JPH0260195A - Manufacture of additive method wiring board - Google Patents

Manufacture of additive method wiring board

Info

Publication number
JPH0260195A
JPH0260195A JP63210460A JP21046088A JPH0260195A JP H0260195 A JPH0260195 A JP H0260195A JP 63210460 A JP63210460 A JP 63210460A JP 21046088 A JP21046088 A JP 21046088A JP H0260195 A JPH0260195 A JP H0260195A
Authority
JP
Japan
Prior art keywords
metal plate
layer film
additive layer
wiring board
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63210460A
Other languages
Japanese (ja)
Inventor
Hajime Yamazaki
肇 山崎
Toshinobu Takahashi
敏信 高橋
Hiroshi Takahashi
宏 高橋
Hiroyoshi Yokoyama
横山 博義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Resonac Corp
Lincstech Circuit Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Yokohama Rubber Co Ltd
Hitachi Condenser Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Yokohama Rubber Co Ltd, Hitachi Condenser Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63210460A priority Critical patent/JPH0260195A/en
Priority to US07/335,433 priority patent/US5153987A/en
Priority to EP89303543A priority patent/EP0351034B1/en
Priority to DE89303543T priority patent/DE68909853T2/en
Priority to KR1019890004848A priority patent/KR920000988B1/en
Publication of JPH0260195A publication Critical patent/JPH0260195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To improve a wiring board in insulation reliability by a method wherein resin compound is filled into a through-hole of a metal plate, an additive layer film is laminated on the metal plate, the through-hole is bored through, and a conductor circuit is formed on the surface. CONSTITUTION:An uncured resin compound 3 is filled into a through-hole 2 of a metal plate 1 and made to set, and then an uncured additive layer film 4 is laminated on both the faces of the metal plate 1 as being pressed against the face of the metal plate by, for instance, a press roll 5 and set by heating. Next, the through-hole 2 is bored through a boring process to obtain a laminated body, on which a conductor circuit is formed. By this setup, the surface of the additive layer film 4 becomes smooth after a curing treatment, and consequently a wiring board, which has no pinhole and excellent in a heat dissipating property, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放熱性の良好なアディティブ法配線板の有利
な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an advantageous method for producing an additive wiring board with good heat dissipation.

〔従来の技術〕[Conventional technology]

近年、電子機器の高密度化、高能率化に伴い、配線板に
対して、搭載部品から発生する熱を速やかに除去するた
めの高度の熱伝導性が要求されるようになってきた。そ
こで、放熱性の良好な金属板を配線板の基板として用い
るようになった。この金属板は、通常、多数のスルーホ
ールを有するものであって、その表面には絶縁層が施さ
れる。
In recent years, as electronic devices have become more dense and efficient, wiring boards are required to have high thermal conductivity to quickly remove heat generated from mounted components. Therefore, metal plates with good heat dissipation properties have come to be used as substrates for wiring boards. This metal plate usually has a large number of through holes, and an insulating layer is applied to its surface.

