JPH0434865A - Complete solid voltage storage element - Google Patents

Complete solid voltage storage element

Info

Publication number
JPH0434865A
JPH0434865A JP2141057A JP14105790A JPH0434865A JP H0434865 A JPH0434865 A JP H0434865A JP 2141057 A JP2141057 A JP 2141057A JP 14105790 A JP14105790 A JP 14105790A JP H0434865 A JPH0434865 A JP H0434865A
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
voltage
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141057A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Sukeyuki Murai
村井 祐之
Kanji Takada
寛治 高田
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2141057A priority Critical patent/JPH0434865A/en
Publication of JPH0434865A publication Critical patent/JPH0434865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a complete solid voltage storage element excellent in rapid charging and discharging characteristic by previously pelletizing an electrode active material in an electrode constituted by mixing the electrode active material in a specific particle size. CONSTITUTION:In a voltage storage element of a mixture of a silver ion conductive solid electrolyte where an electrode is represented by 4AgI-Ag2WO4 or the like and an electrode active material of complex oxide represented by AgxV2O5-y (wherein 0.6<=x<=0.8, and (y) denotes oxygen deficiency), the electrode active material constituting the electrode is previously pelletized in 42-140 mesh.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、最近開発が盛んに行なわれている電気化学素
子の一つである全固体電圧記憶素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an all-solid-state voltage storage element, which is one of the electrochemical elements that has been actively developed recently.

従来の技術 従来、電解液を用いる電池やコンデンサがどの電気化学
素子は、電解液の漏液やガス発生による素子の膨張、破
裂の危険性があシ、使用機器への絶対的信頼性を確保す
ることは不可能であった。
Conventional technology Conventionally, electrochemical devices such as batteries and capacitors that use electrolyte have the risk of expansion and rupture due to electrolyte leakage or gas generation, but absolute reliability of the equipment used has to be ensured. It was impossible to do so.

これに対して固体電解質を用いた素子は、上記のような
問題点がなく、また電解液で起こる氷結。
On the other hand, devices using solid electrolytes do not have the above-mentioned problems and also avoid freezing that occurs in the electrolyte.

蒸発がなく、広い使用温度朝日が期待でき、高い信頼性
を具備するものにできる可能性がある。このため電解液
に代えて固体電解質を使用する固体電気化学素子の開発
が盛んに行われている。その中でも、固体電解質を用い
た全固体電池の開発は最も盛んであり、例えば、銅イオ
ン導電性固体電解質を用いる銅系全固体二次電池、銀イ
オン導電性固体電解質を用いる銀系全固体二次電池、リ
チウムイオン導電性固体電解質を用いるリチウム系全固
体電池などがある。一方、その応用展開として自己放電
がきわめて小さい固体電解質を用いた全固体電圧記憶素
子が提案されている。これまで水分、酸素、熱に対して
安定でかつ高温においても電子伝導性がきわめて小さい
4 A g I −A g 2WO4を銀イオン導電性
固体電解質に用い、電極活物質にAg 5o−AqsP
Oaや銀バナジウム酸化物を用いた電圧記憶素子が開発
されておシ、前者の電極を用いた電圧記憶素子は現在実
用化されている。
There is no evaporation, a wide range of operating temperatures can be expected, and there is a possibility that it can be made to have high reliability. For this reason, solid electrochemical devices that use solid electrolytes instead of electrolytes are being actively developed. Among them, the development of all-solid-state batteries using solid electrolytes is the most active.For example, copper-based all-solid-state secondary batteries using copper ion conductive solid electrolytes, silver-based all-solid-state secondary batteries using silver ion conductive solid electrolytes, etc. There are secondary batteries, lithium-based all-solid-state batteries that use lithium-ion conductive solid electrolytes, etc. On the other hand, as an application of this technology, an all-solid-state voltage storage element using a solid electrolyte with extremely low self-discharge has been proposed. Until now, 4AgI-Ag2WO4, which is stable against moisture, oxygen, and heat and has extremely low electronic conductivity even at high temperatures, has been used as a silver ion conductive solid electrolyte, and Ag5o-AqsP has been used as an electrode active material.
Voltage storage elements using Oa and silver vanadium oxide have been developed, and voltage storage elements using the former electrodes are currently in practical use.

