JPS63206457A - Working and heat treatment of alpha+beta type titanium alloy - Google Patents

Working and heat treatment of alpha+beta type titanium alloy

Info

Publication number
JPS63206457A
JPS63206457A JP3992887A JP3992887A JPS63206457A JP S63206457 A JPS63206457 A JP S63206457A JP 3992887 A JP3992887 A JP 3992887A JP 3992887 A JP3992887 A JP 3992887A JP S63206457 A JPS63206457 A JP S63206457A
Authority
JP
Japan
Prior art keywords
processing
beta
transformation point
temperature
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3992887A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3992887A priority Critical patent/JPS63206457A/en
Publication of JPS63206457A publication Critical patent/JPS63206457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Ti alloy having a fine isometric alpha+beta two-phase structure and suitable for superplastic working by working and heat treating an alpha+beta type Ti alloy under specified conditions. CONSTITUTION:An alpha+beta type Ti alloy typified by Ti-6Al-4V as stock is subjected to >=50% compressive working at a temp. above 1,000 deg.C as the beta-transformation point of the alloy, heated to a temp. in the alpha+beta temp. range and rolled at >=20% draft. The alloy is then heated to the beta-transformation point - (the beta-transformation point + 70 deg.C), held in the temp. range for 30sec-30min and cooled to <=500 deg.C at >=5 deg.C/sec cooling rate. It is further subjected to >=50% working in the temp. range of (the beta-transformation point - 400 deg.C) - (the beta-transformation point - 200 deg.C), heated to 700-800 deg.C and annealed for 30-120min. An alpha+beta type Ti alloy having fine isometric grains and capable of undergoing superplastic working is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、α+β型チタン合金の加工熱処理方法、特に
超塑性加工に適した微細結晶粒を有するα+β型チタン
合金を製造するための加工熱処理方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a process heat treatment method for an α+β type titanium alloy, particularly a process heat treatment method for producing an α+β type titanium alloy having fine grains suitable for superplastic working. Regarding the method.

(従来の技術) チタン合金は軽量であること、強度/密度比が大きいと
いうこと、さらには高温強度、耐食性にすぐれているこ
と等から、近年その用途を拡大しつつあり、それに伴っ
てその加工法について多くの提案がされている。
(Prior art) Titanium alloys are being used more and more in recent years due to their light weight, high strength/density ratio, and excellent high-temperature strength and corrosion resistance. Many proposals have been made for the law.

例、tばTi −6八1−4vに代表されるα+β型チ
タン合金は、超塑性加工により複雑な形状の部品を成形
することが可能であり、一方、そのような超塑性加工に
は微細な結晶粒径の等軸α+β二相組織が適しているこ
とは良く知られている。
For example, α+β type titanium alloys, represented by Ti-681-4V, can be formed into parts with complex shapes by superplastic processing.On the other hand, such superplastic processing requires fine processing. It is well known that an equiaxed α+β two-phase structure with a grain size of

しかしながら、そのような微細な等軸α+β二相組織を
いかに製造するかについては明確には分かっていない。
However, it is not clearly understood how to produce such a fine equiaxed α+β two-phase structure.

ところで、上述のような超塑性加工は加工素材に行うの
であるが、そのような加工素材を得るにはまず鋳造材な
どから熱間圧延等の加工を行わなければならない。しか
しながら、Ti −6AI −4Vに代表されるα+β
型チタン合金は、そのような場合の加工性が悪く第1図
(blに示すように、熱間加工はβ温度域で一旦加工を
した後、(β変態点−200℃)〜β変態点の温度範囲
で行われるのが一般である。このように、比較的高温で
加工が行われてきたため、α相の微細化も必ずしも十分
ではなかった。
By the way, the above-mentioned superplastic working is performed on a processed material, but in order to obtain such a processed material, it is first necessary to perform processing such as hot rolling from a cast material. However, α+β represented by Ti-6AI-4V
Type titanium alloys have poor workability in such cases, as shown in Figure 1 (bl), after hot working in the β temperature range, (β transformation point -200°C) to β transformation point Generally, processing is carried out at a temperature within the range of .As described above, since processing has been carried out at relatively high temperatures, the refinement of the α phase has not always been sufficient.

