JPH0270046A - Superplastic molding method - Google Patents

Superplastic molding method

Info

Publication number
JPH0270046A
JPH0270046A JP22315588A JP22315588A JPH0270046A JP H0270046 A JPH0270046 A JP H0270046A JP 22315588 A JP22315588 A JP 22315588A JP 22315588 A JP22315588 A JP 22315588A JP H0270046 A JPH0270046 A JP H0270046A
Authority
JP
Japan
Prior art keywords
superplasticity
molding
workpiece
work
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22315588A
Other languages
Japanese (ja)
Inventor
Yutaka Wakabayashi
豊 若林
Kenzo Kato
健三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP22315588A priority Critical patent/JPH0270046A/en
Publication of JPH0270046A publication Critical patent/JPH0270046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To omit a stage for forming the stock of a Ti alloy to the finer crystal grains and to simplify a molding stage by subjecting the stock to a soln. heat treatment, then to compressive molding at a superplasticity development temp. CONSTITUTION:The work consisting of the Ti alloy is subjected to the soln. heat treatment at the temp. above the transformation temp. to uniformize the compsn. The work is in succession subjected to compressive molding at the superplasticity development temp. or below. Although the work is not rolled in the initial stage of the press forming, the work develops superplasticity rapidly thereafter and exhibits macroelongation. The time for producing the molding is shortened in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超塑性の発現する材料の成形方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for molding a material exhibiting superplasticity.

[発明の概要] 本発明は、被加工材をβ変態温度以上の温度にて溶体化
処理した後、該被加工材の超塑性が発現する温度領域に
おいて、該被加工材を圧縮加工成形するものであり、圧
縮加工成形初期段階において、被加工材の結晶粒を微細
化せしめ、超塑性を発現せしめ、成形するものである。
[Summary of the Invention] The present invention provides a method for solution-treating a workpiece at a temperature equal to or higher than the β-transformation temperature, and then compressing and forming the workpiece in a temperature range where the workpiece exhibits superplasticity. In the initial stage of compression molding, the crystal grains of the workpiece are made finer to develop superplasticity and then molded.

[従来の技術] 従来、超塑性を発現する材料としては、チタン合金(T
 1−6A l−4V合金、T 1−6A I −6V
−23n合金、Ti−8Mn合金等)、ニッケル合金、
アルミニウム合金、鉄系合金、銅系合金等が知られてい
る。
[Conventional technology] Conventionally, titanium alloy (T
1-6A I-4V alloy, T 1-6A I-6V
-23n alloy, Ti-8Mn alloy, etc.), nickel alloy,
Aluminum alloys, iron-based alloys, copper-based alloys, etc. are known.

又、超塑性を発現させるには、材料の結晶粒を微細化す
る必要があることが知られている。そこで、従来では、
前記材料の超塑性を発現させて成形する前処理としての
、材料自体の結晶粒の微細化処理が、種々提案されてい
る。
Furthermore, it is known that in order to exhibit superplasticity, it is necessary to refine the crystal grains of the material. Therefore, conventionally,
Various treatments have been proposed to refine the crystal grains of the material itself as a pretreatment for developing superplasticity of the material and forming it.

特願昭60−51284号公報では、α十β型チタン合
金において、β域に該合金を加熱・保持した後、β−ト
ランザスから650℃の温度域にて該合金を加工し、焼
鈍することにより、微細粒を均一に分散析出する処理が
記載されている。
Japanese Patent Application No. 60-51284 discloses that in an α-10β type titanium alloy, after heating and holding the alloy in the β region, the alloy is processed and annealed in a temperature range of 650° C. from the β-transus. describes a process for uniformly dispersing and precipitating fine grains.