その断面は第3図に示すように固体電解質層1の両面に
電極2を設け、その電極2の表面に接してリード端子3
を設け、全体を樹脂4で塗装した構成である。
As shown in FIG. 3, the cross section is as follows: electrodes 2 are provided on both sides of the solid electrolyte layer 1, and lead terminals 3
It has a structure in which the entire body is coated with resin 4.

このような構成において、電極2にAg25e−A93
PO4を用いた電圧記憶素子は電圧記憶素子がO〜10
0mVと小さいという欠点を有していた。
In such a configuration, the electrode 2 contains Ag25e-A93.
The voltage storage element using PO4 has a voltage storage element of 0 to 10
It had the drawback of being as small as 0 mV.

一方、電極2に銀バナジウム複合酸化物を用いた電圧記
憶素子は記憶できる電圧範囲が0〜200mVと前記の
電極に比べて大きいという特徴を有すると同時に固体電
解質が、水分、酸素、熱に対して安定で、高温において
も電子伝導性が非常に小さいため100℃を超える広い
温度範囲で使用できるという特徴を有するものである。
On the other hand, a voltage storage element using a silver-vanadium composite oxide for the electrode 2 has the feature that the voltage range that can be stored is 0 to 200 mV, which is larger than the above-mentioned electrode. It is stable and has very low electronic conductivity even at high temperatures, so it can be used in a wide temperature range exceeding 100°C.

発明が解決しようとする課題 しかしながら、電極反応速度が低いために、電圧記憶速
度すなわち充放電速度が低く、短時間の充放電を行う場
合、通電停止後所定電圧からの電圧変動が生じ、入力信
号に対する十分な応答性が得られ力いという課題を有し
ていた。
Problems to be Solved by the Invention However, due to the low electrode reaction speed, the voltage storage speed, that is, the charging and discharging speed is low, and when charging and discharging for a short time, voltage fluctuations from a predetermined voltage occur after the energization is stopped, and the input signal The problem was that it was difficult to obtain sufficient responsiveness and power.

本発明はこのような課題を解決するもので、充放電速度
の優れた全固体電圧記憶素子の提供を目的とする。
The present invention solves these problems and aims to provide an all-solid-state voltage storage element with excellent charging and discharging speed.

課題を解決するための手段 本発明は、上記課題を解決するため、電極が4 A g
 I −A g 2 WO4等で表される銀イオン導電
性固体を解質とAct、V2O5−、(o、e≦x≦o
、s、yは酸素欠損)で表される複合酸化物の電極活物
質の混合物である電圧記憶素子において、前記電極を構
成する電極活物質をあらかじめ42ヤ140メツシュに
造粒する構成とした。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electrode with 4 A g
A silver ion conductive solid represented by I -A g 2 WO4 etc. is dissolved and Act, V2O5-, (o, e≦x≦o
In the voltage memory element, which is a mixture of electrode active materials of a composite oxide represented by .

作  用 電極が4 A cr I −A g 2WO4などで表
わされる銀イオン導電性固体電解質とA g 、V20
s −y (0−6≦X≦0.8、yは酸素欠損)で表
わされる複合酸化物との混合物である電圧記憶素子にお
いて、Aq!v20.−アは電気化学的に銀のインター
カレーション、デインターカレーションを行わさせるこ
とができる。したがって、釧イオン導電性固体電解質と
の併用によシ、電圧記憶素子を構成することができる。
The working electrode is a silver ion conductive solid electrolyte represented by 4A cr I -A g 2WO4 and A g , V20.
In a voltage memory element that is a mixture with a complex oxide represented by s - y (0-6≦X≦0.8, y is oxygen vacancy), Aq! v20. -A can perform electrochemical intercalation and deintercalation of silver. Therefore, a voltage storage element can be constructed by using it in combination with the ion conductive solid electrolyte.