β粒径の微細化方法については、α+β域での10−2
0%の加工の後、β温度域で再結晶焼鈍を行う方法が知
られている。
Regarding the method of refining the β grain size, please refer to 10-2 in the α+β region.
A method is known in which recrystallization annealing is performed in the β temperature range after 0% processing.

また、特開昭61−159564号公報には、第1図t
elにまとめて示すように、α+β二相&1lIIiの
細粒化法として、1000〜1100℃のβ単相域で4
0%以上の加工を施し、850〜950℃の(α+β)
二相域で40%以上の加工を施し、その温度ないしは8
00℃までの温度区間で30分以上2時間以内の保持を
行い、その温度から450〜550℃まで5℃/秒以上
の冷却速度で冷却した後、その温度で最高20時間まで
の時効処理を行う方法が開示されている。
In addition, in Japanese Patent Application Laid-open No. 159564/1986, there is a
As summarized in el, as a grain refining method for α + β two-phase & 1lIIi, 4
0% or more processing, 850-950℃ (α+β)
Processing of 40% or more in the two-phase region and the temperature or 8
After holding in the temperature range up to 00℃ for 30 minutes to 2 hours, cooling from that temperature to 450 to 550℃ at a cooling rate of 5℃/second or more, aging treatment at that temperature for up to 20 hours. A method is disclosed.

このように、α+β型チタン合金の超塑性加工には、微
細な等軸のα+β二相組織が必要とされているが、従来
の熱間加工法ではα+β二相組織の十分な微細化は達成
されない。
As described above, a fine equiaxed α+β two-phase structure is required for superplastic working of α+β-type titanium alloys, but sufficient refinement of the α+β two-phase structure has been achieved using conventional hot working methods. Not done.

すなわち、2粒微細化法ではβ粒の微細化は可能である
が、α+β二相&Iimの微細化方法は示されていない
That is, although it is possible to refine β grains with the two-grain refinement method, a method of refinement of α+β two-phase &Iim is not disclosed.

一方、前記公開公報に開示の方法ではα+β二相組織の
微細化方法が示されているが、その実施例では520℃
で20時間というように最高20時間までの低温時効を
必要とし生産性が低いという問題点がある。
On the other hand, the method disclosed in the above-mentioned publication discloses a method for refining an α+β two-phase structure, but in the example, the
There is a problem that low-temperature aging is required for up to 20 hours, resulting in low productivity.

(発明が解決しようとする問題点) 本発明の目的は、超塑性加工に適した微細な等軸のα+
β二相組織を有するα+β型チタン合金を製造する加工
熱処理方法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to form a fine equiaxed α+
An object of the present invention is to provide a processing heat treatment method for producing an α+β type titanium alloy having a β two-phase structure.

本発明の別の目的は、超塑性加工に適した微細等軸α+
β二相&I織チタン合金の生産性の高い加工熱処理方法
を提供することである。
Another object of the present invention is to obtain a fine equiaxed α+ suitable for superplastic processing.
It is an object of the present invention to provide a highly productive process heat treatment method for β two-phase & I-woven titanium alloy.

(問題点を解決するための手段) 本発吹者らの研究によれば、α+β型チタン合金の熱間
における変形能は、β粒の粒径に強く依存しており、β
粒径を微細化すれば、加工可能温度は(β変態点−40
0℃)程度まで低下可能であること、およびα+β二相
混合組織におけるα粒の平均粒径は加工温度に強く依存
しており、(β変態点−200℃)以下の温度で50%
以上の加工を行うことにより結晶粒は著しく微細化され
ることを見出し、本発明を完成させるに至つた。
(Means for solving the problem) According to the research of the authors, the hot deformability of α+β type titanium alloy strongly depends on the grain size of β grains, and β
If the particle size is made finer, the processable temperature will be (β transformation point -40
0°C), and the average particle size of α grains in the α+β two-phase mixed structure strongly depends on the processing temperature, and the average particle size of α grains in the α + β two-phase mixed structure strongly depends on the processing temperature, and the average grain size of
It has been found that crystal grains can be significantly refined by performing the above processing, and the present invention has been completed.

