JPH0262011A - Inductance element and its manufacture - Google Patents

Inductance element and its manufacture

Info

Publication number
JPH0262011A
JPH0262011A JP63213951A JP21395188A JPH0262011A JP H0262011 A JPH0262011 A JP H0262011A JP 63213951 A JP63213951 A JP 63213951A JP 21395188 A JP21395188 A JP 21395188A JP H0262011 A JPH0262011 A JP H0262011A
Authority
JP
Japan
Prior art keywords
powder
particle size
ferrite powder
ferrite
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213951A
Other languages
Japanese (ja)
Inventor
Seiji Kojima
小嶋 清司
Atsushi Inuzuka
敦 犬塚
Tadashi Sakamoto
忠 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63213951A priority Critical patent/JPH0262011A/en
Publication of JPH0262011A publication Critical patent/JPH0262011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inductance element whose characteristic is excellent and which is small-sized and thin by a method wherein an air-core coil or a coil containing a magnetic core is sealed and molded by using a synthetic resin containing a ferrite powder and particle diameters of the ferrite powder are set at prescribed values. CONSTITUTION:An air-core coil or a coil 5 containing a magnetic coil is sealed and molded by using a synthetic resin 7 containing a ferrite powder. A main part of the ferrite powder is constituted of a powder which has mixed a large- diameter powder of 20 to 210mum with a small-diameter powder of 0.5 to 10mum in a weight ratio of 1:0.2 to 0.5. Thereby, it is possible to obtain an inductance element whose characteristic is high and which has been made small-sized and thin.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器に利用されるインダクタンス素子
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an inductance element used in various electronic devices and a method for manufacturing the same.

従来の技術 従来のインダクタンス素子は、第4図に示すように、磁
芯又は空芯ボビン1に絶縁被覆を有する銅線2を巻線し
端子3に接続してコイルを形成し、これらを樹脂4で封
止成形した巻線型が主流を占めている。
2. Description of the Related Art As shown in FIG. 4, a conventional inductance element is made by winding a copper wire 2 having an insulating coating around a magnetic core or an air-core bobbin 1 and connecting it to a terminal 3 to form a coil. The wire-wound type, which is sealed and molded using Step 4, is the mainstream.

近年、電子機器の軽薄短小化に伴い、電子部品の高密度
実装が進み、それに使われる電子部品の小型化、薄型化
が強く要求されている。
BACKGROUND ART In recent years, as electronic devices have become lighter, thinner, shorter and smaller, electronic components have been mounted in higher density, and there is a strong demand for smaller and thinner electronic components used in such devices.

こうした中で、上述の巻線型インダクタンス素子は開磁
路型であるため、特性を示すインダクタンス値りおよび
Q値をそのままの大きさで形状を小型化薄型化するのは
難しかったが、封止成形樹脂の中に軟磁性体であるフェ
ライト粉末を混入して閉磁路型にすることにより、小凰
化薄型化が図られ実用化されている。また、この閉磁路
型は、磁気遮蔽効果があり周辺部品への磁束の漏れが少
なく、高密度実装が可能であり、今後の発展が期待され
ている。
Under these circumstances, since the above-mentioned wire-wound inductance element is an open magnetic path type, it was difficult to make the shape smaller and thinner while maintaining the inductance value and Q value that indicate the characteristics. By mixing ferrite powder, which is a soft magnetic material, into the resin to create a closed magnetic circuit type, a smaller size and thinner structure has been achieved and has been put into practical use. In addition, this closed magnetic circuit type has a magnetic shielding effect, reduces leakage of magnetic flux to peripheral components, and enables high-density mounting, and is expected to develop in the future.

この閉磁路型に用いられているフェライト粉末は平均粒
径で1〜11μmと細かい(特開昭54−129357
号公報、特開昭54−163354号公報参照)。
The ferrite powder used in this closed magnetic circuit type has a fine average particle size of 1 to 11 μm (Japanese Patent Application Laid-Open No. 129357-1982)
(see Japanese Patent Application Laid-open No. 163354/1983).

こうした細かい粒径の粉末が用いられている理由は、フ
ェライトの仮焼ベレットを粉砕機にかけるとちょうどこ
の大きさの粒子になり易いためと、樹脂中に混入分散し
やすいためと考えられる。
The reason why powder with such a fine particle size is used is thought to be that when calcined ferrite pellets are subjected to a crusher, they tend to become particles of this size, and that they are easily mixed and dispersed in the resin.

尚、フェライト粉末の充填率は、磁気特性の観点から高
いほど好ましい。しかし、主として熱硬化性樹脂を用い
たこの種のインダクタンス素子の封止成型法としてはト
ランスファー成型法がとられており、封止樹脂の流れ性
や成型歩留の点からフェライト粉末の樹脂中の充填率は
約80重量係程度が限界となっている。
Note that the filling rate of the ferrite powder is preferably as high as possible from the viewpoint of magnetic properties. However, the transfer molding method is mainly used as a sealing molding method for this type of inductance element using thermosetting resin. The filling rate is limited to approximately 80% by weight.