この電圧記憶素子は、通常銀イオン導電性固体電解質を
介してその両側に銀イオン導電性固体電解質粉末と銀バ
ナジウム酸化物粉末の混合物よ多なる電極を配して構成
する。電圧記憶素子の充放電における電気化学反応は、
固体電解質と電極活物質の界面で行われ、充電の場合、
正極では電極活物質の銀バナジウム酸化物から銀イオン
と電子のデインター力レーシ目ンが行われ、負極では電
極活物質へ銀イオンと電子のインターカレーションが行
われる。したがって充放電特性は固体電解質と電極活物
質で構成する界面の状態によシ大きく左右されることに
なる。すなわち、使用した電極活物質粉末のいずれにも
固体電解質は接しておシ、また接触する固体電解質の界
面の総面積が最大限大きく、かつ接合性が良好な状態で
あることが、充放電における電極の分極を抑制し、最も
良好な充放電特性を獲得できる方法である。しかしなが
ら、従来の電圧記憶素子は検討が不充分で、特に満足な
急速充放電特性が獲得されていなかった。
This voltage storage element is usually constructed by disposing a silver ion conductive solid electrolyte with electrodes made of a mixture of a silver ion conductive solid electrolyte powder and a silver vanadium oxide powder on both sides thereof. The electrochemical reaction during charging and discharging of a voltage storage element is
Charging takes place at the interface between the solid electrolyte and the electrode active material.
At the positive electrode, deintercalation of silver ions and electrons from the silver vanadium oxide of the electrode active material is performed, and at the negative electrode, intercalation of silver ions and electrons is performed into the electrode active material. Therefore, the charge/discharge characteristics are greatly influenced by the state of the interface between the solid electrolyte and the electrode active material. In other words, the solid electrolyte must be in contact with any of the electrode active material powders used, and the total area of the contacting solid electrolyte interface must be as large as possible and the bonding performance must be in a good state during charging and discharging. This is a method that suppresses polarization of the electrodes and achieves the best charge/discharge characteristics. However, conventional voltage storage elements have not been sufficiently studied, and particularly satisfactory rapid charge/discharge characteristics have not been achieved.

本発明は、銀イオン導電性固体電解質粉末と銀バナジウ
ム酸化物粉末とを混合して構成する電極中の電極活物質
の適切な状態を検討し、安定した反応の確保のために電
極活物質をあらかじめ造粒することが効果のあることを
見い出して、優れた急速充放電特性を有し、安定した特
性を有する電圧記憶素子を完成したものである。
The present invention examines the appropriate state of the electrode active material in an electrode composed of a mixture of silver ion conductive solid electrolyte powder and silver vanadium oxide powder, and in order to ensure a stable reaction, the electrode active material is By discovering that granulation in advance is effective, a voltage storage element with excellent rapid charge/discharge characteristics and stable characteristics was completed.

以下本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.

実施例 まず、AqI、Aq20.WO3をモル比で4:1:1
の比となるように秤量し、アルミナ乳鉢で混合した。こ
の混合物を加圧成型しペレット状とした後、パイレック
ス管に減圧封入し、40C)Cで17時間溶融2反応さ
せた。その反応物を水を加えたボールミルで湿式粉砕し
、分級して200メツシュ以下の4A9I−Ag4WO
2で表される銀イオン導電性の固体電解質粉末を得た。
Examples First, AqI, Aq20. WO3 in molar ratio 4:1:1
and mixed in an alumina mortar. This mixture was pressure-molded into pellets, sealed in a Pyrex tube under reduced pressure, and melted and reacted at 40C for 17 hours. The reaction product was wet-pulverized in a ball mill with water added, and classified into 4A9I-Ag4WO of 200 mesh or less.
A silver ion conductive solid electrolyte powder represented by 2 was obtained.

次に、V2O5とAg銀の粉末をモル比で1 :0.7
となるよう秤量し、乳鉢で混合した。その混合物を加圧
成型しベレット状とした後、石英管中に減圧封入し、6
00℃で48時間反応させた。その反応物を乳鉢で粉砕
9分級して2ooメツシュ以下のAqo、7v2o5で
表される銀バナジウム酸化物の電極活物質粉末を得た。
Next, V2O5 and Ag silver powder were mixed in a molar ratio of 1:0.7.
They were weighed and mixed in a mortar. The mixture was pressure-molded into a pellet shape, and then sealed in a quartz tube under reduced pressure.
The reaction was carried out at 00°C for 48 hours. The reaction product was pulverized in a mortar and classified into 9 parts to obtain an electrode active material powder of silver vanadium oxide represented by Aqo of 2oo mesh or less, 7v2o5.