従来、スルーホールを有する金属板の表面に絶縁層を積
層させる方法として、vA縁クワニス電着塗装する方法
、絶縁フェスを粉体塗装する方法などの種々の方法が提
案されている。しかし、電着塗装する方法では、均一な
厚みの塗膜が得られるものの電着液の管理や廃液の処理
が困難である等の問題がある。また、粉体塗装する方法
では、粉体を金属板上に付着させて熔融硬化させる段階
において溶融物がその表面張力によって凝集し、これに
よりスルーホールと平面部との境界となるスルーホール
エツジ部の厚みが著しく減少し、この厚みの差から硬化
収縮応力がエツジ部に集中するためにピンホールがエツ
ジ部に集中して生じ易い欠点がある。ピンホールの存在
は、配線板の機能上致命的な欠陥となる。
Conventionally, various methods have been proposed for laminating an insulating layer on the surface of a metal plate having through-holes, such as a method of applying vA edge varnish electrodeposition coating and a method of powder coating an insulating face. However, with the electrodeposition coating method, although a coating film of uniform thickness can be obtained, there are problems such as difficulty in managing the electrodeposition liquid and processing waste liquid. In addition, in the powder coating method, at the stage where the powder is adhered to the metal plate and melted and hardened, the molten material coagulates due to its surface tension, and this causes the edge of the through hole to become the boundary between the through hole and the flat surface. There is a drawback that pinholes are likely to be concentrated at the edges because the thickness of the steel sheet is significantly reduced, and because of this difference in thickness, curing shrinkage stress is concentrated at the edges. The presence of pinholes is a fatal defect in terms of the functionality of the wiring board.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、ピンホールがなくかつ放熱性の良好なアディ
ティブ法配線板の製造方法を提供することを目的とする
。ここで、アディティブ法とは、配線板の作製方法の一
つであって、例えば、基板の上にアディティブ層(樹脂
層)を積層させ、このアディティブ層の表面をクロム酸
混液(CrO,+Il□504)で表面親水化(粗化)
した後、この表面に塩化パラジウム等の触媒を付与して
表面活性化処理を行い(ただし、予め触媒がアディティ
ブ層に配合されている場合には行わない)、この表面の
非回路形成部分を写真的手法により怒光性ラッカー(フ
ォトレジスト)で又はスクリーン印刷法によりマスキン
グしくレジスト皮膜の形成)、つぎに回路形成部分にメ
ツキを施すという方法である。
An object of the present invention is to provide a method for manufacturing an additive wiring board that is free from pinholes and has good heat dissipation. Here, the additive method is one of the methods for manufacturing wiring boards, and for example, an additive layer (resin layer) is laminated on a substrate, and the surface of this additive layer is coated with a chromic acid mixture (CrO, +Il□ 504) to make the surface hydrophilic (roughening)
After that, a catalyst such as palladium chloride is applied to this surface for surface activation treatment (however, this is not performed if the catalyst has been mixed in the additive layer in advance), and the non-circuit forming portion of this surface is photographed. This method involves forming a resist film by masking with photosensitive lacquer (photoresist) or by screen printing method), and then plating the circuit forming area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、スルーホールを有する金属板の該スルーホー
ルに樹脂配合物を充填すると共に該金属板に未硬化のア
ディティブ層フィルムを積層させ、該アディティブ層フ
ィルムを加熱硬化させた後に前記スルーホールを貫通さ
せ、ついで得られる積層体の表面に導体回路を形成させ
ることを特徴とするアディチイ□ブ法配線板の製造方法
を要旨とする。
The present invention involves filling the through holes of a metal plate having through holes with a resin compound, laminating an uncured additive layer film on the metal plate, heating and curing the additive layer film, and then filling the through holes with a resin compound. The gist of the present invention is a method for producing an Adichii □-build wiring board, which is characterized by forming a conductive circuit on the surface of the resulting laminate.

以下、図を参照してこの手段につき詳しく説明する。This means will be explained in detail below with reference to the drawings.

第1図(A)〜(G)は、本発明のアディティブ法配線
板の製造方法の一例を示す工程説明図である。第1図(
A)は多数のスルーホール2を有する金属板1を示す。
FIGS. 1(A) to 1(G) are process explanatory diagrams showing an example of the method for manufacturing an additive wiring board of the present invention. Figure 1 (
A) shows a metal plate 1 having a large number of through holes 2.

スルーホール2の穴径は2mm程度である。金属板1と
しては、放熱性の良好な熱伝導性のよいものであればよ
く、例えば、アルミニウム板、ケイ素鋼板、鉄板、ステ
ンレス板、銅板等であり、又はこれら金属を粉末化、繊
維化、もしくはカットファイバー化したものを少量のバ
インダーで固めてシート状或いは層状としたものである
。金属板1の厚さは、特に限定されるものではないが、
薄すぎると放熱効果が少なくなり厚すぎると重くなる。
The diameter of the through hole 2 is about 2 mm. The metal plate 1 may be any material with good heat dissipation and thermal conductivity, such as an aluminum plate, a silicon steel plate, an iron plate, a stainless steel plate, a copper plate, etc., or these metals may be powdered, fibrous, or Alternatively, cut fibers are hardened with a small amount of binder to form a sheet or layer. The thickness of the metal plate 1 is not particularly limited, but
If it is too thin, the heat dissipation effect will be reduced, and if it is too thick, it will become heavy.

本発明では、まず、金属板1のスルーホール2に樹脂配
合物を充填すると共に金属板1に未硬化のアディティブ
層フィルムを積層させる。この場合、スルーホール2に
樹脂配合物を充填した後に金属板1の片面又は両面にア
ディティブ層フィルムを積層させてもよく、また、金属
板1の片面にアディティブ層フィルムを積層させた後に
スルーホール2に[4JIM配合物を充填し、つぎに金
属板lの他方の面にアディティブ層フィルムを積層させ
てもよい。第1図(B)では、金属板1のスルーホール
2に先に未硬化の樹脂配合物3を充填し、この樹脂配合
物3を硬化せしめている(120’cx1時間程度)。
In the present invention, first, the through holes 2 of the metal plate 1 are filled with a resin compound, and an uncured additive layer film is laminated on the metal plate 1. In this case, the additive layer film may be laminated on one or both sides of the metal plate 1 after the through-hole 2 is filled with the resin compound, or the additive layer film may be laminated on one side of the metal plate 1 and then the through-hole 2 may be filled with the [4JIM formulation and then an additive layer film may be laminated on the other side of the metal plate l. In FIG. 1(B), the through holes 2 of the metal plate 1 are first filled with an uncured resin compound 3, and this resin compound 3 is cured (about 120'c x 1 hour).