又、最近では、高速で回転するロール表面に注湯して急
冷凝固させるロール法により、微細結晶粒を有する合金
を製造する方法が提案されている。
Recently, a method has been proposed for producing an alloy having fine crystal grains by a roll method in which the metal is poured onto the surface of a roll rotating at high speed and rapidly solidified.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明した様に、超塑性を発現させるために、材料の
結晶粒を微細化する処理を、該材料の成形前に実施する
ものであり、結晶粒の微細化処理として、熱処理、加工
処理等の多大な処理時間及び処理装置が必要となり、製
造コストを高くするという問題がある。
As explained above, in order to develop superplasticity, treatment to refine the crystal grains of a material is carried out before the material is molded, and grain refinement treatments include heat treatment, processing, etc. There is a problem in that a large amount of processing time and processing equipment are required, which increases manufacturing costs.

又、予かしめ微細な結晶粒を有する材料を製造するロー
ル法では、100μm程度の薄帯しか製造てきず、板金
加工や恒温鋳造に用いられる厚板の製造が不可能であり
、超塑性加工への応用が極めて限定されてしまっていた
In addition, the roll method, which produces pre-swaged materials with fine crystal grains, can only produce thin strips of about 100 μm, making it impossible to produce thick plates used in sheet metal processing and isothermal casting, making it difficult to use superplastic processing. Its application has been extremely limited.

[課題を解決するための手段] 本発明は、上記課題を解決するために、材料に該材料の
β変態温度以上の温度で溶体化処理を施こし、該材料の
組成の均一化を図った後、該材料の超塑性発現温度にお
いて圧縮加工成形を行なうものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention applies solution treatment to a material at a temperature equal to or higher than the β transformation temperature of the material, thereby uniformizing the composition of the material. Thereafter, compression molding is performed at the temperature at which the material exhibits superplasticity.

[作用] 本発明は、結晶粒を微細化することにより超塑性が発現
する材料が、溶体化処理後の結晶粒が粗大化状態でも、
該材料の超塑性発現温度において引張状態では超塑性は
発現しないが、圧縮状態では超塑性が発現することに着
目し、材料のβ変態温度以上の温度で該材料を溶体化処
理した後、超塑性発現温度において該材料を圧縮加工成
形するものである。
[Function] The present invention provides a material that exhibits superplasticity by refining crystal grains, even if the crystal grains are coarsened after solution treatment.
Focusing on the fact that superplasticity does not develop in the tensile state at the superplasticity development temperature of the material, but superplasticity develops in the compressed state, after solution treatment of the material at a temperature equal to or higher than the β transformation temperature of the material, superplasticity is developed. The material is compressed and molded at the temperature at which plasticity occurs.

この様に、従来の様に加工成形前に材料の結晶粒の微細
化処理を施こす工程を削除し、成形工程の簡略化が達成
され、製造コストの低減を達成するものである。
In this way, the conventional step of subjecting the material to grain refinement before processing and molding is eliminated, the molding process is simplified, and manufacturing costs are reduced.

〔実施例1 次に、本発明について、図面に基づいて詳細に説明する
[Example 1] Next, the present invention will be described in detail based on the drawings.

第1図は、本発明の超塑性成形方法の工程図である。FIG. 1 is a process diagram of the superplastic forming method of the present invention.

被加工材として、現在汎用されている表1に示す組成の
α十β型チタン合金を用いた。
As the workpiece material, an α-10β type titanium alloy having the composition shown in Table 1, which is currently widely used, was used.

表  1   (w十%) 被加工材に変態温度(780°C)以上で溶体化処理(
880°C11時間)を施こし、固溶体を均一分散する
。この状態では、被加工材の組成分布が均一化されてい
るが、結晶粒は100μm以上に粗大化している。
Table 1 (w 10%) Solution treatment (
880° C. for 11 hours) to uniformly disperse the solid solution. In this state, the composition distribution of the workpiece is uniform, but the crystal grains are coarsened to 100 μm or more.

次に、該被加工材を700″Cの温度に保持してプレス
成形する。(該被加工材の超塑性発現温度は、700〜
750℃である。) このプレス成形の初期段階では、被加工材は圧延されな
いが、以降急激に超塑性を発現し、巨大伸びを呈し、圧
縮加工成形が達成された。
Next, the workpiece is held at a temperature of 700"C and press-formed. (The superplasticity development temperature of the workpiece is 700~
The temperature is 750°C. ) At the initial stage of press forming, the workpiece is not rolled, but thereafter it rapidly develops superplasticity and exhibits enormous elongation, achieving compression forming.