発明が解決しようとする課題 既に述べたように、電子部品の高密度面実装化に伴い、
抵抗、コンデンサの小型化、薄型化の進展が著しいなか
で、インダクタンス素子は小型化。
Problems to be Solved by the Invention As already mentioned, with the trend toward high-density surface mounting of electronic components,
As resistors and capacitors are becoming smaller and thinner, inductance elements are becoming smaller.

薄型化が遅れており、特に巻線型インダクタンス素子に
おいては閉磁路型にすることにより小型化されたとは言
えまだまだ体積は大きく、高さも高いため、小型化、薄
型化が強く望まれている。
Thinner devices are lagging behind, and even though wire-wound inductance elements have been made smaller by using a closed magnetic circuit type, they still have a large volume and a high height, so there is a strong desire to make them smaller and thinner.

この巻線型インダクタンス素子において、この要望に応
じるためには、閉磁路型インダクタンス素子の、主とし
てフェライト粉末と樹脂とからなる封止成型部分を、今
以上に高特性化することが最も効果の大きな解決策であ
り、本発明はこの部分を高透磁率化した高特性のインダ
クタンス素子更にはこれにより小型化、薄型化したイン
ダクタンス素子を提供することを目的としている。
In order to meet this demand for this wire-wound inductance element, the most effective solution is to improve the characteristics of the sealed molded part, which is mainly made of ferrite powder and resin, of the closed magnetic circuit inductance element. This is a countermeasure, and the present invention aims to provide an inductance element with high characteristics in which this portion has high magnetic permeability, and an inductance element that is thereby made smaller and thinner.

課題を解決するだめの手段 上記課題を解決するために本発明のインダクタンス素子
は、封止成型樹脂中に混入するフェライト粉末を20〜
2107zE11の大粒径の粉末と、0.5〜10μm
の小粒径の粉末を重量比で1:0.2〜0.6の割合で
混合した粉末で構成し、このフェライト粉末を混入した
樹脂で封止成型されている構成としたものである。
Means for Solving the Problems In order to solve the above problems, the inductance element of the present invention contains ferrite powder mixed in the sealing molding resin in an amount of 20 to 20%.
2107zE11 large particle size powder and 0.5 to 10 μm
The ferrite powder is made of a mixture of small particle size powders in a weight ratio of 1:0.2 to 0.6, and is sealed and molded with a resin mixed with this ferrite powder.

また、この20〜210μmの大粒径のフェライト粉末
が、主として0.5〜10μmの小粒径の粒子の集合焼
結体で構成したものである。
Further, this ferrite powder having a large particle size of 20 to 210 μm is mainly composed of an aggregate sintered body of particles having a small particle size of 0.5 to 10 μm.

さらに、その製造方法としては、20〜210μmの大
粒径のフェライト粉末と0.5〜10μmの小粒径のフ
ェライト粉末を重量比で1 :0.2〜0,60割合で
混合したフェライト粉末を合成樹脂と必要に応じて添加
物を加えて混合混練し、この混合混練物で空芯コイルあ
るいは磁芯入りコイルを封止成型し、必要に応じて固化
するものである。
Furthermore, as a manufacturing method, ferrite powder is prepared by mixing ferrite powder with a large particle size of 20 to 210 μm and ferrite powder with a small particle size of 0.5 to 10 μm in a weight ratio of 1:0.2 to 0.60. The mixture is mixed and kneaded with a synthetic resin and additives are added as necessary, and an air-core coil or a coil with a magnetic core is sealed and molded with this mixed-kneaded product, and solidified as necessary.

作用 上記構成とすることにより高特性で小型化、薄型化した
インダクタンス素子が提供できることになる。
Effect: By having the above configuration, it is possible to provide an inductance element that has high characteristics and is smaller and thinner.

実施例 以下、本発明の実施例を添付の図面を用いながら説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

まず、本発明の基本の技術思想について説明する。First, the basic technical idea of the present invention will be explained.

フェライト粉末は、主に仮焼ベレットを粉砕して作られ
ており、その磁気特性、特に保磁力は焼結体が0.10
55程度と小さくて優れているのに対して、粉末はおお
よそ1000程度もある。交流初透磁率(μiac )
の高い焼結体を粉砕しても、又低いμiacの焼結体を
粉砕しても、できる粉末の保磁力は共に大きく、このた
めにこれらを樹脂に混入した樹脂フェライトはすぐれた
高μiacを有する軟磁性材料とすることは難しいと考
えられ詳細な検討はなされていない。
Ferrite powder is mainly made by crushing calcined pellets, and its magnetic properties, especially coercive force, are 0.10 for sintered bodies.
While it is small and excellent at around 55, powder has around 1000. AC initial permeability (μiac)
Even if a sintered body with a high μiac is crushed or a sintered body with a low μiac is crushed, the coercive force of the resulting powder is large.For this reason, resin ferrite mixed with resin has an excellent high μiac. It is thought that it would be difficult to make a soft magnetic material with this, and detailed studies have not been made.