この電極活物質粉末をさらに加圧成型し、ベレット状と
したものを22メツシュ、42メツシュ。
This electrode active material powder was further pressure molded to form pellets into 22 mesh and 42 mesh.

10oメツシュおよび140メツシュのステンレス製の
ふるいで擦シつぶし、造粒した電極活物質を得た。この
ようにして得た固体電解質と電極活物質を用いて、以下
の方法によシミ圧記憶素子を作製した。最初に、固体電
解質粉末と42メツシュのふるいで造粒した電極活物質
粉末を後記の表に示すように電極活物質の含有量が10
重量%から60重量%になるように混合した各種の電極
材料を作製した。
A granulated electrode active material was obtained by grinding with a 100 mesh stainless steel sieve and a 140 mesh stainless steel sieve. Using the solid electrolyte and electrode active material thus obtained, a stain pressure memory element was produced by the following method. First, as shown in the table below, solid electrolyte powder and electrode active material powder granulated with a 42-mesh sieve were prepared so that the content of the electrode active material was 10
Various electrode materials were prepared by mixing them in amounts ranging from 60% by weight.

この電極材料の26■を秤量し、4 ton/dの圧力
で加圧成型し、直径が71m1I+の電極ベレットを作
製した。この電極ベレットを正極、負極ともに使用し1
50■の固体電解質を介して配し、全体を4toνりの
圧力で加圧圧接し、直径が7鱈のベレット状電圧記憶素
子を作製した。さらに、電極活物質t−22メツシュ、
100メッシ、、140メツシュのふるいで造粒したも
のについて、電極中の電極活物質含有量が30重量%と
じた電極を使用し上記と同様の方法で直径が7ffのベ
レット状電圧記憶素子を作製した。また、本発明の実施
例以外に造粒していない粒径70μm以下(212メツ
シュ)の電極活物質を使用し、電極中の電極活物質含有
量が30重量%とじた電極を使用した従来例を同様にし
て比較用として作製した。
26 square meters of this electrode material was weighed and pressure molded at a pressure of 4 ton/d to produce an electrode pellet having a diameter of 71 m1I+. Use this electrode pellet for both the positive and negative electrodes.1
A pellet-shaped voltage memory element having a diameter of 7 mm was produced by disposing a solid electrolyte of 50 cm in diameter and welding the whole body under pressure at a pressure of 4 tov. Furthermore, electrode active material t-22 mesh,
A pellet-shaped voltage memory element with a diameter of 7 ff was prepared in the same manner as above using an electrode in which the electrode active material content in the electrode was 30% by weight, using granules granulated using a 100 mesh or 140 mesh sieve. did. In addition, in addition to the examples of the present invention, there is also a conventional example in which an electrode active material with a particle size of 70 μm or less (212 mesh) that is not granulated is used, and the electrode active material content in the electrode is 30% by weight. was prepared in the same manner for comparison.

試作したこれらの電圧記憶素子の急速充放電特性を確認
するため、ベレットの電極表面にさらにヌズめっきした
銅線を、導電性のカーボンペーストで接合し、全体をエ
ポキシ樹脂系の粉体塗料を150℃で塗装した。
In order to confirm the rapid charging and discharging characteristics of these prototype voltage storage elements, we further bonded the plated copper wire to the electrode surface of the pellet using conductive carbon paste, and coated the entire body with epoxy resin powder paint. Painting was carried out at 150°C.

なお急速充電特性の測定方法は次の通シとした。The method for measuring the rapid charging characteristics was as follows.