ここに、本発明の要旨とするところは、β変態点以上で
50%以上の加工が行われたα+β型チタン合金の素材
に、α+β温度域で20%以上の加工を加えた後、β変
態点〜(β変態点+70℃)の温度範囲に30秒〜30
分の時間保持してから、5℃/秒以上の冷却速度で50
0℃以下の温度に冷却し、次いで、(β変態点−400
℃)〜(β変態点−200℃)の温度範囲で50%以上
の加工を行った後、700〜800℃の温度範囲で30
〜120分間の焼鈍を行うことを特徴とする、微細な等
軸結晶粒を得るためのα+β型チタン合金の加工熱処理
方法である。
Here, the gist of the present invention is to process an α+β type titanium alloy material by 50% or more at temperatures above the β transformation point, process it by 20% or more in the α+β temperature range, and then transform it into β-transformation material. 30 seconds to 30 seconds in the temperature range of (β transformation point + 70℃)
50 minutes at a cooling rate of at least 5°C/sec.
Cooled to a temperature below 0°C, then (β transformation point -400
After processing 50% or more in the temperature range of ℃) to (β transformation point - 200℃),
This is a process heat treatment method for α+β type titanium alloy to obtain fine equiaxed crystal grains, which is characterized by performing annealing for ~120 minutes.

(作用) 添付図面に関連させてさらに本発明を詳述する。(effect) The invention will now be described in further detail in connection with the accompanying drawings.

第1図falは、本発明にかかる加工熱処理方法を図示
する線図である。
FIG. 1 fal is a diagram illustrating the processing heat treatment method according to the present invention.

本発明にあっては、β粒径の細かい素材を用いてα+β
域の低温部で加工を行い、その後700〜800℃で3
0〜120分保持する焼鈍を行うことにより、超塑性加
工に適したαの平均粒径の細かい(≦3.3μ11)微
細な等軸α+β組織を持つチタン合金製品を高い生産性
で製造するのである。
In the present invention, α+β is obtained by using a material with a fine β particle size.
Processing is carried out in the low temperature section of the
By performing annealing for 0 to 120 minutes, titanium alloy products with a fine equiaxed α+β structure with a fine average grain size of α (≦3.3μ11) suitable for superplastic processing can be manufactured with high productivity. be.

以下に本発明における加工熱処理条件の数値限定理由に
ついて説明する。
The reasons for limiting the numerical values of processing and heat treatment conditions in the present invention will be explained below.

本発明に使用される出発加工素材は50%以上のβ加工
が行われた、例えばビレット (又はブルーム)として
いるのは、インゴットおよび40%未満のβ加工羽では
β粒が極めて大きく、後工程においてβ粒の微細化を行
っても、本発明の目的に合致する平均粒径III+#以
下のβ粒を得ることができず、比較的加工の容易なβ単
相温度域で50%以上の加工を行い、予めβ粒径を3m
11以下に微細化しておく必要があるためである。
The starting processed material used in the present invention is a billet (or bloom) that has undergone β processing of 50% or more, because the β grains in ingots and feathers with β processing of less than 40% are extremely large, and are used in the subsequent process. Even if β grains are refined in Processing is performed to reduce the β grain size to 3m in advance.
This is because it is necessary to miniaturize the size to 11 or less.

次に、α+β温度域での加工を20%以上としているの
は、それ未満の加工率ではその後のβ域での保持を行っ
ても微細な再結晶β粒が得られないためである。β域で
の保持条件をβ変態点〜(β変態点+70℃)の温度範
囲に30秒〜30分間としたのは、これより低いまたは
短い温度範囲及び保持時間では、再結晶β粒が得られず
、逆にこれを超えた温度範囲及び保持時間では再結晶β
粒の成長が起こり、微細なβ粒が得られないためである
Next, the reason why processing in the α+β temperature range is set to 20% or more is because if the processing rate is less than that, fine recrystallized β grains cannot be obtained even if the material is held in the β range thereafter. The holding conditions in the β region were set to a temperature range of β transformation point to (β transformation point + 70°C) for 30 seconds to 30 minutes because recrystallized β grains could not be obtained in a lower or shorter temperature range and holding time. On the contrary, in the temperature range and holding time exceeding this, recrystallization β
This is because grain growth occurs and fine β grains cannot be obtained.

β域での保持後の冷却速度を5℃/秒以上としたのは、
これより小さい冷却速度では再結晶β粒の成長が起こる
からである。冷却の温度を500℃以下としたのは、こ
れを超えた温度への冷却ではやはり再結晶β粒の成長が
起こるためである。
The reason why the cooling rate after holding in the β region was set to 5°C/sec or more was because
This is because a cooling rate lower than this causes growth of recrystallized β grains. The reason why the cooling temperature was set to 500° C. or lower is that cooling to a temperature exceeding this temperature still causes the growth of recrystallized β grains.