第2図は、引較例の超塑性成形方法の工程図である。こ
の引較例は、圧縮加工成形前に被加工材の結晶粒の微細
化処理を実施するものである。
FIG. 2 is a process diagram of a superplastic forming method according to a comparative example. In this comparative example, the crystal grains of the workpiece are refined before compression molding.

表1に示すα十β型チタン合金を被加工材とし、該被加
工材に溶体化処理(880°C11時間)を施こす。
The α-10β type titanium alloy shown in Table 1 was used as a workpiece, and the workpiece was subjected to solution treatment (880° C. for 11 hours).

次に、780°C14時間の焼鈍処理を施こす。Next, annealing treatment is performed at 780°C for 14 hours.

次に、冷間圧延しく50%加工)、更に、650°C1
2時間の焼鈍処理を加える。
Next, cold rolling (50% processing) and further 650°C1
Add annealing treatment for 2 hours.

この状態で、被加工材は、10LLm以下の結晶粒の等
軸微細組織となる。
In this state, the workpiece has an equiaxed fine structure with crystal grains of 10 LLm or less.

そこで、該被加工材を700°Cの温度に保持してプレ
ス成形し、超塑性を発現せしめ巨大伸びを得て、圧縮加
工成形を達成する。
Therefore, the workpiece is press-formed while being held at a temperature of 700°C to develop superplasticity and obtain enormous elongation, thereby achieving compression molding.

第3図は、圧縮加工成形時の被加工材のひずみと応力の
関係を示す図である。
FIG. 3 is a diagram showing the relationship between strain and stress of a workpiece during compression molding.

第3図に於いて、実線は本発明方法を、破線は比較例方
法を示す。
In FIG. 3, the solid line shows the method of the present invention, and the broken line shows the method of the comparative example.

比較例方法に於いては、圧縮加工成形前に結晶粒の微細
化処理を施こしており、圧縮加工成形初期より超塑性が
発現している事を示している。
In the method of the comparative example, grain refinement treatment was performed before compression molding, indicating that superplasticity was expressed from the early stage of compression molding.

本発明方法に於いては、圧縮加工成形初期ではほとんど
被加工材が圧延されず、超塑性が発現していない。しか
し、以降、急激に応力が低下し、巨大伸びを呈している
事から、超塑性が発現している事を示している。
In the method of the present invention, the workpiece is hardly rolled at the initial stage of compression forming, and superplasticity is not expressed. However, after that, the stress suddenly decreased and a huge elongation was observed, indicating that superplasticity was occurring.

この事から、本発明方法では、圧縮加工成形初期に於い
て、結晶粒の微細化が達成される事を示すものである。
This shows that in the method of the present invention, grain refinement can be achieved at the initial stage of compression molding.

更に、本発明方法は、比較例方法に比べ、90%圧縮時
に、応力が小さくなっており、超塑性成形方法として有
効な成形方法である。
Furthermore, the method of the present invention has a smaller stress at 90% compression than the method of the comparative example, and is an effective molding method as a superplastic molding method.

尚、本実施例に於いて、被加工材として、α十β型チタ
ン合金を用いたが、結晶粒を微細化して超塑性を発現す
るニッケル合金、アルミニウム合金、鉄系合金、銅系合
金等の材料に対しても、有効な成形方法であることはい
うまでもないことである。
In this example, α-10β type titanium alloy was used as the workpiece material, but nickel alloys, aluminum alloys, iron-based alloys, copper-based alloys, etc., which develop superplasticity by refining crystal grains, may also be used. It goes without saying that this is an effective molding method for materials such as