全固体電圧記憶素子に20℃で保護抵抗なしで200 
mVの電圧を1分間印加し、その後關回路状態で放置し
、電圧がほぼ安定する2時間後の端子電圧を測定するこ
とで行った。また、この素子電圧の低下量の充電電圧に
対する割合を電圧低下率と定義し、素子の急速充電特性
を評価する指標とした。
200℃ without protective resistor at 20℃ for all-solid-state voltage storage element
The test was carried out by applying a voltage of mV for 1 minute, then leaving the device in the closed circuit state, and measuring the terminal voltage after 2 hours when the voltage became almost stable. Further, the ratio of the amount of decrease in the device voltage to the charging voltage was defined as the voltage decrease rate, and was used as an index for evaluating the quick charging characteristics of the device.

また、急速放電特性の測定方法は次の通シとした。The method for measuring rapid discharge characteristics was as follows.

全固体電圧記憶素子に20℃で200 mVの電圧を保
護抵抗なしで20時間印加することによシ充分に充電し
た後、放電抵抗0Ω(すなわち素子端子を短絡状態とし
た)で60秒間の放電を行った。その後、開回路状態で
放置し、電圧がほぼ安定する2時間後の端子電圧を測定
することで行った。
After fully charging the all-solid-state voltage storage element by applying a voltage of 200 mV at 20 °C for 20 hours without a protective resistor, it was discharged for 60 seconds with a discharge resistance of 0 Ω (i.e., the element terminals were shorted). I did it. Thereafter, the test was carried out by leaving the circuit in an open circuit state and measuring the terminal voltage 2 hours after the voltage became almost stable.

また、この素子電圧の充電電圧に対する割合を電圧上昇
率と定義し、素子あ急速放電特性を評価する指標とした
。なお評価結果は、それぞれ5個の素子の平均値を示し
た。
Further, the ratio of the device voltage to the charging voltage was defined as the voltage increase rate, and was used as an index for evaluating the device's rapid discharge characteristics. Note that the evaluation results are the average values of five elements.

(以下 余 白) 上記表、第1図、第2図に示すように急速充電後の電圧
低下率向と急速放電後の電圧上昇率の)はほぼ同一であ
ることがわかる。
(Hereinafter, blank) As shown in the above table, FIGS. 1 and 2, it can be seen that the voltage decrease rate after rapid charging and the voltage increase rate after rapid discharge are almost the same.

したがって、以下では急速充電後の電圧低下率向に関す
る結果を中心に説明するが、これらは急速放電特性にお
いても全く同傾向となる。
Therefore, although the following explanation will focus on the results regarding the voltage drop rate trend after rapid charging, the same trend will be true for the rapid discharge characteristics as well.

電極活物質を造粒していない従来例& 10の電圧低下
率は35.0%と高いが、電極活物質を造粒した実施例
&1〜&8はいずれも電圧低下率が従来例よシも小さく
、造粒した電極活物質を使用することによシ急速充電特
性が向上することがわかる。特に、電極中の電極活物質
の含有量が30重量%で42〜140メツシュのふるい
を使用したA3./に8. 黒9は顕著に電圧低下率が
減少する。
The voltage drop rate of the conventional example &10 in which the electrode active material was not granulated was as high as 35.0%, but the voltage drop rate in all examples &1 to &8 in which the electrode active material was granulated was lower than that of the conventional example. It can be seen that the rapid charging characteristics are improved by using a small, granulated electrode active material. In particular, A3. / to 8. Black 9 has a significantly reduced voltage drop rate.

これは、電極活物質と固体電解質の電気化学反応が電極
活物質の状態に影響されることを示しておシ、小粒子の
電極活物質と小粒子の固体電解質を接触させた状態とす
るよシ、まず、固体電解質の粒子よりiる程度大きい、
小粒子の電極活物質を強固に接触させた電極の集合体を
形成し、これの周囲を適当量の固体電解質で覆った状態
を形成することが電極活物質全体の反応性に効果がある
ためと考えられる。このように、電極活物質を造粒する
ことによシミ極活物質が集合体を形成し固体電解質と混
合した電極を設けることによシ急速充放電特性が大きく
向上することを確認した。
This indicates that the electrochemical reaction between the electrode active material and the solid electrolyte is affected by the state of the electrode active material. First, particles larger than solid electrolyte particles,
Forming an assembly of electrodes in which small particles of electrode active material are tightly contacted and surrounding this with an appropriate amount of solid electrolyte has an effect on the reactivity of the entire electrode active material. it is conceivable that. In this way, it was confirmed that by granulating the electrode active material, the stain electrode active material forms an aggregate, and by providing an electrode in which the electrode active material is mixed with a solid electrolyte, the rapid charge/discharge characteristics are greatly improved.