第2図は、Ti −6AI−4V合金(β変態点: 1
000℃)について標準的加工熱処理条件として、β加
工およびα+β加工を行い、加工率を種々調整してβ粒
径を変えたとき、50%圧縮加工によりクランクの発生
のない下限温度をβ粒径に対してプロットして得たグラ
フであり、β粒の微細化により加工可能温度が(β変態
点−400℃)まで低下可能であることが分かる。
Figure 2 shows Ti-6AI-4V alloy (β transformation point: 1
000℃), β processing and α+β processing are performed as standard processing heat treatment conditions, and when the processing rate is variously adjusted to change the β grain size, the lower limit temperature at which cranking does not occur by 50% compression processing is the β grain size. This is a graph obtained by plotting against the β grains, and it can be seen that the processable temperature can be lowered to (β transformation point −400° C.) by making the β grains finer.

次に、α+β温度域での加工を(β変態点−400℃)
〜(β変態点−200℃)の温度範囲で50%以上の加
工と限定したのは、前工程でβ粒の微細化を行っても(
β変態点−400℃)未満の温度ではα+β型チタン合
金の50%以上の加工はクランクの発生により行い得す
、また(β変態点−200℃)超の温度あるいは50%
未満の加工率の加工では十分なα粒の微細化を達成し得
ないためである。
Next, processing in the α+β temperature range (β transformation point -400℃)
The reason for limiting the processing to 50% or more in the temperature range of ~ (β transformation point -200°C) is that even if the β grains are refined in the previous process (
At temperatures below (beta transformation point -400℃) more than 50% of the processing of α+β type titanium alloys can occur due to crank generation, and at temperatures above (beta transformation point -200℃) or 50%
This is because sufficient refinement of the α grains cannot be achieved by processing at a processing rate lower than that.

第3図は、Ti −6AI −4V合金について素材の
β粒径1.OmtsOものについて、加工率を50%と
し、焼鈍条件を750℃×1時間としたときの加工温度
とαの平均粒径(μll)の関係をまとめて示すグラフ
である。加工温度によってα粒径は大きく変化し、(β
変態点−400℃)〜(β変態点−200℃)の温度で
50%以上の加工および焼鈍を行うことによりα粒径が
著しく微細化するのが分かる。
Figure 3 shows the β grain size of the material for Ti-6AI-4V alloy: 1. It is a graph summarizing the relationship between the processing temperature and the average grain size of α (μll) when the processing rate is 50% and the annealing condition is 750° C.×1 hour for OmtsO. The α grain size changes greatly depending on the processing temperature, and (β
It can be seen that the α grain size is significantly refined by performing processing and annealing of 50% or more at a temperature between (transformation point -400°C) and (β transformation point -200°C).

上記の温度範囲および加工率で加工されたα+β型チタ
ン合金のα粒は加工により変形を受けた、加工方向に伸
びた結晶粒となっているため焼鈍により再結晶させる必
要がある。この焼鈍条件は700〜800℃の温度範囲
で30〜120分間と限定しているが、700℃未満の
温度および30分未満の保持時間ではα粒の再結晶が起
こらず等軸組織が得ら。
The α grains of the α+β type titanium alloy processed in the above temperature range and processing rate are deformed by processing and become crystal grains elongated in the processing direction, so they need to be recrystallized by annealing. The annealing conditions are limited to a temperature range of 700 to 800°C for 30 to 120 minutes, but if the temperature is less than 700°C and the holding time is less than 30 minutes, recrystallization of α grains will not occur and an equiaxed structure will not be obtained. .

れないためであり、800℃超の温度および120分超
0保持時間では再結晶α粒の成長が生じるためである。
This is because the growth of recrystallized α grains occurs at temperatures exceeding 800° C. and zero holding times exceeding 120 minutes.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 第1表に示す化学組成およびβ変態点を有する供試材(
Ti  6A1 4V)を使用し、本発明方法を実施し
た。
Examples Test materials having the chemical composition and β transformation point shown in Table 1 (
The method of the present invention was carried out using Ti 6A1 4V).

