JPH0275158A - Complex positive electrode for lithium secondary battery and manufacture thereof - Google Patents

Complex positive electrode for lithium secondary battery and manufacture thereof

Info

Publication number
JPH0275158A
JPH0275158A JP63224981A JP22498188A JPH0275158A JP H0275158 A JPH0275158 A JP H0275158A JP 63224981 A JP63224981 A JP 63224981A JP 22498188 A JP22498188 A JP 22498188A JP H0275158 A JPH0275158 A JP H0275158A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
inorganic
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63224981A
Other languages
Japanese (ja)
Inventor
Fumio Goto
文夫 後藤
Masahiko Asaoka
賢彦 朝岡
Katsuaki Okabayashi
岡林 克明
Katsuji Abe
阿部 勝司
Aogu Yoshida
吉田 仰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63224981A priority Critical patent/JPH0275158A/en
Publication of JPH0275158A publication Critical patent/JPH0275158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a complex positive electrode having high capacity and long lifetime by covalently binding an inorganic positive electrode active substance with an organic positive electrode active substance through a treatment with silane coupling agent solution, and subjecting the resultant to mixed pressurization or permeation. CONSTITUTION:A positive electrode is formed through two processes; i.e., a one in which at least either of the powder formed inorganic active substance and powder- formed or film-shaped organic active substance is treated with silane coupling agent solution, and another process in which powder formed inorganic and organic active substances are mixed and pressurized, or otherwise powder formed inorganic active substance is pressurized and permeated into film-shaped organic active substance. Covalent bond using silane coupling agent is strong to allow the inorganic and organic active substances to form a composite body with close contactness, and the mutual complementing action of the two active substances is promoted. This can be done with less amount of conductive materials such as carbon and binding material such as teflon, and a complex positive electrode with increased discharge capacity, high capacity, and long lifetime will be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シランカップリング剤を用いて無機正極活物
質と有機正極活物質とを共有結合をもって強固に接合さ
せた高容量、高寿命のリチウム二次電池用複合正極およ
びその製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a high-capacity, long-life cathode active material in which an inorganic cathode active material and an organic cathode active material are firmly bonded with covalent bonds using a silane coupling agent. The present invention relates to a composite positive electrode for lithium secondary batteries and a method for manufacturing the same.

(従来技術) リチウム二次電池の正極活物質として遷移金属の酸化物
あるいはカルコゲン化合物などの無機材料および、ポリ
アセチレン、ボリピIコール、ポリチオフェン、ポリフ
ェニレンスルソイドあるいはポリアニリンなどの共役二
重結合をもつ有機材月が知られている。
(Prior art) Inorganic materials such as transition metal oxides or chalcogen compounds and organic materials with conjugated double bonds such as polyacetylene, polypycol, polythiophene, polyphenylene sulfide, or polyaniline are used as positive electrode active materials for lithium secondary batteries. The moon is known.

無機正極活物質には層状あるいはトンネル構造を有する
V205 、Vb 013、Cr、、Os、CrzOs
 、Mn0z 、T iS、あるいはM o S zな
どがあり、還元(正極の放電)されるとI、i゛をその
結晶構造中に収容し、酸化(正極の充電)されるとその
Li゛を再び電解液中へ放出する性質をもつものである
。出し入れするLi゛の数が、金属原子の数に対して一
定の範囲内にあれば、これら活物質は安定であるが、l
 i ”の侵入量が多ずぎると、侵入した全てのL i
 ’を取り出せなくなると同時に結晶構造が崩れていく
。したがって、正極として使用する時には放電の終止電
圧を設定して、放電時に所定量具」二のL i ’が結
晶内に侵入しないようにする必要がある。この終止電圧
を越えるような過放電を行うと電極の寿命が極端に短く
なったり、電圧特性が悪化する欠点を持っている。
Inorganic positive electrode active materials include V205, Vb013, Cr, Os, CrzOs, which have a layered or tunnel structure.
. It has the property of being released into the electrolyte again. These active materials are stable as long as the number of Li injected and removed is within a certain range relative to the number of metal atoms.
If the amount of intrusion of ``i'' is too large, all intruded L i
The crystal structure collapses as soon as it becomes impossible to extract '. Therefore, when using it as a positive electrode, it is necessary to set the final discharge voltage to prevent a predetermined amount of L i ' from entering the crystal during discharge. Over-discharging exceeding this final voltage has the drawback of extremely shortening the life of the electrode and deteriorating the voltage characteristics.

一方、有機正極活物質は還元(正極の放電)されると取
り込んだアニオンを電解液中へ放出し、酸化(正極の充
電)されると再び電解液中のアニオンを取り込む性質が
ある。
On the other hand, an organic positive electrode active material has the property of releasing the captured anions into the electrolyte when it is reduced (discharge of the positive electrode), and re-captures the anions in the electrolyte when it is oxidized (charged of the positive electrode).