本発明者らは、そこで粉末の粒径と保磁力の関係を調べ
たところ、粒径が太きくなるに従って保磁力は低下して
おり、粒径の大きな粉末は小さな粉末に比べて、軟磁性
材料として優れていることが明らかとなった。そこでフ
ェライト粉末の充填率を一定にして、フェライト粉末の
粒径を変えて混合混練して樹脂フェライトを作成し、そ
の、caacを明らかにするためにリングコアを成型し
て巻線し、LCRメータにてインダクタンスLを測定し
てμiacを出した。その結果を第3図に示す。この第
3図から粒径が20μm以上では従来の約10μm以下
の場合に比べて明らかに、μiacは大きくなる。特に
46μm以上では著しい。唯210μm以上は成形時の
ゲート高さの制限があって、十分に流れずμiacは低
下している。故に樹脂フェライト中に混入するフェライ
ト粉末の粒径は20〜210μm1望ましくは45〜1
60μmが適しており、これに基づ〈発明については既
に出願している。
The present inventors investigated the relationship between the particle size and coercive force of the powder, and found that as the particle size increases, the coercive force decreases. It has become clear that it is an excellent material. Therefore, we created resin ferrite by keeping the filling rate of ferrite powder constant and mixing and kneading the ferrite powder with different particle sizes.In order to clarify the caac, we molded a ring core and wound it into an LCR meter. The inductance L was measured and μiac was obtained. The results are shown in FIG. From FIG. 3, it is clear that when the particle size is 20 μm or more, μiac becomes larger than the conventional case where the particle size is about 10 μm or less. This is particularly noticeable when the diameter is 46 μm or more. However, when the thickness is 210 μm or more, there is a restriction on the gate height during molding, and the flow does not flow sufficiently, resulting in a decrease in μiac. Therefore, the particle size of the ferrite powder mixed in the resin ferrite is 20 to 210 μm, preferably 45 to 1
60 μm is suitable, and an application for the invention has already been filed based on this.

更にμiacを向上させる方法として、フェライト粉末
の樹脂中への充填率を増加させることが考えられる。従
来から大粒径の粒子が作る隙間に小粒径の粒子を入れれ
ば充填率が上げられることが明らかになっており、この
方法を検討したところ大幅にμiacが向上することが
認められた。この中で新しい事実を見い出すことができ
た。それは、フェライト充填率を一定にしてデータを整
理してみると、小粒径粉末をある割合で混合した場合μ
iacが向上することである。その−例を第2図に示す
。これは、大粒径のフェライト粉末として45〜106
μmの粉末を用い、小粒径の粉末として0.5〜10μ
mの粉末を用いた。樹脂フェライト中に占めるフェライ
ト粉末の充填率は70重量係と一定にしである。大粒径
の粉末重量を1とし小粒径の粉末の重量をXとして変化
させてあり、! = 0.2〜0.6の範囲でμiac
が実用上有意義な向上を示している。これはフェライト
粉末の充填率を一定としているので従来から明らかであ
った充填率が増えたために現われた効果ではない。
As a method for further improving μiac, it is possible to increase the filling rate of ferrite powder into the resin. It has long been known that the filling rate can be increased by inserting small-sized particles into the gaps created by large-sized particles, and when this method was studied, it was found that μiac was significantly improved. I was able to discover new facts in this. If we organize the data with a constant ferrite filling rate, we find that when small particle size powder is mixed in a certain proportion, μ
The goal is to improve iac. An example is shown in FIG. This is 45 to 106 as a large particle size ferrite powder.
Use μm powder, 0.5 to 10 μm as small particle size powder
m powder was used. The filling rate of the ferrite powder in the resin ferrite is constant at 70% by weight. The weight of the powder with a large particle size is 1 and the weight of the powder with a small particle size is X. = μiac in the range of 0.2 to 0.6
shows a practically meaningful improvement. This is not an effect that appears due to an increase in the filling rate, which has been obvious in the past, since the filling rate of the ferrite powder is kept constant.

本発明はこの新しい事実に基づいてなされたもので、大
粒径のフェライト粉末、特に20〜210μm、望まし
くは45〜160μmの粉末に対して、小粒径のフェラ
イト粉末、特に0.5〜10μmの粉末を、重量比で、
前者1に対して、後者を0.2〜0.5μmの割合で混
合して、このフェライト粉末を封止成型用樹脂に混入し
、必要に応じて添加剤を加えて混合混練して樹脂フェラ
イトとし、この樹脂フェライトで空芯コイルあるいは磁
芯入リコイルを封止成型してなるインダクタンス素子で
ある。
The present invention was made based on this new fact, and the present invention is based on this new fact. powder, in weight ratio,
The former 1 is mixed with the latter at a ratio of 0.2 to 0.5 μm, and this ferrite powder is mixed into a sealing molding resin, and additives are added as needed and mixed and kneaded to make resin ferrite. This inductance element is made by sealing and molding an air core coil or a magnetic core recoil with this resin ferrite.