供試材には直径200 amインゴットを用い、β鍛造
により肉厚100 mmの厚板とした後、α+β加工、
β域での保持後急冷および表面切削を行い、肉厚60m
mの厚板とし、さらにα+β温度域での圧延により肉f
f12ml11〜45+wm (典型的には肉厚30m
+a)の熱延板とした。
An ingot with a diameter of 200 am was used as the sample material, and after being made into a thick plate with a wall thickness of 100 mm by β forging, it was subjected to α+β processing,
After holding in the β region, rapid cooling and surface cutting are performed, and the wall thickness is 60 m.
m thick plate, and further rolled in the α+β temperature range to reduce the thickness f
f12ml11~45+wm (Typically wall thickness 30m
A hot rolled sheet of +a) was obtained.

第2表に本発明法および比較法で製造した熱延焼鈍板の
製造条件および得られたβ粒径を、第3表にαの結晶粒
径および機械的性質を従来法と比較して示す。
Table 2 shows the manufacturing conditions and the obtained β grain size of hot rolled annealed sheets manufactured by the method of the present invention and the comparative method, and Table 3 shows a comparison of the α grain size and mechanical properties with those of the conventional method. .

第2表において隘1および隘2は本発明方法にかかる製
造プロセスを示す。阻3〜Th1lは比較例を示し、N
11L3はβ鍛造での加工率、阻4はα+β加工の加工
率、患5はβ域での保持温度、時間およびβ域保持後の
冷却速度、患6はβ域での保持時間およびβ域で保持後
の冷却温度、Na7はα+β温度域での加工温度、隘8
はα+β温度域での加工率、1lh9はα+β加工後の
保持温度、&10およびNa1lは焼鈍条件がそれぞれ
本発明の範囲を外れた場合の例である。阻12は従来例
である。
In Table 2, columns 1 and 2 indicate the manufacturing process according to the method of the present invention. 3 to Th1l indicate comparative examples, and N
11L3 is the processing rate in β forging, 4 is the processing rate in α + β processing, 5 is the holding temperature and time in the β region, and the cooling rate after holding the β region, 6 is the holding time in the β region and the β region The cooling temperature after holding, Na7 is the processing temperature in the α+β temperature range, and the temperature is 8.
is the processing rate in the α+β temperature range, 1lh9 is the holding temperature after α+β processing, and &10 and Na1l are examples when the annealing conditions are outside the range of the present invention. The block 12 is a conventional example.

第3表に、室温での引張性質および850℃で歪速度5
 Xl0−’5ec−’で引張試験を行った時の伸びの
値を示す、なお、第2表と第3表の陽は対応する。
Table 3 shows the tensile properties at room temperature and the strain rate of 5 at 850°C.
The values of elongation when a tensile test was conducted at Xl0-'5ec-' are shown, and the positive numbers in Tables 2 and 3 correspond.

本発明方法で製造した患1および磁2は、従来法で製造
した阻12および比較例の磁3〜嵐11に比較し、室温
での強度、延性が良好でかつ850℃で5 X 10−
5ec−’の歪速度で引張試験を行った時の伸び(いわ
ゆる超塑性伸び)が著しく大きいことがわかる。
Comparing with the conventional method manufactured by the method of the present invention, 1 and 2, and comparative examples of 3 to 11, the strength and ductility at room temperature were better, and the strength and ductility at 850°C was 5 x 10.
It can be seen that the elongation (so-called superplastic elongation) when a tensile test was performed at a strain rate of 5 ec-' was extremely large.

本実施例では代表的なα+β型チタン合金であるTi 
−6A1 4Vを使用して本発明の詳細な説明を行った
が、その他の例えばTf −6AI −6V−2Sn 
In this example, Ti, which is a typical α+β type titanium alloy, is used.
-6A1 4V was used in the detailed explanation of the present invention, but other examples such as Tf -6AI -6V-2Sn
.

Ti−6AI −2Sn −4Zr −2Mo 、Ti
  6A1−23n −4Zr−6Mo等のα+β型チ
タン合金についても同様に本発明方法が適用可能である
ことは以上の説明からも当業者には明らかである。
Ti-6AI-2Sn-4Zr-2Mo, Ti
It is clear to those skilled in the art from the above description that the method of the present invention is similarly applicable to α+β type titanium alloys such as 6A1-23n-4Zr-6Mo.

第1表 第3表 注)(1)歪速度 ε−5X 1O−3sec−’での
伸び。
Table 1 Table 3 Note) (1) Elongation at strain rate ε-5X 1O-3sec-'.