樹脂配合物3としては、アディティブ層フィルムと同様
な組成のものを用いればよい。なお、スルーホール2へ
の樹脂配合物3の充填は、スクリーン印刷法等の公知の
方法によって行えばよい。このように樹脂配合物3を充
填した後、例えば、第1図(C)に示すように、押さえ
ロール5で両側から押圧しながら金属板lの両面に未硬
化のアディティブ層フィルム4を積層させ、このアディ
ティブ層フィルム4を加熱硬化させる(150℃×1時
間程度)。
As the resin compound 3, one having the same composition as the additive layer film may be used. Note that filling of the resin compound 3 into the through holes 2 may be performed by a known method such as a screen printing method. After filling the resin compound 3 in this way, for example, as shown in FIG. 1(C), an uncured additive layer film 4 is laminated on both sides of the metal plate 1 while pressing from both sides with a presser roll 5. This additive layer film 4 is heated and cured (150° C. for about 1 hour).

アディティブ層フィルム4は、アディティブ層として通
常使用されるものからなるものでよく、例えば、アクリ
ロニトリル・ブタジェンゴム(NBR)、ブタジェンゴ
ム(BR)、スチレン−ブタジェンゴム(S B R)
等のゴム成分とフェノール樹脂、エポキシ樹脂、メラミ
ン樹脂等の硬化性樹脂成分とのブレンド物である。
The additive layer film 4 may be made of a material commonly used as an additive layer, such as acrylonitrile-butadiene rubber (NBR), butadiene rubber (BR), or styrene-butadiene rubber (SBR).
It is a blend of rubber components such as phenolic resin, epoxy resin, melamine resin, and other curable resin components.

つぎに、第1図(D)に示すように、スルーホール2を
穴明は加工により貫通させる(穴径は1mm程度)。穴
明は加工は、ドリル等を用いて行えばよい。
Next, as shown in FIG. 1(D), the through hole 2 is machined to penetrate (the hole diameter is about 1 mm). Drilling may be performed using a drill or the like.

本発明では、このようにして得られる積層体の表面にア
ディテ、イブ法により導体回路を形成させる。この場合
、アディティブ層フィルム4の表面を粗化した後(クロ
ム酸混液、45℃×10分程度)、第1図(E)に示す
ように、その表面に触媒(塩化パラジウム)6を付与し
て表面活性化処理を行う。つぎに、第1図(F)に示す
ように、この表面の非回路形成部分を写真的手法により
フォトレジスト7でマスキングした後、メツキを行うこ
とにより第1図(G)に示すようにメツキ膜8を形成さ
せる。ついで、160℃×1時間程度ポストキュアーす
る。なお、メツキは、無電解メツキを施すか或いは無電
解メツキと電解メツキを併用して行えばよい。
In the present invention, a conductive circuit is formed on the surface of the thus obtained laminate by the Aditite-Eve method. In this case, after roughening the surface of the additive layer film 4 (chromic acid mixture, 45°C for about 10 minutes), a catalyst (palladium chloride) 6 is applied to the surface as shown in FIG. 1(E). Perform surface activation treatment. Next, as shown in FIG. 1(F), the non-circuit forming portions of this surface are masked with photoresist 7 using a photographic method, and then plating is performed to form a plating pattern as shown in FIG. 1(G). A film 8 is formed. Then, post-cure is performed at 160°C for about 1 hour. Note that plating may be performed by electroless plating or by using a combination of electroless plating and electrolytic plating.

未硬化のアディティブ層フィルム4には、その表面の保
護のために、第2図に示すように、ポリエチレンテレツ
クレートフィルム(PET)等の離型フィルム10を被
せておくとよい。この離型フィルム10は、金属板lへ
の未硬化のアディティブ層フィルム4の積層後或いは硬
化後に除去すればよい。
In order to protect the surface of the uncured additive layer film 4, as shown in FIG. 2, it is preferable to cover the uncured additive layer film 4 with a release film 10 such as a polyethylene terephthalate film (PET). The release film 10 may be removed after the uncured additive layer film 4 is laminated onto the metal plate 1 or after it is cured.