本来小粒径のフェライト粉末は保磁力が大きく、小粒径
の粉末のみを混入した樹脂フェライトでは第3図からも
明らかなようにμlacは小さくて磁気特性は悪い。し
かし、μiacの大きな大粒径のフェライト粉末に、少
量の小粒径のフェライト粉末を添加するとかえってμi
acが向上するという事実は、現在のところ十分な解明
はできていない。
Ferrite powder with a small particle size originally has a large coercive force, and resin ferrite mixed with only small particle size powder has a small μlac and poor magnetic properties, as is clear from FIG. However, if a small amount of small particle size ferrite powder is added to a large particle size ferrite powder with a large μiac, the μi
The fact that ac is improved has not been fully elucidated at present.

しかし、これは推察するに、高μiacの大粒径フェラ
イト粉末は、樹脂によってひとつひとつ隔てられている
ので磁場の流れは良くないが、その間に小粒径のフェラ
イト粉末がはいりこむことによって、小粒径のフェライ
ト粉末は高μiacである大粒径フェライト粉末間の磁
場の流れを橋渡しする働きをして、全体としてのμia
cを向上させていると考えられる。その小粒径のフェラ
イト粉末の量は0,2未満ではその働きはわずかであり
、又0.6を越えると、本来の低μiacがでてきて全
体のμiacを低下させてしまうものと考えられる。
However, this may be inferred from the fact that the magnetic field flow is not good because the large-grained ferrite powders with high μiac are separated one by one by resin, but by getting the small-grained ferrite powder in between, the particles become smaller. The large diameter ferrite powder acts to bridge the flow of the magnetic field between the large particle diameter ferrite powders with high μiac, and the overall μia
It is thought that this improves c. It is thought that if the amount of small particle size ferrite powder is less than 0.2, its effect will be slight, and if it exceeds 0.6, the original low μiac will appear, reducing the overall μiac. .

なお高μiacの大粒径フェライト粉末を、走査電子顕
微鏡で観察したところ、仮焼ペレットの熱処理の違いに
よって、粉末が0.5〜1,0μmの小粒径の粒子の集
合焼結体になっているものがあった。この集合焼結体の
粉末は、微粒子と微粒子が点接触あるいは面接触して、
その部分で焼結を起してくっついており、一般のグレイ
ンが十分成長して粒境界が36o°接触している大粒径
粉末とはその形態が異なっている。しかし、その磁気特
性は保磁力においては一般の大粒径粉末と比較すると大
きくはなっているものの、わずかであり、樹脂フェライ
トにしてそのμiacを比較したところでは多少差はあ
るものの、高μiacを示した。これは多分仮焼時の熱
処理温度が多少低くくて、グレインが十分に成長しなか
ったためと考えられる。
Furthermore, when observing large-grain ferrite powder with high μiac using a scanning electron microscope, it was found that due to the difference in the heat treatment of the calcined pellets, the powder became an aggregate sintered body of small-sized particles of 0.5 to 1.0 μm. There was something there. The powder of this aggregate sintered body is formed by point contact or surface contact between fine particles.
They are sintered and stuck together in that area, and their morphology is different from that of ordinary large-grain powders in which the grains have grown sufficiently and the grain boundaries are in contact at 36°. However, although its magnetic properties are larger in terms of coercive force than general large-particle powders, it is small, and when comparing the μiac of resin ferrite, although there is a slight difference, it has a high μiac. Indicated. This is probably because the heat treatment temperature during calcination was somewhat low and the grains did not grow sufficiently.

しかし、仮焼ベレットを粉砕する際には粒径をそろえる
のが容易となり、粉末の製造の点で有利である。
However, when pulverizing the calcined pellets, it is easy to make the particle size uniform, which is advantageous in terms of powder production.

なお本発明で用いられる樹脂は、主にエボキシ樹脂であ
るが、フェノール樹脂、不飽和ポリエステル樹脂などの
熱硬化性樹脂、あるいはナイロン。
The resin used in the present invention is mainly an epoxy resin, but also a thermosetting resin such as a phenol resin, an unsaturated polyester resin, or nylon.

pps 、液晶ポリマーなど熱可塑性樹脂でも有効であ
ることは言うまでもない。又添加剤として、ステアリン
酸系をはじめとする離型剤や難燃剤。
It goes without saying that thermoplastic resins such as pps and liquid crystal polymers are also effective. Additives include mold release agents and flame retardants, including stearic acid.

カップリング剤、滑剤など必要に応じて加えてもさしつ
かえない。
Coupling agents, lubricants, etc. may be added as necessary.

なお小粒径の粉末として0.5〜10μmの粉末とした
が、これは、フェライト粉末が粉砕によってでき易い大
きさが0.5〜10μmであることと、又0.5μm未
満の粉末の場合とは粉末の表面積が犬きくなるため樹脂
をとりこむ量が増え、樹脂の成形時の流れ性を確保する
ためには、細かい粉末が増えると、フェライト粉末の充
填率を下げなくてはならなくなる。現在フェライト粉末
の充填率をできるだけ増やしたいことから0.6μm以
上の粉末とした。
In addition, the powder with a small particle size of 0.5 to 10 μm was used, but this is because the size that ferrite powder is easily formed by pulverization is 0.5 to 10 μm, and if the powder is less than 0.5 μm, Because the surface area of the powder becomes larger, the amount of resin that can be taken in increases, and in order to ensure the flowability of the resin during molding, as the amount of fine powder increases, the filling rate of the ferrite powder must be lowered. Since it is currently desired to increase the filling rate of the ferrite powder as much as possible, the powder has a diameter of 0.6 μm or more.

なお、フェライト粉末を分級機やふるいにて分類して用
いているが、これらの分級された粉末を粒度分布計にか
けてその分布を調べたところ、制限した粒径より小さな
粒径が混入しており、その量は2〜5重量%あり、大き
い粒子のものはほとんどなかった。小さな粒径の粒子は
多分大きな粉末に吸着していて分級の際に混ざったもの
や分級後の処理で大きな粉末が割れてできたものと考え
られる。いずれにしても制限外の粉末が数チ混入してい
ても大勢には影響を及ぼさないので許容される。
In addition, ferrite powder is used after being classified using a classifier or sieve, but when we examined the distribution of these classified powders using a particle size distribution meter, we found that particles smaller than the restricted particle size were mixed in. The amount was 2 to 5% by weight, and there were almost no large particles. It is thought that the particles with small particle diameters were probably adsorbed to larger powders and mixed during classification, or were created when larger powders were broken during post-classification processing. In any case, even if a few pieces of powder outside the limit are mixed in, it is acceptable because it will not affect the majority of people.

以下、本発明について、具体的な実施例にて詳細に説明
する。
Hereinafter, the present invention will be explained in detail using specific examples.

実施例1 Ni−Zn系仮焼ペレットを粉砕して、0.5〜10μ
mの小粒径の粉末と45〜105μmの大粒径の粉末を
得た。これらの粉末を用いて、45〜105μmの大粒
径の粉末と0.5〜10μmの小粒径の粉末を重量比で
■1;0.■1:0.33゜■1:1の割合で混合した
フェライト粉末を準備し、それぞれ封止樹脂であるエポ
キシ樹脂中に75重量%混合して熱ロールで混練し、タ
ブレットに成形した。次にNi−Zn系焼結体のドラム
コアに銅線直径30μmの絶縁被覆銅線を50タ一ン巻
いてコイルとし、そのコイルの端部を端子に接着したも
のを複数個用意した。次にそれらの一部を金型内に設置
し、この金型をトランスファー成形機に取りつけ、金型
を170℃に昇温した後、前述のフェライト粉末入りエ
ポキシ樹脂タブレットを用いてトランスファー成形機を
稼動させて封止成形した。一定時間おいて硬化させた後
金型から封止成形物を取り出し、160℃で6時間根固
化処理した後端子部を折り曲げて、長さ3.2H幅1.
6ffl高さ1,1朋のインダクタンス素子に仕上げた
Example 1 Ni-Zn calcined pellets were crushed to a size of 0.5 to 10μ
A powder with a small particle size of m and a powder with a large particle size of 45 to 105 μm were obtained. Using these powders, the weight ratio of powder with a large particle size of 45 to 105 μm and powder with a small particle size of 0.5 to 10 μm is 1:0. (1) Ferrite powders mixed at a ratio of 1:0.33° (1:1) were prepared, and 75% by weight of each was mixed in an epoxy resin as a sealing resin, kneaded with hot rolls, and formed into a tablet. Next, a plurality of coils were prepared by winding 50 turns of insulated copper wire with a diameter of 30 μm around a drum core made of a Ni-Zn based sintered body, and bonding the ends of the coils to terminals. Next, a part of them is placed in a mold, this mold is attached to a transfer molding machine, the temperature of the mold is raised to 170°C, and then a transfer molding machine is installed using the epoxy resin tablet containing the ferrite powder described above. It was operated and sealed. After curing for a certain period of time, the sealed molded product was taken out from the mold, and after hardening at 160°C for 6 hours, the terminal part was bent to have a length of 3.2H and a width of 1.
The inductance element is finished with a height of 6ffl and a height of 1.1mm.