[発明の効果] 以上説明した様に、本発明は、結晶粒が粗大化状態でも
、圧縮加工成形では超塑性が発現する事に着目し、変態
温度以上の温度にて溶体化処理した後、超塑性発現温度
下で圧縮加工成形するものであり、加工成形前の多段の
結晶粒微細化処理工程を除去でき、製造時間の大幅な低
減・結晶粒微細化処理装置が不要を達成され、製造コス
トの大幅な低減に貢献するものである。
[Effects of the Invention] As explained above, the present invention focuses on the fact that superplasticity is expressed in compression molding even when crystal grains are coarsened, and after solution treatment at a temperature higher than the transformation temperature, Compression molding is performed under the temperature at which superplasticity occurs, and the multi-stage grain refining treatment process before processing and molding can be eliminated, significantly reducing manufacturing time and eliminating the need for grain refining processing equipment. This contributes to significant cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の超塑性成形方法の工程図、第2図は
、比較例の超塑性成形方法の工程図、第3図は、圧縮加
工成形時の被加工材のひずみと応用の関係を示す図であ
る。 以上 出廓人 セイコー電子工業株式会社
Fig. 1 is a process diagram of the superplastic forming method of the present invention, Fig. 2 is a process diagram of a superplastic forming method of a comparative example, and Fig. 3 is a diagram of the strain of the workpiece during compression forming and the application. It is a figure showing a relationship. The above employees are Seiko Electronics Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] チタン合金からなる被加工材を溶体化処理した後、該被
加工材の超塑性が発現する温度領域で、該被加工材を圧
縮加工成形することを特徴とする超塑性成形方法。
A method for superplastic forming, which comprises subjecting a workpiece made of a titanium alloy to solution treatment, and then compressing and forming the workpiece in a temperature range where the workpiece exhibits superplasticity.
JP22315588A 1988-09-06 1988-09-06 Superplastic molding method Pending JPH0270046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22315588A JPH0270046A (en) 1988-09-06 1988-09-06 Superplastic molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22315588A JPH0270046A (en) 1988-09-06 1988-09-06 Superplastic molding method

Publications (1)

Publication Number Publication Date
JPH0270046A true JPH0270046A (en) 1990-03-08

Family

ID=16793655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22315588A Pending JPH0270046A (en) 1988-09-06 1988-09-06 Superplastic molding method

Country Status (1)

Country Link
JP (1) JPH0270046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516375A (en) * 1994-03-23 1996-05-14 Nkk Corporation Method for making titanium alloy products
JP2008002172A (en) * 2006-06-22 2008-01-10 Toshiba Mach Co Ltd Construction machine equipped with control valve having lift preventing function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516375A (en) * 1994-03-23 1996-05-14 Nkk Corporation Method for making titanium alloy products
JP2008002172A (en) * 2006-06-22 2008-01-10 Toshiba Mach Co Ltd Construction machine equipped with control valve having lift preventing function

Similar Documents

Publication Publication Date Title
JPS6350414B2 (en)
JP2002518593A (en) Metal product having fine and uniform structure and texture and method for manufacturing the same
JP2004124151A (en) Heat treatment method for aluminum alloy
JPS6362580B2 (en)
US3481799A (en) Processing titanium and titanium alloy products
US2666721A (en) Process of producing ductile molybdenum
US3046166A (en) Treatment of brass
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPS6132387B2 (en)
JPH0270046A (en) Superplastic molding method
JPH08311594A (en) Al-mg alloy sheet excellent in bendability and its production
US2545862A (en) Process of producing mechanical elements
KR102445159B1 (en) Method for improving strength of metal by static recrystallization
JPH0116910B2 (en)
JPH039183B2 (en)
JP2678292B2 (en) Heat-treated aluminum alloy semi-finished product with excellent strength and method for manufacturing the product
JP2694259B2 (en) Processing method of β-type titanium alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
SU1509143A1 (en) Method of producing foil from magnesium alloys
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPS6323263B2 (en)
RU2041284C1 (en) Method for treating nickel-base dispersion-hardened alloys
JPH0781177B2 (en) Method for manufacturing β-type titanium alloy strip
JP2023095303A (en) Aluminum alloy material and method for manufacturing the same
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate