to the branch port 4 formed in the upper surface of the central portion in the longitudinal direction of the internal pipe line 3 of the pipe body 1 having a square cross section. It is a schematic diagram for demonstrating the Example in the case of manufacturing the metal machine component which has this. 4 is a perspective view of the metal machine component, and FIG. 5 is a cross-sectional view that passes through the central axis of the branch pipe 2 and is perpendicular to the central axis of the internal conduit 3.

図4に示す分岐管2端部の開先端面の開先形状は、表3および表4に示すNo.1〜9は、完全I型とし、開先面粗さをRmax:10μm以下に研削仕上げした。また、No.10の分岐管2端部の開先形状は、予め機械加工により45°の角度を有するV字開先を付与した。また、これらの分岐管2の開先と配管本体1の接合面とをリング状の液相拡散接合用合金箔5を介して突合せた後、分岐管2および配管本体1にそれぞれ密着させ、表3〜7に示す一次接合法および接合条件で加熱すると同時に、6の方向に加圧応力を負荷した。一次接合により、分岐管2と配管本体1の開先間に介在させた液相拡散接合用合金箔5は、一部溶融後凝固して合金層を形成するものの、接合時間が極く短時間であるために平均厚みが3μmの未等温凝固組織、つまり、拡散律速等温凝固は終了していない、いわゆる「ろう付け組織」となっていた。次に、二次接合として、表3および4に示す液相拡散接合法および接合条件で、一次接合後の継ぎ手を高周波誘導加熱コイルおよび抵抗発熱体を有する電気炉で再加熱温度に昇温し、所定時間保持することにより一次接合で形成された接合合金層の液相拡散の等温凝固を終了後、冷却した。   The groove shape of the open end face at the end of the branch pipe 2 shown in FIG. Nos. 1 to 9 were completely I-type, and the groove surface roughness was Rmax: 10 μm or less. No. The groove shape at the end of the branch pipe 2 of 10 was previously provided with a V-shaped groove having an angle of 45 ° by machining. Further, the groove of the branch pipe 2 and the joint surface of the pipe main body 1 are brought into contact with each other through the ring-shaped alloy foil 5 for liquid phase diffusion bonding, and then brought into close contact with the branch pipe 2 and the pipe main body 1, respectively. Simultaneously with the primary bonding method and bonding conditions shown in 3 to 7, heating stress was applied in the direction 6. Although the alloy foil 5 for liquid phase diffusion bonding interposed between the branch pipe 2 and the groove of the pipe body 1 by primary bonding is partially melted and solidified to form an alloy layer, the bonding time is extremely short. Therefore, an unisothermal solidified structure having an average thickness of 3 μm, that is, a so-called “brazed structure” in which diffusion-controlled isothermal solidification has not been completed. Next, as the secondary bonding, the joint after the primary bonding is heated to a reheating temperature in an electric furnace having a high-frequency induction heating coil and a resistance heating element using the liquid phase diffusion bonding method and bonding conditions shown in Tables 3 and 4. Then, by holding for a predetermined time, cooling was performed after the isothermal solidification of the liquid phase diffusion of the bonded alloy layer formed by the primary bonding was completed.

なお、表4に示すNo.7および8は、上記金属機械部品を製造する際に、それぞれNo.7が高周波溶接のみ、No.8が摩擦圧接のみを行った場合で何れも二次接合(液相拡散接合)を実施しない比較例を示し、No.9は、上記金属機械部品を製造する際に、一次接合を実施しない比較例を示す。また、表4に示すNo. 10は、上記金属機械部品を製造する際に一次接合として抵抗溶接を用い、一次接合条件が本発明の範囲から外れた比較例を示す。   Note that Nos. 7 and 8 shown in Table 4 are Nos. 7 is high frequency welding only. No. 9 shows a comparative example in which secondary welding (liquid phase diffusion welding) is not performed in the case where only friction welding is performed, and No. 9 is a comparison in which primary bonding is not performed when the metal machine part is manufactured. An example is shown. Further, No. 10 shown in Table 4 shows a comparative example in which resistance welding is used as the primary joining when the metal machine part is manufactured, and the primary joining conditions are out of the scope of the present invention.

表3に示す結果から、本発明の接合方法により本発明範囲内の接合条件で金属機械部品を製造したNo.1〜6は、いずれも継手強度が常に母材の引張り強さを上回っており、接合応力付加方向の変形量が5%以下と機械部品として使用性能が満足できるものであった。その結果、本発明の接合方法により金属機械部品を製造したNo.1〜6は、いずれも継ぎ手の疲労試験後に亀裂および破断は生じなかった。また、液相拡散接合の保持時間が短いために継ぎ手の最大結晶粒度は500μm以下と微細であり継ぎ手靭性も良好であった。   From the results shown in Table 3, in No. 1 to 6 in which metal machine parts were produced under the joining conditions within the scope of the present invention by the joining method of the present invention, the joint strength was always higher than the tensile strength of the base material. The deformation amount in the direction in which the joining stress was applied was 5% or less, and the use performance as a machine part was satisfactory. As a result, No. 1 produced metal machine parts by the joining method of the present invention. In all of Nos. 1 to 6, cracks and fractures did not occur after the fatigue test of the joint. Further, since the holding time of the liquid phase diffusion bonding was short, the maximum crystal grain size of the joint was as fine as 500 μm or less, and the joint toughness was good.

一方、表4に示すNo.7〜10はいずれも本発明法の接合条件の範囲から外れる比較例である。
No.7および8は、いずれの継ぎ手も二次接合(液相拡散接合)を行っていないため、接合界面は完全な等温凝固組織ではなく、脆いろう付け組織が残存する組織であった。継ぎ手強度は発明例よりも低いながら母材強度と同等レベルを確保できるものの、継ぎ手の疲労試験時にはろう付け組織との界面で破断し、疲労強度は大きく低下した。また、これらの継ぎ手の変形量は基準の5%を超えており、溶接後の継ぎ手の加工なしでは金属機械部品として使用できないものであった。
On the other hand, Nos. 7 to 10 shown in Table 4 are comparative examples that deviate from the range of bonding conditions of the method of the present invention.
No. No joints 7 and 8 were subjected to secondary bonding (liquid phase diffusion bonding), so the bonding interface was not a completely isothermally solidified structure but a structure in which a brittle brazed structure remained. Although the joint strength was lower than that of the inventive example, it was possible to ensure the same level as the base metal strength. However, during the joint fatigue test, fracture occurred at the interface with the brazed structure, and the fatigue strength was greatly reduced. Further, the deformation amount of these joints exceeded 5% of the standard, and could not be used as a metal machine part without processing the joint after welding.

また、No.9は、上記金属機械部品を製造する際に、一次接合を実施せず、液相拡散接合のみで継ぎ手を作成したため、本発明例と同等の継ぎ手特性が得られるものの、接合時間が7200秒という長時間を要し、継ぎ手の生産性は低下した。
No.10は、上記金属機械部品を製造する際、一次接合条件が本発明から外れる抵抗溶接を用いた場合の比較例である。開先面積が320mm2を超える場合には、抵抗溶接の設備能力上の理由から電流不足となり、一次接合により形成される接合合金層の面積は240mm2となり、開先面積に対して十分ではなく、その結果、継ぎ手効率が低下し、さらに、二次接合後の継ぎ手強度は低下した。
また、一次接合後の継ぎ手効率が低いことに起因して、二次接合後の継ぎ手端部にはノッチ状に開先が残存し、疲労試験時にはそこを起点として破断し、疲労強度は大幅に低下した。
In No. 9, since the joint was created only by liquid phase diffusion bonding without performing primary bonding when manufacturing the above-mentioned metal mechanical component, the joint characteristics equivalent to those of the present invention example were obtained, but the bonding time However, it took a long time of 7200 seconds, and the productivity of the joint decreased.
No. 10 is a comparative example in the case of using resistance welding in which the primary joining conditions deviate from the present invention when manufacturing the metal machine part. When the groove area exceeds 320 mm 2 , the current is insufficient for the reason of resistance welding equipment capacity, and the area of the bonding alloy layer formed by primary bonding is 240 mm 2 , which is not sufficient for the groove area. As a result, the joint efficiency was lowered, and the joint strength after the secondary joining was lowered.
In addition, due to the low joint efficiency after the primary joint, a groove remains in the notch shape at the joint end after the secondary joint, and it breaks starting from that during the fatigue test, greatly increasing the fatigue strength. Declined.

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

Figure 2006159212
Figure 2006159212

液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層の厚みと、その合金層の等温凝固が終了するまでの保持時間との関係を示す図。The figure which shows the relationship between the thickness of the alloy layer formed by melt | dissolving and solidifying the amorphous alloy foil for liquid phase diffusion bonding, and the retention time until the isothermal solidification of the alloy layer is complete | finished. 被接合材料の開先面積と一次接合により形成された接合合金層の厚みとの関係を示す図。The figure which shows the relationship between the groove area of to-be-joined material, and the thickness of the joining alloy layer formed by primary joining. 本発明法の2次接合(液相拡散接合)における等温凝固保持時間と接合継ぎ手強度との関係を示す図。The figure which shows the relationship between the isothermal solidification retention time in the secondary joining (liquid phase diffusion joining) of this invention method, and joining joint strength. 角断面配管と分岐管を溶接して金属機械部品を製造する場合の実施態様を示す図。The figure which shows the embodiment in the case of manufacturing a metal machine component by welding square cross-section piping and a branch pipe. 図4における組み立て時の角断面配管の内部管路軸方向からの断面透視図。The cross-sectional perspective view from the internal pipe-axis direction of the square cross-section piping at the time of the assembly in FIG.

符号の説明Explanation of symbols

1 角断面配管本体
2 分岐管
3 配管内部の管路
4 内部管路から分岐管へ連絡する枝管
5 液相拡散接合用合金箔
6 1次接合の応力負荷方向
7 分岐管の中心部断面形状
DESCRIPTION OF SYMBOLS 1 Square section piping main body 2 Branch pipe 3 Pipe inside pipe 4 Branch pipe connected from internal pipe to branch pipe 5 Alloy foil for liquid phase diffusion joining 6 Stress load direction of primary joining 7 Cross section shape of center part of branch pipe

Claims (12)