あと同じ操作を繰り返えしてそれぞれ3種類の配合割合
の異なったインダクタンス素子を作成した。これら3種
類のインダクタンス素子についてLCRメータでLおよ
びQを測定した。その結果を第1表に示す。
The same operation was then repeated to create three inductance elements with different blending ratios. L and Q of these three types of inductance elements were measured using an LCR meter. The results are shown in Table 1.

(以下 余 白) この結果から本発明のA2のインダクタンス素子は、小
粒径の粉末を含まないA1と比較してL値で12俤の向
上が認められた。この向上率は小さいように見えるかも
知れないが、巻線型チップインダクタ321611にお
いて、トランスファー成形が品質歩留高く製造できるフ
ェライト粉末充填率76重量%での値としては、インダ
クタンス値りが飽和に達しつつあるなかで大きな向上で
あり、工業的に意義の大きなものである。
(Hereinafter, blank) From these results, it was found that the inductance element A2 of the present invention had an improvement of 12 degrees in L value compared to A1 which did not contain powder of small particle size. This rate of improvement may seem small, but in the wire-wound chip inductor 321611, the inductance value reaches saturation when the ferrite powder filling rate is 76% by weight, which allows transfer molding to produce high quality yields. This is a major improvement, and one of great industrial significance.

実施例2 Ni−Cu−Zn系の仮焼ベレットを割って、その破面
を走査型電子顕微鏡にて観察し、0.5〜10μmの小
粒径の粒子の集合焼結体であるロフトを選び出した。こ
のロフトの仮焼ベレットを軽く粉砕して0.5〜10μ
mの小粒径の粉末と45〜160μmの大粒径の粉末を
得た。これらの粉末から、45〜15oIIX11の大
粒径の粉末と0.5〜10μmの小粒径の粉末を重量比
で■1:o。
Example 2 A Ni-Cu-Zn based calcined pellet was broken and the fractured surface was observed using a scanning electron microscope, and lofts, which are aggregated sintered bodies of particles with a small diameter of 0.5 to 10 μm, were found. I chose it. Lightly crush this loft calcined pellet to 0.5 to 10μ
A powder with a small particle size of m and a powder with a large particle size of 45 to 160 μm were obtained. From these powders, a powder with a large particle size of 45 to 15oIIX11 and a powder with a small particle size of 0.5 to 10 μm were mixed in a weight ratio of 1:o.

■1 : 0.2 、■1:0.5の割合で混合した粉
末を作成した。次にこれらのフェライト粉末のそれぞれ
にエポキシ樹脂のペースレジン、硬化剤、硬化促進剤、
離型剤等を配合して、フェライト粉末が78重量係にな
るように調合し、加熱したロールで混練し、急冷して粉
砕し、成形機にてタブレットにした。次に銅線直径30
μmの絶縁被覆銅線を内径0.6fl高さ0.2Hの形
状で28タ一ン巻いて空芯コイル6とし、その空芯コイ
ル6の端部を端子6に接着したものを複数個作成した。
(1) Mixed powders at a ratio of 1:0.2 and (2) 1:0.5 were prepared. Next, each of these ferrite powders is treated with an epoxy resin paste resin, a hardening agent, a hardening accelerator,
A mold release agent and the like were added so that the ferrite powder weighed 78% by weight, kneaded with heated rolls, rapidly cooled and pulverized, and made into tablets using a molding machine. Next, the copper wire diameter is 30
An air-core coil 6 is made by winding 28 turns of insulated copper wire with an inner diameter of 0.6fl and a height of 0.2H, and the ends of the air-core coil 6 are glued to the terminals 6 to create multiple pieces. did.

この−部を金型に設置して、この金型をトランスファー
成形機に据え付け、昇温して170℃にした後、前述の
フェライト粉末入りのエポキシ樹脂7のタブレットを投
入して、封止成形した。硬化させたのち、金型から取り
出し、160℃で6時間程固化処理して端子6部を加工
し、長さ3.2f1幅1.6MM高さ0.6fiのイン
ダクタンス素子とした。このインダクタンス素子の断面
の概略を第1図に示す。
Place this part in a mold, install this mold in a transfer molding machine, raise the temperature to 170°C, then put in the tablet of epoxy resin 7 containing ferrite powder and seal it. did. After curing, it was taken out from the mold, solidified at 160° C. for about 6 hours, and 6 portions of the terminal were processed to obtain an inductance element with a length of 3.2 f, a width of 1.6 mm, and a height of 0.6 fi. FIG. 1 shows a schematic cross-section of this inductance element.

得られたそれぞれのインダクタンス素子をLCRメータ
にて測定し、インダクタンスLとQを求めた。結果を第
2表に示す。
Each of the obtained inductance elements was measured with an LCR meter to determine inductance L and Q. The results are shown in Table 2.