なお、本発明の実施例の電圧記憶素子A1−轟9の安定
性ならびに信頼性を確認するため、20℃でO〜200
 mVの電圧範囲で50μA定電流充放電サイクル試験
を行い、およそ12oOサイクルで充放電試験を終了し
、本実施例と同一の条件で急速充放電特性を評価したと
ころ、電圧低下率および電圧上昇率にほとんど変化は認
められず、電圧記憶素子として安定した特性を有するこ
とを確認した。
In addition, in order to confirm the stability and reliability of the voltage storage element A1-Todoroki 9 of the example of the present invention, it was
A 50 μA constant current charge/discharge cycle test was performed in the mV voltage range, and the charge/discharge test was completed at approximately 12 oO cycles, and the rapid charge/discharge characteristics were evaluated under the same conditions as in this example. Almost no change was observed in the voltage storage element, confirming that it had stable characteristics as a voltage storage element.

以上のように、本発明は、固体電解質粉末と電極活物質
粉末を混合して構成する電圧記憶素子の電極中の電極活
物質をあらかじめ42〜140メツシュに造粒し、急速
充放電特性の優れた全固体電圧記憶素子を実現したもの
である。
As described above, the present invention provides excellent rapid charging and discharging characteristics by pre-granulating the electrode active material in the electrode of a voltage memory element composed of a mixture of solid electrolyte powder and electrode active material powder to a size of 42 to 140 mesh. This realizes an all-solid-state voltage storage element.

なお、実施例においては、銀イオン導電性固体電解質と
してAqI、A920およびWO2を合成して作製した
4A g I −A q 2WO4で表される固体電解
質で説明したが、吸湿性を持蛇ないS i O2、M 
o O3゜v205から選ばれる化合物とAqI、Aq
20  がら合成される固体電解質、さらに合成された
ものが吸湿性t” 持fc すIts Cr Os 、
 P 20s 、 B 203から選ばれる化合物とA
ql、Aq20から合成された固体電解質のいずれを使
用しても、電極活物質の粒度が上記と同様の範囲で優れ
た急速充放電特性が獲得できることを確認している。
In addition, in the examples, a solid electrolyte represented by 4A g I - A q 2 WO4 prepared by synthesizing AqI, A920 and WO2 was used as a silver ion conductive solid electrolyte, but S i O2, M
o A compound selected from O3゜v205 and AqI, Aq
20 The solid electrolyte synthesized from CrOs, and the further synthesized one have hygroscopicity t”Its CrOs,
A compound selected from P 20s , B 203 and A
It has been confirmed that excellent rapid charging and discharging characteristics can be obtained when the particle size of the electrode active material is in the same range as above, regardless of whether a solid electrolyte synthesized from Ql or Aq20 is used.

また、実施例では電極活物質として、Aqo、7v2o
5で表される組成のもので説明したが、銀のインターカ
レーション、デインターカレーション反応カはぼ同様に
行われるAqo、6v206およびAqo、8v205
で表される複合酸化物を電極とした場合でも、電極活物
質の造粒により急速充放電特性が顕著に向上することを
確認している。
In addition, in the examples, Aqo, 7v2o are used as electrode active materials.
5, the intercalation and deintercalation reactions of silver are carried out in almost the same way as Aqo, 6v206 and Aqo, 8v205.
It has been confirmed that even when the composite oxide represented by the following is used as an electrode, rapid charge/discharge characteristics are significantly improved by granulation of the electrode active material.

発明の効果 以上のように本発明によれば、銀イオン導電性固体電解
質トA g x V 20 s −y (0−6≦I≦
0.8、yは酸素欠損)で表される電極活物質を混合し
て構成する電極中の電極活物質をあらかじめ42〜14
0メツシュに造粒することによシ、急速充放電特性に優
れた全固体電圧記憶素子を得ることができる。
Effects of the Invention As described above, according to the present invention, the silver ion conductive solid electrolyte A g x V 20 s −y (0-6≦I≦
0.8, y is oxygen vacancy).
By granulating to zero mesh, it is possible to obtain an all-solid-state voltage memory element with excellent rapid charging and discharging characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電極活物質のふるいの大きさと急速充放電特性
の関係図、第2図は電極活物質の含有量と急速充放電特
性の関係図、第3図は従来の全固体電圧記憶素子の断面
図である。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 3、ういの九々N(丈・ツレよ) 第 図 第 癲
Figure 1 is a relationship diagram between the sieve size of the electrode active material and rapid charge/discharge characteristics, Figure 2 is a relationship diagram between the content of the electrode active material and rapid charge/discharge characteristics, and Figure 3 is a diagram of the conventional all-solid-state voltage memory element. FIG. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 3, Uino Kuju N (Jo Tsureyo) Figure 1

Claims (1)

【特許請求の範囲】[Claims]  銀イオン導電性固体電解質と電極活物質としてAg_
XV_2O_5_−_y(0.6≦x≦0.8、yは酸
素欠損)で表わされる複合酸化物とを混合した電極を銀
イオン導電性固体電解質層を介してその両側に配する電
圧記憶素子において、前記電極を構成する電極活物質を
あらかじめ42〜140メッシュに造粒したことを特徴
とする全固体電圧記憶素子。
Ag_ as silver ion conductive solid electrolyte and electrode active material
In a voltage memory element in which electrodes mixed with a composite oxide represented by . An all-solid-state voltage memory element, characterized in that the electrode active material constituting the electrode is granulated in advance to a size of 42 to 140 mesh.
JP2141057A 1990-05-29 1990-05-29 Complete solid voltage storage element Pending JPH0434865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141057A JPH0434865A (en) 1990-05-29 1990-05-29 Complete solid voltage storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141057A JPH0434865A (en) 1990-05-29 1990-05-29 Complete solid voltage storage element

Publications (1)

Publication Number Publication Date
JPH0434865A true JPH0434865A (en) 1992-02-05

Family

ID=15283252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141057A Pending JPH0434865A (en) 1990-05-29 1990-05-29 Complete solid voltage storage element

Country Status (1)

Country Link
JP (1) JPH0434865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
US9190659B2 (en) 2006-08-31 2015-11-17 Seiko Epson Corporation Secondary battery and a method for manufacturing the secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
US9190659B2 (en) 2006-08-31 2015-11-17 Seiko Epson Corporation Secondary battery and a method for manufacturing the secondary battery

Similar Documents

Publication Publication Date Title
US6835500B2 (en) Hydrated iron phosphate electrode materials for rechargeable lithium battery cell systems
JPH11219722A (en) Lithium secondary battery
JP2003217663A (en) Nonaqueous electrolyte battery
JPH0434863A (en) Complete solid voltage storage element
JPH1021898A (en) Lithium battery
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
JPH0434865A (en) Complete solid voltage storage element
JPH06275314A (en) Lithium secondary battery
JPH0434866A (en) Complete solid voltage storage element
JP3054684B2 (en) Rechargeable battery
JP2734747B2 (en) All-solid-state voltage storage element
JPH0414767A (en) Full solid secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH03291859A (en) Fully solid secondary cell
JPH03297070A (en) All-solid secondary battery
JPH0426073A (en) Fully solid secondary battery
JPH0456077A (en) Whole solid secondary battery
JPH0465068A (en) Total solid voltage memory element
JPH04255674A (en) Total solid voltage memory element
JPH03297069A (en) All-solid secondary battery
JPH0434864A (en) Complete solid voltage storage element
JPH0465070A (en) All solid voltage memory element
JPH0481309B2 (en)
JPS6012677A (en) Solid electrolyte secondary battery
JPH0426074A (en) Fully solid secondary battery