充放電過程では、この有機正極活物質中をアニオンが拡
散することになるが、その際、アニオンは親和性の強い
溶媒サイトを移動し2ていくので、スムースに拡散して
いくためには′/11.物質が電解液で膨潤している必
要がある。したがって、有機正極活物質を用いた二次電
池では重量のかさむ電解液が余分にいるという欠点が発
41.する。
During the charging and discharging process, anions will diffuse through this organic cathode active material, but at this time, the anions move through solvent sites with strong affinity, so in order to diffuse smoothly, it is necessary to /11. The substance must be swollen with electrolyte. Therefore, a secondary battery using an organic cathode active material has the drawback of requiring an extra heavy electrolyte. do.

そこで、従来から無機正極活物Tiと有機正極活物質と
を混合して両者の欠点を補おうとする試めがなされてき
た(例えば、特開昭58−137975、特開昭63−
102162)。すなわら、有機正極活物質は放電末期
に導電−47′が急激Gこ低下するく例えば、ポリアニ
リンの場合] 00−I (]  ”/オーム/ cm
 )性質を持っているのでこれを利用して、無機正極活
物質が過放電するのを防くごとができる。また、充放電
に伴って複合正極中を171°が移動することからこの
L i ’ を利用して有機正極活物質へのアニオンの
拡散をスムーズに行−j  − わせることができる。したがって、画情物質を複合する
ことにより過放電に強く、電解液の余り必要ない複合正
極を作ることが可能と考えられてきた。
Therefore, attempts have been made to mix an inorganic positive electrode active material Ti and an organic positive electrode active material to compensate for the drawbacks of both (for example, JP-A-58-137975, JP-A-63-
102162). In other words, in the case of organic positive electrode active materials, the conductivity -47' rapidly decreases at the end of discharge.For example, in the case of polyaniline]
) properties, so this can be used to prevent the inorganic positive electrode active material from overdischarging. Furthermore, since the angle moves by 171° in the composite positive electrode during charging and discharging, the anion can be smoothly diffused into the organic positive electrode active material using this L i '. Therefore, it has been thought that it is possible to create a composite positive electrode that is resistant to overdischarge and does not require much electrolyte by combining image materials.

しかしながら、従来の方法では元々電気伝導性の小さい
無機正極活物質と、充放電によって電気伝導性が大きく
変化し、しかも無機正極活物質との付着性があまり良く
ない有機正極活物質とを混合するため、これだけでは電
気抵抗が小さく、機械的な強度の充分ある複合正極が作
れなかった。
However, in conventional methods, an inorganic cathode active material that originally has low electrical conductivity is mixed with an organic cathode active material whose electrical conductivity changes significantly during charging and discharging and which does not adhere well to the inorganic cathode active material. Therefore, it was not possible to create a composite positive electrode with low electrical resistance and sufficient mechanical strength using only this method.

またその結果、無機正極活物質の放電容量を十分に引き
出すことができなかった。
Moreover, as a result, the discharge capacity of the inorganic positive electrode active material could not be fully exploited.

そこで、これまでは、無機正極活物質と有機正極活物質
との混合粉末に、さらに導電材料としてカーボンブラッ
クを、結着材としてテフロンを重量百分率で数10%混
合して、ペレット状あるいはシー1−状の正極に成形す
る方法が採られていた(例えば、特開昭6l−2006
8)。
Therefore, until now, carbon black as a conductive material and Teflon as a binder were mixed in a weight percentage of several tens of percent to a mixed powder of an inorganic cathode active material and an organic cathode active material, and the mixture was made into pellets or sheets. --shaped positive electrode was adopted (for example, JP-A-6L-2006
8).

しかし、この導電材や結着材は活物質としてなんら作用
しないので混合することによって電池の重量を増加させ
重量エネルギー密度を低下させる結果となっていた。
However, since these conductive materials and binders do not act as active materials, their mixing increases the weight of the battery and lowers its weight energy density.

(発明の目的) 本発明はこのような問題を解決し、高容量、長寿命のリ
チウム二次電池用複合正極およびその製造法を4M 4
Jf=することを目的とする。
(Objective of the Invention) The present invention solves these problems and provides a high-capacity, long-life composite positive electrode for lithium secondary batteries and a method for manufacturing the same.
The purpose is to Jf=.

(第1発明の説明) 本第1発明(特許請求の範囲第(1)項に記載の発明)
は、無機正極活物質と有機正極活物質から構成されるリ
チウム二次電池用複合11極において、無機正極活物質
と有機正極活物質とを共有結合で結合したことを特徴と
するりチウム二次電池用複合正極に関するものである。
(Description of the first invention) The first invention (invention set forth in claim (1))
is a composite 11 electrode for a lithium secondary battery composed of an inorganic positive electrode active material and an organic positive electrode active material, which is characterized in that the inorganic positive electrode active material and the organic positive electrode active material are bonded by a covalent bond. This invention relates to a composite positive electrode for batteries.

本第1発明に係る正極は無機材オ′−1からなる無機正
極活物質と有機材料からなる有機正極活物質とが複合し
たものである。該複合化に際し、両物質を単に加圧ある
いは圧着等して結合しても、無機物質界面の酸化物や水
酸化物と有機物質とが水素結合で結合されているにすぎ
ないため、両物質の結合は十分でなく、結着材であるデ
フロンを数10%添加せざるを得す、電池の重量エネル
ギー密度を低下させる結果となっていた。本第1発明に
係る複合正極は無機正極活物質と有機正極活物質とを共
有結合を介して結合しているところに特徴がある。共有
結合は水素結合よりも著しく大きな結合強度を自する。
The positive electrode according to the first invention is a composite of an inorganic positive electrode active material made of an inorganic material O'-1 and an organic positive electrode active material made of an organic material. When forming the composite, even if the two substances are simply combined by pressurization or compression, the oxide or hydroxide at the interface of the inorganic substance and the organic substance are simply bonded by hydrogen bonds, so both substances cannot be bonded together. The bonding was not sufficient, and it was necessary to add several 10% of Deflon as a binder, resulting in a decrease in the weight energy density of the battery. The composite positive electrode according to the first invention is characterized in that an inorganic positive electrode active material and an organic positive electrode active material are bonded via a covalent bond. Covalent bonds have significantly greater bond strength than hydrogen bonds.

これにより有機正極活物質と無機正極活物質の密着性が
増加し、画情物質の相互補完作用が一層増進する。その
結果、有機正極活物質であるポリアニリンあるいはその
誘導体の導電性、凝集性がフルに活用され、無機正極活
物質を電極にする際に用いられてきた導電材のカーボン
ブラックおよび結着材のテフロンの配合量を大幅に低減
あるいは無くすことができる。これは、正極1z当たり
の放電容量を増加させ、電池の高エネルギー密度化を可
能にする。
This increases the adhesion between the organic cathode active material and the inorganic cathode active material, further enhancing the mutually complementary effects of the image materials. As a result, the conductivity and cohesive properties of polyaniline or its derivatives, which are organic cathode active materials, are fully utilized. can be significantly reduced or eliminated. This increases the discharge capacity per positive electrode 1z and makes it possible to increase the energy density of the battery.

また、絶縁性であるために配合量を増やせなかった結着
材のテフロンの代わりに、本第1発明では有機正極活物
質を相当量配合できる。これは正極の成形性向−1−に
つながる。
Furthermore, in place of the binder Teflon, which cannot be added in an increased amount due to its insulating properties, the first invention allows a considerable amount of an organic positive electrode active material to be added. This leads to moldability of the positive electrode -1-.

(第2発明の説明) 本第2発明(特許請求の範囲第(2)項に記載の発明)
は、粉末状の無機正極活物質と粉末状または薄膜状の有
機正極活物質、との両刀または一方をシランカップリン
グ剤溶液で処理−づる工程と、わ)束状の無機正極活物
質と粉末状の41機正極活物質とを混合加圧または粉末
状の無機11極4Ii物質を多孔質の薄膜状の有機正極
活物質に加圧浸透して成形体とする工程とからなること
を’4!+’ ffkとするリチウム二次電池用複合正
極の製造法に関するものである。
(Description of the second invention) The second invention (invention set forth in claim (2))
(1) Process of treating either or both of a powdered inorganic positive electrode active material and a powdered or thin film organic positive electrode active material with a silane coupling agent solution; 4Ii material is mixed under pressure with a porous organic cathode active material in the form of a thin film, or a powdered inorganic 11 electrode 4Ii material is infiltrated into a porous thin film organic cathode active material to form a molded body. ! The present invention relates to a method for manufacturing a composite positive electrode for a lithium secondary battery with +' ffk.

無機正極活物質としては充電状態での開路電圧がリチウ
ム電極に対して3V以トあるものが望ましい。願わくは
、安定に使える放電電圧が3V以上であるものが望まし
い。
The inorganic positive electrode active material preferably has an open circuit voltage of 3 V or more with respect to the lithium electrode in a charged state. Preferably, a discharge voltage that can be used stably is 3V or more.

これは、充電状態のポリアニリンが3.8〜3.2■の
開路電圧を持ち、これを放電すると電気量にほぼ比例し
て電圧が降下し2.7 V jハ傍から急激に低下する
と同時にポリアニリンの電気抵抗が急激に増加するため
である。
This is because polyaniline in a charged state has an open circuit voltage of 3.8 to 3.2 ■, and when it is discharged, the voltage drops almost in proportion to the amount of electricity, and at the same time it suddenly drops from around 2.7 V. This is because the electrical resistance of polyaniline increases rapidly.

この意味で、無機正極活物質とし7てはハナシウム酸化
物、コバルト酸化物、クロム酸化物あるいはマンガン酸
化物の内の1種または2種以上の混合体あるいは複合酸
化物が好適である。中でも、VzOs(充電状態での開
路電圧:3.4V)およびLiCo0z  (4,7V
)が最適である。また、ソノ他の酸化物にはMOV20
s  (3,2V) 、Cr20s (3,8V) 、
Cr  V  O(3,7V)あるいはV2O5+P2
0.、(3,6V)などがある。
In this sense, the inorganic positive electrode active material 7 is preferably a mixture or composite oxide of one or more of hanasium oxide, cobalt oxide, chromium oxide, or manganese oxide. Among them, VzOs (open circuit voltage in charging state: 3.4V) and LiCo0z (4,7V
) is optimal. Also, for other oxides, MOV20
s (3,2V), Cr20s (3,8V),
Cr VO (3,7V) or V2O5+P2
0. , (3,6V), etc.

これらの金属酸化物の放電電圧は有機正極活物質のそれ
とほぼ同じかもしくは若干高いため、放電を行うと電圧
の高い活物質の放電が起こり、その後、酸化物と有機正
極活物質の放電が同時に起こる。有機正極活物質は放電
末期に近づくと、電圧が低下すると共に抵抗が増加する
。この抵抗が急増する電圧は2.7V付近であり2.5
Vまで放電すると抵抗は極めて大きくなる。
The discharge voltage of these metal oxides is almost the same or slightly higher than that of the organic cathode active material, so when discharge occurs, the high voltage active material discharges, and then the oxide and organic cathode active material discharge simultaneously. happen. When the organic positive electrode active material approaches the end of discharge, the voltage decreases and the resistance increases. The voltage at which this resistance suddenly increases is around 2.7V, which is 2.5V.
When discharged to V, the resistance becomes extremely large.

従って、本第2発明の複合正極は2.5■で自動的に放
′屯を終了し、過放電による無機正極活物質の破壊が起
こらない。
Therefore, the composite cathode of the second invention automatically completes its discharge after 2.5 hours, and the inorganic cathode active material is not destroyed due to overdischarge.

有機正極活物質としてはポリアニリンあるいはポリアニ
リン誘導体が好適である。
Polyaniline or a polyaniline derivative is suitable as the organic positive electrode active material.

n≧2の構造を持つ高分子であり、ポリアニリンにおい
てR1−R6のうち一つが0113、C21(Sあるい
はC3H7に置き代わったr1≧2のポリマーである。
It is a polymer having a structure where n≧2, and one of R1-R6 in polyaniline is replaced with 0113, C21 (S or C3H7) and r1≧2.

またシランカップリング剤は、T−クロルプロピル・ト
リメトキシシラン、ビニル・トリメトキシシラン、β−
(3,4−エポキシシクロヘキシル)・トリメトキシシ
ラン、T グリシ1゛;1−ンプロピル・1〜リメトキ
シシラン、T−メルカプト10ビル・トリメトキシシラ
ン、N−β−(アミノ−IO= エチル)−T−アミノプロピル・トリメトキシシラン、
γ−アミノプロピル・トリメトキシシラン等があり、こ
れらの1種または2種以上で用いる。
In addition, silane coupling agents include T-chloropropyl trimethoxysilane, vinyl trimethoxysilane, β-
(3,4-epoxycyclohexyl)trimethoxysilane, T-glycine 1゛;1-propyl-1-rimethoxysilane, T-mercapto-10vir trimethoxysilane, N-β-(amino-IO=ethyl)- T-aminopropyl trimethoxysilane,
There are γ-aminopropyl trimethoxysilane and the like, and one or more of these are used.

これを水あるいは水と水溶性の有機溶剤との混合液に0
.5%〜50%溶解し、処理液とする。これ以上の割合
ではシランカンプリング剤が溶解しないし、これ以下の
割合では処理液としての効果がない。
Add this to water or a mixture of water and a water-soluble organic solvent.
.. Dissolve 5% to 50% and use it as a processing solution. If the ratio is higher than this, the silane camping agent will not dissolve, and if the ratio is lower than this, it will not be effective as a treatment liquid.

シランカップリング処理は、」−記溶液に無機正極活物
質の粉末、有機正極活物質の粉末または有機正極活物質
からなる多孔質薄膜を浸漬して行う。
The silane coupling treatment is performed by immersing an inorganic positive electrode active material powder, an organic positive electrode active material powder, or a porous thin film made of an organic positive electrode active material in the above solution.

該処理は無機正極活物質と有機正極活物質の両方または
どちらか一方に行えばよい。この後、さらに大気中、1
00〜150“Cの温度で加熱処理を行うと活物質同士
の共有結合が一層強固となる。
The treatment may be performed on both or one of the inorganic positive electrode active material and the organic positive electrode active material. After this, further in the atmosphere, 1
When the heat treatment is performed at a temperature of 0.000 to 150"C, the covalent bonds between the active materials become even stronger.

また、シランカップリング処理を噴霧法によって行って
もよい。
Alternatively, the silane coupling treatment may be performed by a spraying method.

複合正極はシランカップリング処理を施した無機正極活
物質の粉末に有機正極活物質の粉末を加え1.乳棒・乳
鉢等で充分粉砕、混合した後、加圧し板状等に成形する
か、有機正極活物質の多孔1’1薄膜に無機正極活物質
の粉末を含浸・吸収させ、加圧・成形して行う。有機正
極活物質の多孔性薄膜を用いると、有機正極活物質の柔
軟性を受υノ継いだ折り曲げ可能な電極となる。
A composite positive electrode is produced by adding an organic positive electrode active material powder to an inorganic positive electrode active material powder that has been subjected to a silane coupling treatment.1. After thoroughly pulverizing and mixing with a pestle or mortar, pressurize and form into a plate shape, or impregnate and absorb inorganic cathode active material powder into a porous 1'1 thin film of organic cathode active material, pressurize and form. I will do it. The use of a porous thin film of an organic cathode active material results in a bendable electrode that inherits the flexibility of the organic cathode active material.

(実施例) 実施例1 メタノールと水とT−メルカプトプロピル−トリメトキ
シシラン たシランカップリング処理液1 0 0 mlに市販の
五酸化バナジウムを1g浸漬した。10分後、これを取
り出し、メタノールで充分洗浄し、100°C空気中で
乾燥した。この粉末0.5gとアニリンの重合によって
得られたポリアニリン粉末0.5gとを乳棒・乳鉢で充
分混合した。混合粉末の内、20mgを分取し、10X
IOmmのベレソj・に加圧成形した。これをチタンパ
ンチングメタルの集電体に圧着し複合正極とした。
(Examples) Example 1 1 g of commercially available vanadium pentoxide was immersed in 100 ml of a silane coupling treatment solution containing methanol, water, and T-mercaptopropyl-trimethoxysilane. After 10 minutes, it was taken out, thoroughly washed with methanol, and dried in air at 100°C. 0.5 g of this powder and 0.5 g of polyaniline powder obtained by polymerization of aniline were thoroughly mixed with a pestle and mortar. Take out 20mg of the mixed powder and 10X
It was pressure molded into a Vereso j. of IOmm. This was crimped onto a titanium punched metal current collector to form a composite positive electrode.

この正極を用いて第1図の構成図に示すような試験電池
を作製した。電解液としてはプロピレン−  I J 
−− カーボネ−1・とエチレンカーボネートの混合溶媒にL
ir3F4を1mol/ff溶かし込んだ溶液を用いた
Using this positive electrode, a test battery as shown in the block diagram of FIG. 1 was prepared. As an electrolyte, propylene-IJ
--L in a mixed solvent of carbonate-1 and ethylene carbonate
A solution containing 1 mol/ff of ir3F4 was used.

この電池を4■の定電圧(制限電流0.5mA/cff
l)で5.5時間充電し、0.5m八へcfの定電流で
1。
This battery has a constant voltage of 4■ (limited current 0.5mA/cff)
1) at a constant current of cf to 0.5m8.

5■まで放電した。この充放電サイクルを繰り返し行い
サイクル回数と放電容量(集電体を除く正極1g当たり
の値)との関係をプロットシた。結果を第2図のNo月
に示す。
It was discharged to 5■. This charge/discharge cycle was repeated and the relationship between the number of cycles and the discharge capacity (value per 1 g of positive electrode excluding the current collector) was plotted. The results are shown in the No. month in Figure 2.

次に、シランカップリング処理を施していない五酸化バ
ナジウム粉末0.4g、ポリアニリンの粉末0.4g、
テフロン0. 1 g、カーボンブラック0。
Next, 0.4 g of vanadium pentoxide powder that has not been subjected to silane coupling treatment, 0.4 g of polyaniline powder,
Teflon 0. 1 g, 0 carbon black.

1gを乳棒・乳鉢で充分混合し、その内20mgを分取
して]OXlOmmのベレン1−に成形した。これをチ
タンパンチングメタルの集電体に圧着し、比較用の正極
とした。この正極と前述の電解液および電池構成部品と
を用いて比較用の試験電池を構成した。この電池を前述
と同じように4Vの定電圧(制限電流0. 5 mA 
/ ca )で5.5時間充電し、0、 5 mA /
 cfの定電流で1.5■まで放電した。この一Iト− 時のサイクル回数と放電容量との関係を第2図のR1に
示した。
1 g was thoroughly mixed with a pestle and mortar, and 20 mg of the mixture was taken out and molded into Beren 1- of OXlOmm. This was crimped onto a titanium punched metal current collector to provide a positive electrode for comparison. A test battery for comparison was constructed using this positive electrode, the electrolyte solution, and battery components described above. This battery was connected to a constant voltage of 4V (limited current 0.5 mA) in the same way as above.
/ca) for 5.5 hours, then 0,5 mA/
It was discharged to 1.5 ■ with a constant current of cf. The relationship between the number of cycles per hour and the discharge capacity is shown at R1 in FIG.

比較例R1の正極では放電容量か初期にば100mAh
/gであったが、100回の光放電でこれが70mAh
/gまで低下した。ご相に対し、本実施例のNo. l
の複合正極では放電容量が110mAh/gとR Iに
比べて増大するとノシこ、100回以上の充放電を繰り
返しても放電界81(は殆ど低下しなかった。
In the positive electrode of comparative example R1, the initial discharge capacity was 100 mAh.
/g, but after 100 photodischarges, this becomes 70mAh.
/g. In response to your concerns, this example's No. l
Although the composite positive electrode had a discharge capacity of 110 mAh/g, which was increased compared to RI, the discharge field 81 (81) hardly decreased even after repeated charging and discharging more than 100 times.

また、本実施例の複合正極の放電曲線を第3図(C)に
示す。これと比較するためVz Os 0. 5 gに
カーボンブラック0. 4 5 gおよびテフロン0.
05gを配合して作った正極の放電曲線を(a)に、電
解重合法により作製したポリアニリンフィルムのそれを
(b)に示した。
Moreover, the discharge curve of the composite positive electrode of this example is shown in FIG. 3(C). For comparison with this, Vz Os 0. 0.5 g of carbon black. 45 g and Teflon 0.
(a) shows the discharge curve of the positive electrode made by blending 05g of the same, and (b) shows that of the polyaniline film produced by electrolytic polymerization.

本実施例の複合正極の放電面線番:Iポリアニリンフィ
ルムの放電曲線と同様に放電末期におい′ζ電圧が2.
7■から急激に低下し、また放電中期では■205の放
電曲線の特徴が現れてポリアニリンフィルムのそれより
平坦性が増す。
Discharge surface wire number of the composite positive electrode of this example: I Similar to the discharge curve of the polyaniline film, the 'ζ voltage at the end of discharge was 2.
It rapidly decreases from 7■, and in the middle stage of discharge, the characteristic of the discharge curve of 205 appears and becomes more flat than that of the polyaniline film.

このように、本発明により高容量、長寿命であり、しか
も、電圧特性の良いリチウム二次電池用複合正極の製造
が+iJ能になる。
As described above, the present invention makes it possible to manufacture a composite positive electrode for lithium secondary batteries that has high capacity, long life, and good voltage characteristics.

実施例2 アニリンの重合によって得られたポリアニリ粉末0.5
gとT−メルカプトプロピル−トリメトキシシランでシ
ランカップリング処理をした五酸化バナジウムの粉末0
.5gを乳棒・乳鉢で充分混合した。混合粉末の内20
 mgを分取し、10×10mmのペレットに加圧成形
し、チタンパンチングメタルの集電体に圧着し、さらに
、シランカップリング剤とポリアニリンとの反応を促進
するために140°C空気中で熱処理し正極とした。
Example 2 Polyanili powder obtained by polymerization of aniline 0.5
Vanadium pentoxide powder 0 subjected to silane coupling treatment with g and T-mercaptopropyl-trimethoxysilane
.. 5 g was thoroughly mixed with a pestle and mortar. 20 of the mixed powder
mg was collected, pressure-molded into 10 x 10 mm pellets, pressure-bonded to a titanium punched metal current collector, and further heated in air at 140°C to promote the reaction between the silane coupling agent and polyaniline. It was heat-treated and used as a positive electrode.

これを用いて、実施例1と全く同じ構成の試験電池を作
製し、4■・5.5時間の定電圧充電(制限電流0.5
 mA / crR)および0.5m^/Cfl・終止
電圧1.5Vの定電流放電を繰り返し行った。この時の
ザイクル回数と放電容量の関係を第2図のN022に示
した。
Using this, a test battery with exactly the same configuration as in Example 1 was prepared, and constant voltage charging (limited current 0.5
mA/crR) and 0.5 m^/Cfl/constant current discharge with a final voltage of 1.5 V was repeated. The relationship between the number of cycles and the discharge capacity at this time is shown at N022 in FIG.

シラン化処理後さらに熱処理を施した本実施例の正極で
はNo、 1よりさらに放電容量が増加し、■20、と
ポリアニリンを1=1に混合した時に予想される最大の
放電容量1 ’2 (1mAh/ +rに達した。
The positive electrode of this example, which was further heat-treated after the silanization treatment, showed a further increase in discharge capacity than No. 1, and the maximum discharge capacity expected when 20 and polyaniline were mixed in a 1=1 ratio was 1'2 ( It reached 1mAh/+r.

また、この充放電を100回以上繰り返しても容量の低
下はなかった。
Further, even if this charging and discharging was repeated 100 times or more, there was no decrease in capacity.

このように本発明により高容量・長寿命のリチウム二次
電池用複合正極の製造か可能となる。
As described above, the present invention makes it possible to manufacture a composite positive electrode for lithium secondary batteries with high capacity and long life.

実施例3 アニリンの重合によって得られたボリアリニンフィルム
にγ−メルカプトプロピルー トリメトキシシランで処
理したリチウムコバルト酸化物(Licoo□)粉末の
ディスバージョンを加圧浸透させ、ボリアリーンフィル
ム10mg当たり5mg吸収させた。
Example 3 A dispersion of lithium cobalt oxide (Licoo□) powder treated with γ-mercaptopropyl-trimethoxysilane was infiltrated into a polyalline film obtained by polymerization of aniline under pressure, and 5 mg per 10 mg of polyalline film was infiltrated. I let it absorb.

この複合フィルムをl0XIO柵(15mg)に切断し
チタンパンチングメタルの集電体に圧着することによっ
て正極とした。
This composite film was cut into 10XIO bars (15 mg) and pressed onto a titanium punched metal current collector to obtain a positive electrode.

この正極を用いて実施例1と全く同し構成の試験電池を
作製し、4.2v・5.5時間の定電圧充電(制限電流
0.5齢/ cm )および0.5mA/cf・終止電
圧1.5Vの定電流放電を繰り返し行った。この時のザ
イクル回数と放電容量の関係を第4図のN。
A test battery having the same configuration as in Example 1 was prepared using this positive electrode, and constant voltage charging at 4.2 V for 5.5 hours (limiting current 0.5 instar/cm ) and termination at 0.5 mA/cf. Constant current discharge at a voltage of 1.5V was repeated. The relationship between the number of cycles and the discharge capacity at this time is N in Figure 4.

3に示した。Shown in 3.

次に、シランカップリング処理を施していないリチウム
コバルト酸化物の粉末を用いて前述と全く同し方法で複
合正極を作製した。これを用いて実施例1と全く同じ構
成の試験電池を作製し、4゜2■・5.5時間の定電圧
充電(制限電流0.51^/c+fl)および0.5m
A/c+i・終止電圧1.5■の定電流放電を繰り返し
行った。この時のザイクル回数と放電容量の関係を第4
図のR3に示した。
Next, a composite positive electrode was produced in exactly the same manner as described above using lithium cobalt oxide powder that had not been subjected to silane coupling treatment. Using this, a test battery having the same configuration as Example 1 was prepared, and it was charged at a constant voltage of 4°2cm for 5.5 hours (limited current 0.51^/c+fl) and charged at a constant voltage of 0.5m.
Constant current discharge at A/c+i and a final voltage of 1.5 μm was repeated. The relationship between the number of cycles and the discharge capacity at this time is shown in the fourth section.
It is shown in R3 of the figure.

比較例R3の正極は初期には100mAh/gの放電容
量を示したが、50回目の充放電から容量の低下が見ら
れるようになった。これに対し、本実施例によるNo、
 3の複合正極では充放電の繰り返しに伴って、放電容
量が徐々に増加し、100回目のサイクルの■寺110
mAh/gに達した。
Although the positive electrode of Comparative Example R3 initially exhibited a discharge capacity of 100 mAh/g, a decrease in capacity was observed after the 50th charge/discharge. On the other hand, according to this embodiment, No.
With the composite positive electrode of No. 3, the discharge capacity gradually increases with repeated charging and discharging, and at the 100th cycle ■ Temple 110
It reached mAh/g.

このように本発明の製造法により高容量・長寿命のリチ
ウム二次電池用複合正極が作製できるようになる。
As described above, the manufacturing method of the present invention makes it possible to manufacture a composite positive electrode for lithium secondary batteries with high capacity and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験電池の構成を示す回、第2図、第4図は充
・放電繰り返し回数と正極の放電容量との関係を示す図
、第3図は放電時間と端子電圧との関係を示す図である
Figure 1 shows the configuration of the test battery, Figures 2 and 4 show the relationship between the number of charge/discharge cycles and the discharge capacity of the positive electrode, and Figure 3 shows the relationship between discharge time and terminal voltage. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)無機正極活物質と有機正極活物質から構成される
リチウム二次電池用複合正極において、無機正極活物質
と有機正極活物質とを共有結合で結合したことを特徴と
するリチウム二次電池用複合正極。
(1) A composite positive electrode for a lithium secondary battery composed of an inorganic positive electrode active material and an organic positive electrode active material, characterized in that the inorganic positive electrode active material and the organic positive electrode active material are bonded together by a covalent bond. Composite positive electrode for use.
(2)粉末状の無機正極活物質と粉末状または薄膜状の
有機正極活物質、の両方または一方をシランカップリン
グ剤溶液で処理する工程と、粉末状の無機正極活物質と
粉末状の有機正極活物質とを混合加圧または粉末状の無
機正極活物質を多孔質の薄膜状の有機正極活物質に加圧
浸透して成形体とする工程とからなることを特徴とする
リチウム二次電池用複合正極の製造法。
(2) A step of treating both or one of a powdered inorganic positive electrode active material and a powdered or thin film organic positive electrode active material with a silane coupling agent solution; A lithium secondary battery comprising the steps of mixing and pressurizing a positive electrode active material or infiltrating a powdered inorganic positive electrode active material into a porous thin film organic positive electrode active material to form a molded body. Manufacturing method of composite positive electrode for use.
(3)無機正極活物質は、充電状態での開路電圧がリチ
ウム極に対して3V以上であるバナジウム酸化物、クロ
ム酸化物、マンガン酸化物あるいはコバルト酸化物の一
種または2種以上の混合物あるいは複合酸化物である特
許請求の範囲第(1)項記載のリウチム二次電池用複合
正極または第(2)項記載のリチウム二次電池用複合正
極の製造法。
(3) The inorganic positive electrode active material is a mixture or composite of one or more of vanadium oxide, chromium oxide, manganese oxide, or cobalt oxide, which has an open circuit voltage of 3 V or more with respect to the lithium electrode in a charged state. A method for producing a composite positive electrode for a lithium secondary battery according to claim (1) or claim (2), which is an oxide.
JP63224981A 1988-09-08 1988-09-08 Complex positive electrode for lithium secondary battery and manufacture thereof Pending JPH0275158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224981A JPH0275158A (en) 1988-09-08 1988-09-08 Complex positive electrode for lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224981A JPH0275158A (en) 1988-09-08 1988-09-08 Complex positive electrode for lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0275158A true JPH0275158A (en) 1990-03-14

Family

ID=16822232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224981A Pending JPH0275158A (en) 1988-09-08 1988-09-08 Complex positive electrode for lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0275158A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652602A2 (en) * 1993-09-30 1995-05-10 Sumitomo Chemical Company, Limited Lithium secondary battery
EP1041041A1 (en) * 1999-03-31 2000-10-04 Toda Kogyo Corp. Layered rock salt-type oxide particle powder and process for producing the same
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
JP2004319470A (en) * 2003-04-03 2004-11-11 Matsushita Electric Ind Co Ltd Electrode and electrochemical element using it
EP1465269A3 (en) * 2003-04-03 2006-09-13 Matsushita Electric Industrial Co., Ltd. Electrode and electrochemical device using the same
JP2007280830A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using them
WO2011125734A1 (en) * 2010-03-31 2011-10-13 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and production method for electrode plate for non-aqueous electrolyte secondary battery
JP2012109237A (en) * 2010-10-26 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
CN105206838A (en) * 2015-09-11 2015-12-30 北京工业大学 Application of vat red 41 as lithium ion battery organic cathode material
JP2020202114A (en) * 2019-06-12 2020-12-17 Eneos株式会社 Positive electrode material and power storage device
CN114566611A (en) * 2022-03-04 2022-05-31 蜂巢能源科技股份有限公司 Electrode plate, preparation method thereof and secondary battery formed by electrode plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652602A2 (en) * 1993-09-30 1995-05-10 Sumitomo Chemical Company, Limited Lithium secondary battery
EP0652602A3 (en) * 1993-09-30 1995-11-29 Sumitomo Chemical Co Lithium secondary battery.
US5571638A (en) * 1993-09-30 1996-11-05 Sumitomo Chemical Company Limited Lithium secondary battery
CN1074170C (en) * 1993-09-30 2001-10-31 住友化学工业株式会社 Li secondary battery
KR100330633B1 (en) * 1993-09-30 2002-10-25 스미또모 가가꾸 고교 가부시끼가이샤 Lithium secondary battery
EP1041041A1 (en) * 1999-03-31 2000-10-04 Toda Kogyo Corp. Layered rock salt-type oxide particle powder and process for producing the same
US6337132B1 (en) 1999-03-31 2002-01-08 Toda Kogyo Corporation Layered rock salt-type oxide particle powder and process for producing the same
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
JP2004319470A (en) * 2003-04-03 2004-11-11 Matsushita Electric Ind Co Ltd Electrode and electrochemical element using it
EP1465269A3 (en) * 2003-04-03 2006-09-13 Matsushita Electric Industrial Co., Ltd. Electrode and electrochemical device using the same
JP4553619B2 (en) * 2003-04-03 2010-09-29 パナソニック株式会社 Method for producing electrode for electrochemical device
JP2007280830A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using them
WO2011125734A1 (en) * 2010-03-31 2011-10-13 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and production method for electrode plate for non-aqueous electrolyte secondary battery
JP2011228282A (en) * 2010-03-31 2011-11-10 Dainippon Printing Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and production method for electrode plate for non-aqueous electrolyte secondary battery
JP2012109237A (en) * 2010-10-26 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
CN105206838A (en) * 2015-09-11 2015-12-30 北京工业大学 Application of vat red 41 as lithium ion battery organic cathode material
JP2020202114A (en) * 2019-06-12 2020-12-17 Eneos株式会社 Positive electrode material and power storage device
CN114566611A (en) * 2022-03-04 2022-05-31 蜂巢能源科技股份有限公司 Electrode plate, preparation method thereof and secondary battery formed by electrode plate

Similar Documents

Publication Publication Date Title
JPH05266879A (en) Composite electrode and battery
JPH0275158A (en) Complex positive electrode for lithium secondary battery and manufacture thereof
US7625673B2 (en) Electrode material for electrochemical element and method for production thereof, and electrochemical element
JP5219320B2 (en) Paste material body having electrochemical structural element and nanocrystalline material for layer and electrochemical structural element produced therefrom
US5660953A (en) Rechargeable manganese dioxide cathode
JP3015411B2 (en) Polyaniline battery
CA2277411C (en) Polymer secondary battery and method of making same
JP4152721B2 (en) Adhesive / gelator-supported porous film and use thereof
JPH1145738A (en) Lithium secondary battery and its manufacture
JP2003142100A (en) Polymer, electrode material composite including the polymer, manufacturing method for the composite, electrode using the composite, and secondary battery using the electrode
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JP2001118570A (en) Method for manufacturing electrode for polymer secondary battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP2003068307A (en) Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode
JP2003282062A (en) Energy storage device and manufacturing method of compound composition for energy storage device
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPH0864200A (en) Electrode for secondary battery and secondary battery using this electrode
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JP3078960B2 (en) Electrode manufacturing method
JPH11233114A (en) Electrode for organic electrolyte secondary battery, and its manufacture
JPS6380474A (en) Manufacture of electrode for cell
JP2002100360A (en) Lithium ion battery negative electrode active material fine particle, lithium ion battery negative electrode board and its manufacturing method, electric conductive agent fine particle for lithium ion battery positive electrode mixture, and lithium ion battery positive electrode board and its manufacturing method
JPH11329438A (en) Electrode for battery and secondary battery by using it
JPH0434865A (en) Complete solid voltage storage element