測定結果から、インダクタンス値りは大粒径粉末のみの
場合と比較してA6の場合25%、A6の場合33%の
向上であった。Qも20〜30%の向上が認められた。
The measurement results showed that the inductance value was improved by 25% in the case of A6 and 33% in the case of A6 compared to the case of using only large particle size powder. Q was also observed to be improved by 20 to 30%.

(以下余 白) 発明の効果 以上のように、巻線型インダクタンス素子において、フ
ェライト粉末を混入した合成樹脂で空芯コイルあるいは
磁芯入りコイルを封止成形する閉磁路形素子で、フェラ
イト粉末を、2Q〜210μmの大粒径粉末と0.5〜
10μmの小粒径粉末を、重量比で1:0.6の割合で
混合したフェライト粉末にすることにより、大粒径粉末
のみの場合と比較して、10〜33チの向上が認められ
た。
(Blank below) Effects of the invention As described above, in a wire-wound inductance element, a closed magnetic circuit element in which an air-core coil or a magnetic core-containing coil is encapsulated with synthetic resin mixed with ferrite powder. 2Q~210μm large particle size powder and 0.5~
By mixing small particle size powder of 10 μm with ferrite powder at a weight ratio of 1:0.6, an improvement of 10 to 33 cm was observed compared to the case of using only large particle size powder. .

向上の割合は小さいように見えるが、トランスファー成
形にて品質歩留良く成形するためには、フェライト粉末
の充填率は約80重量%位に限界があり、そのためにイ
ンダクタンス値しは向上が飽和しており、選び抜かれた
フェライト素材で、見極められた充填率の中にあってこ
のフェライト粉末の粒径を制御することによるLの向上
は工業的に意義の大きいものである。
Although the rate of improvement seems small, in order to mold with good quality yield in transfer molding, the filling rate of ferrite powder has a limit of about 80% by weight, so the improvement in inductance value is saturated. Therefore, it is of great industrial significance to improve L by controlling the particle size of the ferrite powder using a carefully selected ferrite material and within a determined filling rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のインダクタンス素子の一実施例を示す
模式的断面図、第2図は大粒径のフェライト粉末と小粒
径のフェライト粉末を重量比で1:xの割合で混合した
際のフェライト粉末入で樹脂の交流初透磁率μiacの
増減率をあられす図、第3図はフェライト粉末入り樹脂
においてフェライト粉末の粒径と交流初透磁率μ工ac
との関係を示す図、第4図は従来のインダクタンス素子
の代表的な構造を示す模式的断面図である。 5・・・・・・コイル、6・・・・・・端子、7・・・
・・・フェライト粉末入り樹脂。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名1図 第3図 2図 \ 7 フェライト粉禾入射脂 1O20 451+)521Q値匁ノ000 m   雀 (μm) 第4図 O+ \ 小a壜の扮禾の割合χ 1礒二
Fig. 1 is a schematic cross-sectional view showing one embodiment of the inductance element of the present invention, and Fig. 2 shows a case where large particle size ferrite powder and small particle size ferrite powder are mixed at a weight ratio of 1:x. Figure 3 shows the change in the AC initial magnetic permeability μiac of the resin containing ferrite powder.
FIG. 4 is a schematic cross-sectional view showing a typical structure of a conventional inductance element. 5... Coil, 6... Terminal, 7...
...Resin containing ferrite powder. Name of agent Patent attorney Shigetaka Awano and 1 other person Figure 3 Figure 2 Figure 7 Ferrite powder incident oil 1O20 451+) 521 Q value Momme 000 m (μm) Figure 4 O+ \ Small A bottle appearance Proportion of weight χ 1 2

Claims (3)

【特許請求の範囲】[Claims] (1)空芯コイルあるいは磁芯入りコイルがフェライト
粉末を含有する合成樹脂にて封止成形され、前記フェラ
イト粉末の主たる部分が、20〜210μmの大粒径の
粉末と0.5〜10μmの小粒径の粉末を重量比で1:
0.2〜0.5の割合で混合した粉末で構成されている
インダクタンス素子。
(1) An air-core coil or a coil with a magnetic core is sealed and molded with a synthetic resin containing ferrite powder, and the main part of the ferrite powder is a large particle size powder of 20 to 210 μm and a large particle size powder of 0.5 to 10 μm. Small particle size powder in a weight ratio of 1:
An inductance element made of powder mixed at a ratio of 0.2 to 0.5.
(2)大粒径のフェライト粉末が、主として0.5〜1
0μmの小粒径の粒子の集合焼結体からなっている請求
項1記載のインダクタンス素子。
(2) Large particle size ferrite powder is mainly 0.5 to 1
2. The inductance element according to claim 1, comprising a sintered aggregate of particles having a small diameter of 0 μm.
(3)20〜210μmの大粒径のフェライト粉末と0
.5〜10μmの小粒径のフェライト粉末を重量比で1
:0.2〜0.5の割合で混合した粉末が主たる部分で
あるフェライト粉末を合成樹脂と必要に応じて添加剤を
加えて混合混練し、この混合混練物で、空芯コイルある
いは磁芯入りコイルを封止成形し、必要に応じて固化す
ることを特徴とするインダクタンス素子の製造方法。
(3) Ferrite powder with large particle size of 20 to 210 μm and 0
.. Ferrite powder with a small particle size of 5 to 10 μm in a weight ratio of 1
: Ferrite powder, the main part of which is powder mixed at a ratio of 0.2 to 0.5, is mixed and kneaded with synthetic resin and additives added as necessary, and this mixed and kneaded product is used to form air core coils or magnetic cores. A method for manufacturing an inductance element, characterized by sealing and molding an inserted coil and solidifying it as necessary.
JP63213951A 1988-08-29 1988-08-29 Inductance element and its manufacture Pending JPH0262011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213951A JPH0262011A (en) 1988-08-29 1988-08-29 Inductance element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213951A JPH0262011A (en) 1988-08-29 1988-08-29 Inductance element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0262011A true JPH0262011A (en) 1990-03-01

Family

ID=16647751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213951A Pending JPH0262011A (en) 1988-08-29 1988-08-29 Inductance element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0262011A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080725A (en) * 2000-09-04 2002-03-19 Hattori Sangyo Kk Magnetic body particle-containing molding
WO2002069360A2 (en) * 2001-02-27 2002-09-06 Matsushita Electric Industrial Co., Ltd. Coil component and method of manufacturing the same
JP2003272927A (en) * 2002-03-18 2003-09-26 Koa Corp Chip inductor and its manufacturing method
JP2006237249A (en) * 2005-02-24 2006-09-07 Tdk Corp Coil component
JP2015026736A (en) * 2013-07-26 2015-02-05 株式会社デンソー Reactor and method of manufacturing the same
JP2019080059A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Exterior member forming resin composition and structure
JP2019080058A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Magnetic core forming resin composition and structure
JP2019080060A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Inductor molding resin composition and integrated inductor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080725A (en) * 2000-09-04 2002-03-19 Hattori Sangyo Kk Magnetic body particle-containing molding
WO2002069360A2 (en) * 2001-02-27 2002-09-06 Matsushita Electric Industrial Co., Ltd. Coil component and method of manufacturing the same
WO2002069360A3 (en) * 2001-02-27 2002-11-28 Matsushita Electric Ind Co Ltd Coil component and method of manufacturing the same
US7015783B2 (en) 2001-02-27 2006-03-21 Matsushita Electric Industrial Co., Ltd. Coil component and method of manufacturing the same
JP2003272927A (en) * 2002-03-18 2003-09-26 Koa Corp Chip inductor and its manufacturing method
JP2006237249A (en) * 2005-02-24 2006-09-07 Tdk Corp Coil component
JP2015026736A (en) * 2013-07-26 2015-02-05 株式会社デンソー Reactor and method of manufacturing the same
JP2019080059A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Exterior member forming resin composition and structure
JP2019080058A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Magnetic core forming resin composition and structure
JP2019080060A (en) * 2017-10-20 2019-05-23 住友ベークライト株式会社 Inductor molding resin composition and integrated inductor

Similar Documents

Publication Publication Date Title
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
US6793842B2 (en) Single-crystal ferrite fine powder
WO2018179812A1 (en) Dust core
EP3131100A1 (en) Magnetic core component, magnetic element, and production method for magnetic core component
KR20080039312A (en) Soft magnetic alloy powder, powder compact and inductance device
US5198138A (en) Spherical ferrite particles and ferrite resin composite for bonded magnetic core
US4063970A (en) Method of making permanent magnets
JPH0262011A (en) Inductance element and its manufacture
JPH061727B2 (en) Iron core
EP1269267B1 (en) Method for preparation of iron-based powder and iron-based powder
JP2003109810A (en) Dust core and its manufacturing method
EP0247681A1 (en) Magnetic material, magnetic recording medium, and method of manufacturing a magnetic material
JPH0479302A (en) Dust core
JPH1197229A (en) Dust core and method for manufacturing it
JPH11260617A (en) Dust core, manufacture of the same, and winding component
JPH01321607A (en) Inductance element and manufacture thereof
JP3391108B2 (en) Magnetic body and method of manufacturing the same
JPH10270226A (en) Powder-molded magnetic core and manufacture therefor
JP4034534B2 (en) High frequency magnetic materials
JPH02158107A (en) Resin ferrite
KR20130134970A (en) Method for producing ferrite core and the ferrite core
JPH11329821A (en) Dust core and manufacture thereof
JPH02153510A (en) Manufacture of inductance element
JPH02251105A (en) Chip coil
JPH02103916A (en) Manufacture of inductance element