金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、高周波溶接法により前記非晶質合金箔と前記金属材料とを加熱圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。   Amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and as a primary bonding, the amorphous alloy foil and the metal material are heated and pressed by high frequency welding to form a joint portion. Then, as a secondary bonding, the joint portion is reheated to a temperature higher than the melting point of the amorphous alloy foil, and then liquid phase diffusion bonding is performed to hold and complete the solidification process of the joint portion. Liquid phase diffusion bonding method for metal machine parts. 金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、非拡散型固相接合法により前記非晶質合金箔と前記金属材料とを加熱圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。   An amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and the amorphous alloy foil and the metal material are heated and pressed by a non-diffusion type solid phase bonding method as primary bonding. Forming a joint portion, and then performing liquid phase diffusion bonding that, as a secondary joining, reheats the joint portion above the melting point of the amorphous alloy foil and then holds and completes the solidification process of the joint portion. A liquid phase diffusion bonding method for metal mechanical parts. 前記固相接合法は、摩擦圧接法、超音波接合法、および、爆発圧接法の何れかであることを特徴とする請求項2に記載の金属機械部品の液相拡散接合方法。   3. The liquid phase diffusion bonding method for metal mechanical parts according to claim 2, wherein the solid phase bonding method is any one of a friction welding method, an ultrasonic bonding method, and an explosion pressure welding method. 前記一次接合により形成される接合合金層の面積が300mm2以上であることを特徴とする請求項1〜3の何れか1項に記載の金属機械部品の液相拡散接合方法。 4. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein an area of the bonding alloy layer formed by the primary bonding is 300 mm 2 or more. 5. 前記二次接合による再加熱した後の保持時間が30秒以上であることを特徴とする請求項1〜4の何れか1項に記載の金属機械部品の液相拡散接合方法。   5. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein a holding time after reheating by the secondary bonding is 30 seconds or more. 6. 前記非晶質合金箔の組成が、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、Vを0.1〜10.0原子%含有することを特徴とする請求項1〜5の何れか1項に記載の金属機械部品の液相拡散接合方法。   The composition of the amorphous alloy foil is based on Ni or Fe, and contains 0.1 to 20.0 atomic% of one or more of B, P and C as diffusion atoms, V is contained in an amount of 0.1 to 10.0 atomic%, and the liquid phase diffusion bonding method for metal machine parts according to any one of claims 1 to 5. 前記一次接合による前記非晶質合金箔と前記金属材料との加熱圧接の時間が100秒以下であることを特徴とする請求項1〜6の何れか1項に記載の金属機械部品の液相拡散接合方法。   The liquid phase of the metal machine component according to any one of claims 1 to 6, wherein a time of heating and pressing between the amorphous alloy foil and the metal material by the primary bonding is 100 seconds or less. Diffusion bonding method. 前記一次接合による前記非晶質合金箔と前記金属材料との加熱圧接における加圧力が10〜1000MPaであることを特徴とする請求項1〜7の何れか1項に記載の金属機械部品の液相拡散接合方法。   8. The liquid for a metal machine component according to claim 1, wherein a pressing force in the heat-pressure welding between the amorphous alloy foil and the metal material by the primary bonding is 10 to 1000 MPa. Phase diffusion bonding method. 前記一次接合により形成した継ぎ手部の断面組織における未等温凝固組織の加圧方向の厚みが、平均で10μm以下であることを特徴とする請求項1〜8の何れか1項に記載の金属機械部品の液相拡散接合方法。   9. The metal machine according to claim 1, wherein the thickness in the pressing direction of the non-isothermal solidified structure in the cross-sectional structure of the joint portion formed by the primary joining is 10 μm or less on average. Liquid phase diffusion bonding method for parts. 前記一次接合により形成した継ぎ手部の継ぎ手効率が0.5〜1.0であることを特徴とする請求項1〜9の何れか1項に記載の金属機械部品の液相拡散接合方法。   10. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein a joint efficiency of a joint portion formed by the primary joining is 0.5 to 1.0. 11. 前記継ぎ手部の凝固過程の完了後、0.1〜50℃/秒の冷却速度で冷却して継ぎ手組織を制御することを特徴とする請求項1〜10の何れか1項に記載の金属機械部品の液相拡散接合方法。   11. The metal machine according to claim 1, wherein after the solidification process of the joint portion is completed, the joint structure is controlled by cooling at a cooling rate of 0.1 to 50 ° C./second. Liquid phase diffusion bonding method for parts. 金属材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品であり、該金属機械部品の接合ままの金属組織における旧オーステナイト結晶の最大粒径は500μm以下であることを特徴とする金属機械部品。   A metal mechanical part comprising a joint formed by liquid phase diffusion bonding with a metal material, wherein the maximum grain size of the prior austenite crystal in the metal structure of the metal mechanical part as bonded is 500 μm or less Machine parts.
JP2004350214A 2004-12-02 2004-12-02 Liquid phase diffusion bonding method for metal machine parts and metal machine parts Expired - Fee Related JP4456471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350214A JP4456471B2 (en) 2004-12-02 2004-12-02 Liquid phase diffusion bonding method for metal machine parts and metal machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350214A JP4456471B2 (en) 2004-12-02 2004-12-02 Liquid phase diffusion bonding method for metal machine parts and metal machine parts

Publications (2)

Publication Number Publication Date
JP2006159212A true JP2006159212A (en) 2006-06-22
JP4456471B2 JP4456471B2 (en) 2010-04-28

Family

ID=36661784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350214A Expired - Fee Related JP4456471B2 (en) 2004-12-02 2004-12-02 Liquid phase diffusion bonding method for metal machine parts and metal machine parts

Country Status (1)