(発明の効果) 以上説明したように、本発明の方法は超塑性加工に適し
た微細な等軸α+β組織を有するα+β盟チクチタフ合
金製品コストで製造可能とするもつであり、その効果は
極めて大きい。
(Effects of the Invention) As explained above, the method of the present invention enables the production of α+β Chikuti-Tough alloy products having a fine equiaxed α+β structure suitable for superplastic working at a low cost, and its effects are extremely large. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、中)および(C1は、それぞれ、本発明
方弁、従来方法、および従来方法を説明する線図;第2
図はβ粒径と加工可能下限温度との関係を六すグラフ;
および 第3図は、加工温度とα粒径との関係を示すグラフであ
る。
FIG. 1 (al, middle) and (C1 are diagrams explaining the method of the present invention, the conventional method, and the conventional method, respectively;
The figure is a graph showing the relationship between β grain size and minimum processable temperature;
and FIG. 3 is a graph showing the relationship between processing temperature and α grain size.

Claims (1)

【特許請求の範囲】[Claims] β変態点以上で50%以上の加工が行われたα+β型チ
タン合金の素材に、α+β温度域で20%以上の加工を
加えた後、β変態点〜(β変態点+70℃)の温度範囲
に30秒〜30分の時間保持してから、5℃/秒以上の
冷却速度で500℃以下の温度に冷却し、次いで、(β
変態点−400℃)〜(β変態点−200℃)の温度範
囲で50%以上の加工を行った後、700〜800℃の
温度範囲で30〜120分間の焼鈍を行うことを特徴と
する、微細な等軸結晶粒を得るためのα+β型チタン合
金の加工熱処理方法。
After applying 20% or more processing in the α+β temperature range to an α+β type titanium alloy material that has been processed by 50% or more at temperatures above the β transformation point, the temperature range from the β transformation point to (β transformation point + 70°C) After holding the temperature for 30 seconds to 30 minutes, it was cooled to a temperature of 500°C or less at a cooling rate of 5°C/second or more, and then (β
It is characterized by performing 50% or more processing in a temperature range of (transformation point -400°C) to (β transformation point -200°C), and then annealing for 30 to 120 minutes in a temperature range of 700 to 800°C. , a processing heat treatment method for α+β type titanium alloy to obtain fine equiaxed grains.
JP3992887A 1987-02-23 1987-02-23 Working and heat treatment of alpha+beta type titanium alloy Pending JPS63206457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3992887A JPS63206457A (en) 1987-02-23 1987-02-23 Working and heat treatment of alpha+beta type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3992887A JPS63206457A (en) 1987-02-23 1987-02-23 Working and heat treatment of alpha+beta type titanium alloy

Publications (1)

Publication Number Publication Date
JPS63206457A true JPS63206457A (en) 1988-08-25

Family

ID=12566598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3992887A Pending JPS63206457A (en) 1987-02-23 1987-02-23 Working and heat treatment of alpha+beta type titanium alloy

Country Status (1)

Country Link
JP (1) JPS63206457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136582A1 (en) * 2000-03-24 2001-09-26 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
KR101151616B1 (en) * 2011-12-28 2012-06-08 한국기계연구원 A method of grain refinement for titanium alloy ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136582A1 (en) * 2000-03-24 2001-09-26 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
US6332935B1 (en) 2000-03-24 2001-12-25 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
KR101151616B1 (en) * 2011-12-28 2012-06-08 한국기계연구원 A method of grain refinement for titanium alloy ingot

Similar Documents

Publication Publication Date Title
US5173134A (en) Processing alpha-beta titanium alloys by beta as well as alpha plus beta forging
EP0487803A1 (en) Titanium alpha-beta alloy fabricated material and process for preparation
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US5092940A (en) Process for production of titanium and titanium alloy material having fine equiaxial microstructure
US3954514A (en) Textureless forging of beryllium
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
EP0484577B1 (en) Process for enhancing physical properties of aluminum-lithium workpieces
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
US5223053A (en) Warm work processing for iron base alloy
JPH0116910B2 (en)
JP3065782B2 (en) Hydrogen treatment method for titanium alloy
GB2248849A (en) Process for working a beta type titanium alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPS59118867A (en) Working method of metallic zirconium and zirconium alloy