また、第3図に示すように、未硬化のアディティブ層フ
ィルム4の下面に未硬化の絶縁層11を積層させておき
、金属板1への未硬化のアディティブ層フィルム4の積
層に際しては、その絶縁層11を介して積層させてもよ
い。
Further, as shown in FIG. 3, an uncured insulating layer 11 is laminated on the lower surface of the uncured additive layer film 4, and when laminating the uncured additive layer film 4 on the metal plate 1, They may be stacked with the insulating layer 11 interposed therebetween.

絶縁層11は、絶縁機能を有する有機層であって、例え
ば、エポキシ樹脂と合成ゴムとの配合物からなる。エポ
キシ樹脂としては、ビスフェノール・エビクロルヒトリ
ンクイブ、ノボラックタイプや脂環型のエポキシ樹脂な
どを用いることができる。また、難燃性を付与する場合
には、Br化エポキシ樹脂を用いてもよい。合成ゴムと
しては、スチレン−ブタジェンゴム、ブタジェンゴム、
アクリロニトリル・ブタジェンゴム、クロロプレンゴム
、イソプレンゴム、ブチルゴムなどを用いることができ
る。なかでもアクリロニトリル・ブタジェンゴムが特に
好ましい。
The insulating layer 11 is an organic layer having an insulating function, and is made of, for example, a mixture of epoxy resin and synthetic rubber. As the epoxy resin, bisphenol/ebichlorhydrinib, novolac type, alicyclic type epoxy resin, etc. can be used. Moreover, when imparting flame retardancy, a Brized epoxy resin may be used. Synthetic rubbers include styrene-butadiene rubber, butadiene rubber,
Acrylonitrile-butadiene rubber, chloroprene rubber, isoprene rubber, butyl rubber, etc. can be used. Among them, acrylonitrile-butadiene rubber is particularly preferred.

以下に実施例および比較例を示す。Examples and comparative examples are shown below.

〔実施例、比較例〕[Example, comparative example]

実施例1 所定の場所に直径2ml11のスルーホールを多数個あ
けてかつ硫酸・クロム酸混合液でエツチング処理した厚
さ1.0 mmのアルミ板のスルーホールに樹脂配合物
をスキージ−にて埋め込み、その表面を平滑にした。こ
の樹脂配合物は、液状のビスフェノールA型エポキシ樹
脂(WPE 190) 100重量部ζイミダゾール化
合物4重量部、充填剤20重壁部からなる無溶剤型エポ
キシ樹脂配合物であった。
Example 1 A large number of through holes with a diameter of 2 ml11 were drilled at predetermined locations, and a resin compound was filled with a squeegee into the through holes of a 1.0 mm thick aluminum plate that had been etched with a mixed solution of sulfuric acid and chromic acid. , its surface was smoothed. This resin compound was a solvent-free epoxy resin compound consisting of 100 parts by weight of a liquid bisphenol A type epoxy resin (WPE 190), 4 parts by weight of a ζ-imidazole compound, and 20 parts by weight of a filler.

つぎに、第2図に示す合成ゴム/フェノール樹脂を主成
分とする未加硫のアディティブ層フィルムをホットラミ
ネータにより該金属板の両面へ120℃の温度下に積層
させた。得られた積層体から表面の離型フィルムを剥が
し、150℃にセットされた電気オーブン中で2時間硬
化処理を行った。硬化後のアディティブ層フィルムの表
面は平滑であった。
Next, an unvulcanized additive layer film mainly composed of synthetic rubber/phenol resin shown in FIG. 2 was laminated on both sides of the metal plate at a temperature of 120° C. using a hot laminator. The release film on the surface of the obtained laminate was peeled off, and a curing treatment was performed for 2 hours in an electric oven set at 150°C. The surface of the additive layer film after curing was smooth.

ついで、スルーホール部に直径11の穴をドリルであけ
た後、積層体の両面のアディティブ層フィルムをクロム
酸混液で粗化処理し、触媒(塩化パラジウム)付加、活
性化処理を行い、回路パターン以外の部分にメツキレジ
ストを印刷し、導体回路を無電解銅メツキ法により所定
の厚みまで付加し、印刷配線板を作製した。この配線板
は、160℃×1時間のポストキュアーにおいてフクレ
、剥離等の異常は見られなく、良好なものであった。
Next, after drilling a hole with a diameter of 11 in the through-hole section, the additive layer films on both sides of the laminate were roughened with a chromic acid mixture, and a catalyst (palladium chloride) was added and activated to form a circuit pattern. A plating resist was printed on the other parts, and a conductor circuit was added to a predetermined thickness by electroless copper plating to produce a printed wiring board. This wiring board was in good condition with no abnormalities such as blistering or peeling observed during post-curing at 160° C. for 1 hour.

得られた積層成形品について下記の■、■、■の試験を
行ったところ、絶縁破壊電圧は3゜5 KV、引き剥が
し強さは2.2 kg/ cmであり、また、30秒以
上放置してもフクレ、ヱ11離等の異常は見られなく、
はんだ耐熱性は良好であった。
When the following tests (■, ■, ■) were conducted on the obtained laminated molded product, the dielectric breakdown voltage was 3°5 KV, the peel strength was 2.2 kg/cm, and the product was not allowed to stand for more than 30 seconds. However, no abnormalities such as blistering or e11 separation were observed.
Solder heat resistance was good.

■ 絶縁破壊試験。■ Dielectric breakdown test.

一定の大きさの積層成形品を試料とし、この試料のコー
ナ一部の一箇所から1010X10の大きさでアディテ
ィブ層フィルムを削り取ってアルミ板を露出させる。つ
ぎに、この露山部分を上にして試料を水銀槽内の水銀に
浸漬する。この場合、水銀の表面から上記アルミ板の露
出部分までの距離を10 mmとし、該露出部分に水銀
が触れないようにする。そして、この露出部分を一方の
電極とし、水銀を他方の電極とする。この両極にJIS
 K −6911−19705,8,2項に規定する電
源および装置を接続し、20℃で印加電圧をかけ、この
電圧をゼロボルトから20ボルト/秒の速さで昇圧させ
、破壊したときの電圧を絶縁破壊電圧とする。
A laminate molded product of a certain size is used as a sample, and the additive layer film is scraped off in a size of 1010×10 from one corner of the sample to expose the aluminum plate. Next, the sample is immersed in mercury in a mercury bath with the exposed portion facing up. In this case, the distance from the surface of the mercury to the exposed portion of the aluminum plate is set to 10 mm to prevent mercury from touching the exposed portion. Then, this exposed portion is used as one electrode, and mercury is used as the other electrode. JIS for these two extremes
Connect the power supply and equipment specified in K-6911-19705, Section 8, 2, apply an applied voltage at 20°C, increase this voltage from zero volts at a rate of 20 volts/second, and measure the voltage at breakdown. Dielectric breakdown voltage.

■ メッキ銅の引き剥がし強さの試験。■ Peeling strength test of plated copper.

JIS C6481,5,7の方法に準拠し、常態にお
ける引き剥がし強さを測定。
Peel strength under normal conditions was measured in accordance with the method of JIS C6481, 5, 7.

■ はんだ耐熱性の試験。■ Solder heat resistance test.

JIS C6481,5,5の方法に準拠し、常態にお
ける260℃でのはんだ耐熱性を測定。
Soldering heat resistance at 260°C under normal conditions was measured in accordance with the method of JIS C6481, 5, 5.

実施例2 所定の場所に直径2mmのスルーホールをドリルで多数
個あけてかつ硫酸・クロム酸混合液でエツチング処理し
た厚さ1.Ommのアルミ板の片面に、第3図に示す合
成ゴム/フェノール樹脂を主成分とする未加硫のアディ
ティブ層フィルムと合成ゴム/エポキシ樹脂を主成分と
する未加硫の絶縁層からなる複層の有機層(厚さ;アデ
ィティブ層フィルム30μ、絶縁FilOOμ)を、そ
の絶縁層が接するように、ホットラミネータにより10
0℃の温度下に積層させ、ついで実施例1におけると同
様にスルーホールに樹脂配合物をスキージ−にて埋め込
み、その表面を平滑にした。
Example 2 A large number of through holes with a diameter of 2 mm were drilled at predetermined locations and etched with a sulfuric acid/chromic acid mixture to a thickness of 1. A composite film consisting of an unvulcanized additive layer film mainly composed of synthetic rubber/phenolic resin and an unvulcanized insulating layer mainly composed of synthetic rubber/epoxy resin, as shown in Figure 3, is placed on one side of an Omm aluminum plate. The organic layer (thickness: additive layer film 30μ, insulating FilOOμ) was layered with a hot laminator for 10 minutes so that the insulating layers were in contact with each other.
They were laminated at a temperature of 0 DEG C., and then, in the same manner as in Example 1, a resin compound was filled into the through holes with a squeegee to smooth the surface.

つぎに、前記平滑にした表面に、第3図に示す複層の有
機層を、その1色縁層が接するように、ホットラミネー
タにより100℃の温度下に積層させた。得られた積層
体から表面の離型フィルムを剥がさずに、オートクレー
ブ中で5トールに減圧処理を施しながら7 kg/−の
加圧下に150℃×2時間硬化処理を行った。硬化後の
アディティブ層フィルムの表面は平滑であった。
Next, the multilayer organic layer shown in FIG. 3 was laminated on the smoothed surface using a hot laminator at a temperature of 100° C. so that the edge layer of one color was in contact with the organic layer. The obtained laminate was cured at 150° C. for 2 hours under a pressure of 7 kg/- while being subjected to a vacuum treatment at 5 torr in an autoclave without peeling off the release film on the surface. The surface of the additive layer film after curing was smooth.

ついで、実施例1と同様に、スルーホール部に直径1m
mの穴をドリルであけた後、印刷配線板を作製し、試験
を行ったところ、絶縁破壊電圧は4.5 KV、引き剥
がし強さは2.0 kg/ cmであり、また、30秒
以上放置してもフクレ、剥難等の異常は見られなく、は
んだ耐熱性は良好であった。
Then, as in Example 1, a hole with a diameter of 1 m was placed in the through hole.
After drilling a hole of m in size, a printed wiring board was prepared and tested, and the dielectric breakdown voltage was 4.5 KV, the peel strength was 2.0 kg/cm, and the 30 seconds No abnormalities such as blistering or peeling were observed even after the above-mentioned conditions, and the soldering heat resistance was good.

実施例3 、所定の場所に直径2mmのスルーホールを多数個あけ
てかつ硫酸・クロム酸混合液でエツチング処理した厚さ
1.0 mmのアルミ板のスルーホールに、実施例1に
おけると同様に樹脂配合物をスキージ−にて埋め込み、
そのアルミ板の表面を平滑にした。
Example 3 In the same manner as in Example 1, a large number of through holes with a diameter of 2 mm were drilled at predetermined locations, and the through holes were etched in a 1.0 mm thick aluminum plate with a sulfuric acid/chromic acid mixture. Embed the resin compound with a squeegee,
The surface of the aluminum plate was smoothed.

つぎに、この平滑にしたアルミ板の片面に第3図に示す
複層の有機層(メツキ触媒入り)をその絶縁層が接する
ように、また、他面には第4図に示す離型フィルムlO
と絶縁層11からなる複合フィルムをその絶縁層が接す
るように、ホントラミネータにより100℃の温度下に
a層させて1flJ1体を得た。ついで、絶縁基板20
の表面に回路21が形成された第5図に示されるメツキ
触媒入り両面プリント回路基板(日立化成工業製)の両
面に、この積層体を、第4図に示す複合フィルム側の離
型フィルムを剥がしてその絶縁N11が回路21に接す
るように積層させ、第6図に示す複合積層成形体を得た
Next, on one side of this smoothed aluminum plate, a multilayer organic layer (containing a plating catalyst) as shown in Fig. 3 is placed so that the insulating layer is in contact with it, and on the other side, a release film as shown in Fig. 4 is applied. lO
A composite film consisting of the insulating layer 11 and the insulating layer 11 was made into an a-layer at a temperature of 100° C. using a real laminator so that the insulating layers were in contact with each other to obtain one 1flJ body. Next, the insulating substrate 20
This laminate was applied to both sides of the double-sided printed circuit board containing a plating catalyst (manufactured by Hitachi Chemical) shown in Fig. 5, on which the circuit 21 was formed, and the release film on the composite film side shown in Fig. 4 was applied. The layers were peeled off and laminated so that the insulation N11 was in contact with the circuit 21 to obtain a composite laminate molded product shown in FIG. 6.

得られた複合積層成形体をオートクレーブ中で5トール
に減圧処理を施しながら7 kg/ctの加圧下で15
0℃×2時間、硬化処理を行った。硬化後に表面の離型
フィルムを剥がしたところ、アディティブ層フィルムの
表面は平滑であった。
The resulting composite laminate was heated to 15 kg/ct under a pressure of 7 kg/ct while being depressurized to 5 torr in an autoclave.
A curing treatment was performed at 0° C. for 2 hours. When the release film on the surface was peeled off after curing, the surface of the additive layer film was found to be smooth.

9いで、スルーホール部に直径1+n+nの穴をドリル
であけた後、両面のアディティブ層フィルムをクロム酸
混液で粗化処理し、回路パターン以外の部分にメツキレ
ジストを印刷し、導体回路を無電解銅メツキ法により所
定の厚みまで付加し、印刷配線板を作製した。この配線
板は、160℃×1時間のポストキュアーにおいでフク
レ、剥離等の異常は見られなく、良好なものであった。
In step 9, after drilling a hole with a diameter of 1+n+n in the through-hole section, the additive layer film on both sides is roughened with a chromic acid mixture, a plating resist is printed on the parts other than the circuit pattern, and the conductor circuit is electrolessly processed. A printed wiring board was produced by adding copper to a predetermined thickness using a copper plating method. This wiring board was in good condition with no abnormalities such as blistering or peeling observed during post-curing at 160° C. for 1 hour.

実施例1と同様に試験を行ったところ、絶縁破壊電圧は
4.2 KV、引き剥がし強さは2.2に87 cmで
あり、また、30秒以上放置してもフクレ、剥離等の異
常は見られなく、はんだ耐熱性は良好であった。
When the test was conducted in the same manner as in Example 1, the dielectric breakdown voltage was 4.2 KV, the peel strength was 2.2 cm and the peel strength was 2.2 cm and 87 cm, and there were no abnormalities such as blistering or peeling even if left for more than 30 seconds. No was observed, and the soldering heat resistance was good.

比較例1 合成ゴムとフェノール樹脂を主成分とする樹脂粉体を静
電流動槽中に浮遊させ、これに直径1mmのスルーホー
ルを多数有するアルミ板(1,0t)を浸漬し、該アル
ミ板の表面に厚さ100μの樹脂層を形成した。この試
験片について実施例1と同様に試験を行ったところ、特
にスルーホールエツジ部の絶縁破壊電圧が低く 、0.
5 KVにすぎなかった。
Comparative Example 1 Resin powder mainly composed of synthetic rubber and phenolic resin is suspended in an electrostatic motion tank, and an aluminum plate (1.0 t) having many through holes with a diameter of 1 mm is immersed in it. A resin layer with a thickness of 100 μm was formed on the surface. When this test piece was tested in the same manner as in Example 1, the dielectric breakdown voltage was particularly low at the through-hole edge portion, and was found to be 0.
It was only 5 KV.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、金属板のスルーホ
ールに樹脂配合物を充填すると共に該金属板に未硬化の
アディティブ層フィルムを積層させ、該アディティブ層
フィルムを加熱硬化させた後にスルーホールを貫通させ
、得られる積層体の表面に導体回路を形成させたため、
放熱性が良好でピンホールのない(すなわち、絶縁信顛
性が高い)配線板を得ることができる。また、本発明で
は、ラミネーション方式によるため配線板の製造を簡易
に行うことができ、さらに、表面が平滑なものが得られ
、このため高密度配線可能な配線板を得ることができる
As explained above, according to the present invention, the through holes of a metal plate are filled with a resin compound, an uncured additive layer film is laminated on the metal plate, the additive layer film is heated and cured, and then the through holes are filled with a resin compound. By penetrating the laminate and forming a conductor circuit on the surface of the resulting laminate,
A wiring board with good heat dissipation and no pinholes (that is, high insulation reliability) can be obtained. Further, in the present invention, since the lamination method is used, the wiring board can be manufactured easily, and a wiring board with a smooth surface can be obtained, so that a wiring board capable of high-density wiring can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(G)は本発明のアディティブ法配線板
の製造方法の一例を示す工程説明図、第2図および第3
図はそれぞれアディティブ層フィルムの使用前の状態を
示す説明図、第4図は離型フィルムと絶縁層からなる複
合フィルムの断面説明図、第5図は両面プリント回路基
板の断面説明図、第6図は複合積層成形体の断面説明図
である。 1・・・金属板、2・・・スルーホール、3・・・樹脂
配合物、4・・・アディティブ層フィルム、5・・・押
さえロール、6・・・触媒、7・・・フォトレジスト、
8・・・メツキ膜1.10・・・離型フィルム、11・
・・絶縁層、20・・・絶縁基板、21・・・回路。 第2図 第3図 代理人 弁理士 小 川 信 −
FIGS. 1(A) to 3(G) are process explanatory diagrams showing an example of the manufacturing method of the additive method wiring board of the present invention, and FIGS.
The figures are an explanatory view showing the state of the additive layer film before use, Fig. 4 is an explanatory cross-sectional view of a composite film consisting of a release film and an insulating layer, Fig. 5 is an explanatory cross-sectional view of a double-sided printed circuit board, and Fig. The figure is an explanatory cross-sectional view of a composite laminate molded product. DESCRIPTION OF SYMBOLS 1... Metal plate, 2... Through hole, 3... Resin compound, 4... Additive layer film, 5... Presser roll, 6... Catalyst, 7... Photoresist,
8...Plated film 1.10...Release film, 11.
...Insulating layer, 20...Insulating substrate, 21...Circuit. Figure 2 Figure 3 Agent: Patent Attorney Shin Ogawa −

Claims (1)

【特許請求の範囲】[Claims]  スルーホールを有する金属板の該スルーホールに樹脂
配合物を充填すると共に該金属板に未硬化のアディティ
ブ層フィルムを積層させ、該アディティブ層フィルムを
加熱硬化させた後に前記スルーホールを貫通させ、つい
で得られる積層体の表面に導体回路を形成させることを
特徴とするアディティブ法配線板の製造方法。
Filling the through holes of a metal plate with through holes with a resin compound, laminating an uncured additive layer film on the metal plate, heating and curing the additive layer film, and then passing through the through holes. 1. A method for manufacturing an additive wiring board, which comprises forming a conductor circuit on the surface of the resulting laminate.
JP63210460A 1988-07-15 1988-08-26 Manufacture of additive method wiring board Pending JPH0260195A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63210460A JPH0260195A (en) 1988-08-26 1988-08-26 Manufacture of additive method wiring board
US07/335,433 US5153987A (en) 1988-07-15 1989-04-10 Process for producing printed wiring boards
EP89303543A EP0351034B1 (en) 1988-07-15 1989-04-11 Process and film for producing printed wiring boards
DE89303543T DE68909853T2 (en) 1988-07-15 1989-04-11 Process and film for making printed circuit boards.
KR1019890004848A KR920000988B1 (en) 1988-07-15 1989-06-08 Process for producing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210460A JPH0260195A (en) 1988-08-26 1988-08-26 Manufacture of additive method wiring board

Publications (1)

Publication Number Publication Date
JPH0260195A true JPH0260195A (en) 1990-02-28

Family

ID=16589701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210460A Pending JPH0260195A (en) 1988-07-15 1988-08-26 Manufacture of additive method wiring board

Country Status (1)

Country Link
JP (1) JPH0260195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250963A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Multi-picture displaying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250963A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Multi-picture displaying system

Similar Documents

Publication Publication Date Title
EP0351034B1 (en) Process and film for producing printed wiring boards
US4029845A (en) Printed circuit base board and method for manufacturing same
KR101560121B1 (en) Metal-foil-attached adhesive sheet, metal-foil-attached laminated board, metal-foil-attached multi-layer board, and method of manufacturing circuit board
KR20010051189A (en) Method for the preparation of multilayered printed wiring board using adhesive film
WO2005104638A1 (en) Wiring board and method for producing the same
JP2003304068A (en) Resin-attached metal foil for printed wiring board and multilayer printed wiring board using the same
JPH07106765A (en) Multilayered adhesive sheet and manufacture of multilayered wiring board using same
JP2001024323A (en) Method for filling conductive paste and manufacture of single sided circuit board for multilayer printed wiring board
JP2579960B2 (en) Manufacturing method of multilayer printed wiring board
JPH0260195A (en) Manufacture of additive method wiring board
JPH03239390A (en) Metal cored board and manufacture thereof
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPS62277794A (en) Manufacture of inner layer circuit board
JPH1022639A (en) Manufacture of plastic flow sheet for multilayer printed wiring board and manufacture of multilayer wiring board using the sheet
JP3610588B2 (en) Multilayer wiring board and manufacturing method thereof
JP4021501B2 (en) Manufacturing method of multilayer wiring board
JPH09260849A (en) Inner layer circuit board manufacturing method and multilayered printed wiring board manufacturing method
JPH09283923A (en) Manufacture of multilayer printed-wiring board
JPH10313177A (en) Manufacture of multilayered printed wiring board
JP2714985B2 (en) Multilayer film for additive wiring board
JPH07245480A (en) Method of manufacturing multilayer printed interconnection board
JP3474911B2 (en) Material for printed wiring board, printed wiring board and method for manufacturing the same
JPS5818799B2 (en) Tasou print high quality print
JPH0226096A (en) Manufacture of additive process wiring board
KR830000116B1 (en) Insulation plate for plating