Country Link
JP (1) JP4456471B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229658A (en) * 2007-03-20 2008-10-02 Nissan Motor Co Ltd Joining method and joining structure of different kinds of metals
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2011062011A1 (en) 2009-11-19 2011-05-26 新日本製鐵株式会社 Common rail, common rail holder, and method for producing common rail
JP2012110920A (en) * 2010-11-24 2012-06-14 Press Kogyo Co Ltd Method of manufacturing axle case
JP2013121614A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion bonded ferrous structural material of high strength
JP5323927B2 (en) * 2009-03-27 2013-10-23 国立大学法人 東京大学 Joining method
CN103753123A (en) * 2013-12-18 2014-04-30 华中科技大学 Method for manufacturing multilayer amorphous alloy and copper composite structure through intermediate layer diffusion
KR20160022385A (en) 2013-08-01 2016-02-29 신닛테츠스미킨 카부시키카이샤 Friction welding method
CN112222595A (en) * 2020-09-17 2021-01-15 广东省科学院中乌焊接研究所 Ultrasonic welding method for amorphous alloy and dissimilar metal and weldment fixing device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229658A (en) * 2007-03-20 2008-10-02 Nissan Motor Co Ltd Joining method and joining structure of different kinds of metals
WO2008129622A1 (en) * 2007-04-09 2008-10-30 Toshiaki Kitazawa Method of bonding steel members, method of enhancing bond strength of bonded object comprising steel members, and steel product
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
JP5323927B2 (en) * 2009-03-27 2013-10-23 国立大学法人 東京大学 Joining method
WO2011062011A1 (en) 2009-11-19 2011-05-26 新日本製鐵株式会社 Common rail, common rail holder, and method for producing common rail
US8490600B2 (en) 2009-11-19 2013-07-23 Nippon Steel & Sumitomo Metal Corporation Common rail, common rail holder, and method of producing common rail
JP2012110920A (en) * 2010-11-24 2012-06-14 Press Kogyo Co Ltd Method of manufacturing axle case
JP2013121614A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion bonded ferrous structural material of high strength
KR20160022385A (en) 2013-08-01 2016-02-29 신닛테츠스미킨 카부시키카이샤 Friction welding method
US10022816B2 (en) 2013-08-01 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Friction welding method
CN103753123A (en) * 2013-12-18 2014-04-30 华中科技大学 Method for manufacturing multilayer amorphous alloy and copper composite structure through intermediate layer diffusion
CN112222595A (en) * 2020-09-17 2021-01-15 广东省科学院中乌焊接研究所 Ultrasonic welding method for amorphous alloy and dissimilar metal and weldment fixing device
CN112222595B (en) * 2020-09-17 2021-10-08 广东省科学院中乌焊接研究所 Ultrasonic welding method for amorphous alloy and dissimilar metal and weldment fixing device

Also Published As

Publication number Publication date
JP4456471B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4540392B2 (en) Liquid phase diffusion bonding method for metal machine parts
KR102077408B1 (en) Friction welding method
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
US7540402B2 (en) Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP2014508646A (en) High toughness weld metal with excellent ductile tear strength
JP3168927B2 (en) Method for manufacturing duplex stainless steel joint
JP2010059451A (en) Welded joint and manufacturing method therefor
CN111886106A (en) Solid-phase bonding method and solid-phase bonding apparatus for metal material
JP2010172945A (en) Resistance spot welding method of high-strength steel sheet
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
Ozlati et al. Upset resistance welding of carbon steel to austenitic stainless steel narrow rods
WO2008086028A1 (en) Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
JPH0813428B2 (en) Clad steel pipe joining method
JP5857772B2 (en) Method of manufacturing liquid phase diffusion joint for steel bar
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method
Hamill Weld techniques give powder metal a different dimension
KR102310275B1 (en) Brazing assembly and method for preventing surface oxidation
Morrison et al. Performance evaluation of surface-activated solid-state welding for ASTM A992 structural steel
JP2000312977A (en) Jointing method of different metals
JP3786001B2 (en) Steel, steel structure and joining method
JP2022047845A (en) Bonded joint, automobile component, and method for manufacturing bonded joint
JP2006035256A (en) Method for spot welding of high strength steel plate
JP2009202205A (en) Laser brazing method for butt joint
JP2004344898A (en) Joint for joining ferrous base material and aluminum base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4456471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees