JPH0259156B2 - - Google Patents

Info

Publication number
JPH0259156B2
JPH0259156B2 JP58017409A JP1740983A JPH0259156B2 JP H0259156 B2 JPH0259156 B2 JP H0259156B2 JP 58017409 A JP58017409 A JP 58017409A JP 1740983 A JP1740983 A JP 1740983A JP H0259156 B2 JPH0259156 B2 JP H0259156B2
Authority
JP
Japan
Prior art keywords
carbonate
bis
general formula
silylpropyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58017409A
Other languages
Japanese (ja)
Other versions
JPS59144791A (en
Inventor
Kaoru Miura
Takashi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58017409A priority Critical patent/JPS59144791A/en
Publication of JPS59144791A publication Critical patent/JPS59144791A/en
Publication of JPH0259156B2 publication Critical patent/JPH0259156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。)で示されるビス
(シリルプロピル)カーボネート及びその製造方
法を提供するものである。 従来、A―B―SiX3(Xはハロゲン原子または
アルコキシ基、Aは官能基、Bは直鎖または分枝
状のアルキレン基などを表わす)で示される官能
性アルキルシラン化合物、例えば3―アミノプロ
ピルトリエトキシシラン、2―シアノエチルトリ
クロロシラン、2―メトキシカルボニルエチルト
リメトキシシランなどは公知な化合物で繊維表面
などへの撥水処理剤、潤滑剤、防錆剤等に使用さ
れることが知られている。 本発明者は長年有用な種々の官能性有機珪素化
合物の合成研究を読けて来たが、新規な化合物で
ある。一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。) で示されるビス(シリルプロピル)カーボネート
を合成し、その構造及び用途を確認して、本発明
を完成し提供するに至つた。 即ち、本発明の新規化合物であるビス(シリル
プロピル)カーボネートは一般式、 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。)で示される。 上記式中、Rで示されるアルキル基は、メチル
基、エチル基、n―プロピル基などの炭素数1〜
6のアルキル基であり、また、R′Oで示されるア
ルコキシ基はメトキシ基、エトキシ基、n―プロ
ポキシ基、など炭素数が1〜6のアルコキシ基で
ある。 本発明のビス(シリルプロピル)カーボネー
ト、即ち、 は、常温常圧下では無色透明液体状で存在する。
また本発明のビス(シリルプロピル)カーボネー
トは一般に次の(イ)〜(ニ)のような手段で一般式の各
化合物であることを確認することが出来る。 (イ) 赤外線吸収スペクトル(IR)を測定するこ
とにより、1740〜1750cm-1付近にカーボネート
化合物に特有なカルボニル基にもとずく強い吸
収が現われる。なお、単離精製した無色透明液
体である生成物を高温、例えば200℃以上に加
熱した場合、連続的に泡を発生して分解するこ
と、即ち脱炭酸反応を起こすことからも生成物
がカーボネート類に属していることを知ること
ができる。 (ロ) 13炭素核磁気共鳴スペクトル( 13C−
NMR)を測定することによつて分子中に存在
するメチレン基ならびにカーボネート基、珪素
原子上のアルキル基の種類、さらにアルコキシ
基の種類を知ることが出来る。 即ち、 13C−NMR(テトラメチルシラン基
準)に於いて156ppm付近にカーボネート化合
物に特有なカルボニル基の炭素原子に基づくピ
ーク、70ppm付近にカーボネートの酸素原子に
隣接するメチレン基の炭素原子に基づくピー
ク、23ppm付近にトリメチレン基の中央に位置
するメチレン基の炭素原子に基づくピーク、8
〜15ppm付近に珪素原子に隣接したメチレン基
の炭素原子に基づくピークを示す。なお、それ
ぞれのピーク強度を相対的に比較することによ
り、それぞれの結合基の個数を知ることが出来
る。 (ハ) 質量スペクトル(MS)を測定し、観察され
る各ピーク(一般にはイオンの分子量を電子の
荷電数eで割つたm/eで表わされる質量数)
に相当する組成式を算出することにより、測定
に供した試料の結合様式さらに終局的にはその
分子量を推定することが出来る。さらに極めて
注意深く測定を行なうと、強度的には弱いが対
応する分子量に相当する分子イオンピーク
(M)を観察することができる。 さらに前記一般式においてR′Oがエトキシ
基、Rがメチル基である場合、m/e133に極め
て強い
The present invention is based on the general formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) The present invention provides a bis(silylpropyl) carbonate represented by the following formula and a method for producing the same. Conventionally, functional alkylsilane compounds represented by AB-SiX 3 (X is a halogen atom or an alkoxy group, A is a functional group, B is a linear or branched alkylene group, etc.), such as 3-amino Propyltriethoxysilane, 2-cyanoethyltrichlorosilane, 2-methoxycarbonylethyltrimethoxysilane, etc. are well-known compounds that are known to be used as water repellent treatment agents for fiber surfaces, lubricants, rust preventive agents, etc. ing. Although the present inventor has been studying the synthesis of various useful functional organosilicon compounds for many years, this is a new compound. general formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) The present invention was completed by synthesizing bis(silylpropyl) carbonate and confirming its structure and uses. We have come to offer this service. That is, the novel compound of the present invention, bis(silylpropyl) carbonate, has the general formula: (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) In the above formula, the alkyl group represented by R has 1 to 1 carbon atoms, such as a methyl group, an ethyl group, or an n-propyl group.
6, and the alkoxy group represented by R'O is an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, or an n-propoxy group. The bis(silylpropyl)carbonate of the present invention, namely: exists as a colorless and transparent liquid at room temperature and pressure.
Further, the bis(silylpropyl) carbonate of the present invention can generally be confirmed to be each compound of the general formula by the following methods (a) to (d). (b) By measuring the infrared absorption spectrum (IR), a strong absorption based on the carbonyl group characteristic of carbonate compounds appears around 1740 to 1750 cm -1 . In addition, when the product, which is an isolated and purified colorless transparent liquid, is heated to a high temperature, for example, 200°C or higher, it continuously generates bubbles and decomposes, that is, a decarboxylation reaction occurs, so the product becomes carbonate. You can know that it belongs to a class. (b) 13 carbon nuclear magnetic resonance spectrum ( 13 C−
By measuring NMR), it is possible to know the types of methylene groups, carbonate groups, alkyl groups on silicon atoms, and alkoxy groups present in the molecule. That is, in 13 C-NMR (tetramethylsilane standard), there is a peak at around 156 ppm based on the carbon atom of the carbonyl group specific to carbonate compounds, and a peak at around 70 ppm based on the carbon atom of the methylene group adjacent to the oxygen atom of the carbonate. , a peak based on the carbon atom of the methylene group located in the center of the trimethylene group around 23 ppm, 8
A peak based on the carbon atom of the methylene group adjacent to the silicon atom is shown around ~15 ppm. Note that the number of each bonding group can be determined by relatively comparing the respective peak intensities. (c) Measure the mass spectrum (MS) and each peak observed (generally the mass number expressed as m/e, which is the molecular weight of the ion divided by the number of electron charges e)
By calculating the compositional formula corresponding to , it is possible to estimate the binding mode and ultimately the molecular weight of the sample subjected to measurement. Furthermore, if measurements are carried out extremely carefully, a molecular ion peak (M) corresponding to the corresponding molecular weight can be observed, although the intensity is weak. Furthermore, when R'O is an ethoxy group and R is a methyl group in the above general formula, it is extremely strong against m/e133.

【式】に相当するピーク、 m/e175にA peak corresponding to [formula], m/e175

【式】に相 当するピークの他に対応する分子量に相当する
ピーク(M)からエタノールが脱離したと考
えられるピーク、即ち、M―46のピークが観
察される。同様にR′Oがメトキシ基でRがメチ
ル基の場合、m/e105に極めて強い
In addition to the peak corresponding to [Formula], a peak that is considered to be the result of desorption of ethanol from the peak (M) corresponding to the corresponding molecular weight, ie, a peak of M-46, is observed. Similarly, if R′O is a methoxy group and R is a methyl group, it is extremely strong against m/e105.

【式】に相当するピーク、m/e147 にPeak corresponding to [formula], m/e147 to

【式】に相当するピ ークの他に対応する分子量に相当するピーク
(M)からメタノールが脱離したと考えられ
るピーク、即ち、M―32のピークが観察され
る。同様にR,R′が他の組合わせの場合も特
有のピークを観察することが出来る。 (ニ) 元素分析によつて炭素、水素、珪素の各重量
%を求め、さらに認知された各元素の重量%の
和を100から減じることにより、酸素の重量%
を算出することが出来、従つて、該生成物の組
成式を決定することが出来る。 本発明のビス(シリルプロピル)カーボネート
は高沸点を有する無色無臭の透明液体であり、具
体的には後述する実施例に示すが、一般の有機化
合物と同じように分子量が大きくなる程沸点が高
くなる傾向がある。本発明のビス(シリルプロピ
ル)カーボネートはベンゼン、エーテル、ヘキサ
ン、クロロホルム、四塩化炭素、アセトニトリ
ル、N,N―ジメチルホルムアミドなど一般の有
機溶媒に良く溶ける。本発明の化合物は、R′Oで
示されるアルコキシ基に対応するアルコールと異
種のアルコールに溶かすと、徐々にではあるが溶
媒となるアルコールの量に応じてアルコキシ基の
一部あるいは条件によつてはアルコキシ基の全て
が溶媒として用いられた異種のアルコキシ基に変
化するのが一般的である。また、前記一般式で示
されるカーボネートを含水溶媒に添加すると発熱
を伴う加水分解反応が起こり、対応するポリシル
セスキオキサン化合物に変化する。この際前記一
般式に於けるR′Oに相当する部分がハロゲン原子
である化合物は、R′Oがアルコキシ基である本発
明の化合物に比べ、加水分解反応の速度が大きい
傾向にある。また、該加水分解は溶媒に水酸化ナ
トリウム、水酸化カリウム、アンモニア等の塩基
類あるいは塩酸、硫酸、酢酸等の酸類を添加する
ことにより大いに促進される。本発明のビス(シ
リルプロピル)カーボネートは無溶媒あるいは不
活性溶媒中で200℃以上に加熱した場合、連続的
に脱炭酸反応を起こす。該脱炭酸反応は加熱温度
が高くなる程、激しくなる傾向にある。なお脱炭
酸反応後の分解物も一般に無色透明の液体であ
る。 本発明のビス(シリルプロピル)カーボネート
の製造方法は特に限定されず如何なる方法によつ
て得てもよい。一般に好適に採用される代表的な
製造方法を以下に説明する。即ち、下記式で示さ
れるジアリルカーボネートと一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。)で示されるアル
キルジアルコキシシランとを触媒存在下に反応さ
せることによつて好収率で目的とするビス(シリ
ルプロピル)カーボネートを得ることが出来る。 上記式で示されるジアリルカーボネートは、そ
の製法に限定されず、例えば、公知の製法で得ら
れるものが特に制限されずに使用出来る。またア
ルキルジアルコキシシランは一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。)で示される化合
物で、その製法に限定されず使用出来る。また該
反応に用いられる触媒は、いわゆるヒドロシリル
化反応に一般的に用いられる触媒であれば特に限
定されず使用することが出来るが、例えば、塩化
白金酸、塩化白金酸カリウム、白金黒、Pt/C、
Pt/アルミナ、pt/シリカ、PtCl2(PPh32等の
白金化合物;PdCl2、PdCl2(PPh32、PdCl2
(C6H5CN)2等のパラジウム化合物;RhCl3
RhCl(PPh33等のロジウム化合物などが好適であ
る。 本発明に於けるジアリルカーボネートとアルキ
ルジアルコキシシランとの反応の代表例は後述す
る実施例で詳述する。上記の反応は一般に無溶媒
に於いても実施することが出来るが、通常、溶媒
の存在下に実施するのが一般的である。溶媒とし
ては、原料或いは触媒と反応しない極性非水溶媒
ならば特に限定されず用いることが出来、一般に
はベンゼン、トルエン、ヘキサン等の炭化水素系
溶媒;クロロホルム、四塩化炭素等のハロゲン化
炭化水素系溶媒;ジメチルエーテル、ジエチルエ
ーテル等のエーテル系溶媒等が好適に使用され
る。 また前記反応条件は特に限定されるものではな
いが、原料の種類、触媒の種類、溶媒の有無又は
種類等によつて異なる場合があるので予め好適な
条件を選定して実施するのが好ましい。一般には
−20〜160℃の温度下に、数10分〜40時間の範囲
で選べば十分である。また反応圧力は大気圧下に
十分に進行するので通常は常圧で実施すればよ
く、必要に応じて加圧下或いは減圧下で実施する
ことも出来る。 また、本発明の化合物は、前記反応式に従いジ
アリルカーボネートとアルコキシシランとを反応
させることによつて得られる他に、次のような方
法によつて得ることも出来る。即ち、一般式 (但し、Yはハロゲン原子で、Rは炭素数1〜6
のアルキル基である。)で示されるビス(ハロシ
リルプロピル)カーボネートと一般式R′OH(但
し、R′はRと同種もしくは異種の炭素数1〜6
のアルキル基である。)で示されるアルコールと
を触媒の存在下又は不存在下に反応させることに
よつて得ることが出来る。この場合、一般に上記
一般式中のアルキル基は炭素原子数1〜6の範囲
であれば直状又は分枝状のいずれであつても良
い。また前記反応に於ける触媒は一般に塩基であ
れば特に限定されず使用出来、特にアンモニア、
ジエチルアミン、n―プロピルアミン、イソプロ
ピルアミン、n―ブチルアミン、sec―ブチルア
ミン、イソブチルアミン、n―アミルアミン、イ
ソアミルアミン、トリエチルアミン、ジ―7―ブ
チルアミン等の1〜3級の低級アルキルアミン;
アニリン、ピリジン、N,N―ジメチルアニリ
ン、O―トルイジン、m―トルイジン、p―トル
イジン、ベンジルアミン、α―フエニルエチルア
ミン、β―フエニルエチルアミン等の芳香族アミ
ンなどの含窒素化合物が好適に使用される。 更にまた、前記したように本発明の化合物は、
アルコキシ基が低級になる程高級アルコキシ基に
置換され易い性質を有するので、このような性状
を利用すれば、低級アルコキシ基を含む本発明の
ビス(シリルプロピル)カーボネートを該アルコ
キシ基よりも高級なアルコールと接触させ、置換
反応により生成する低級アルコールを連続的に分
別蒸留等の手段で分離することによつて、目的の
アルコキシ基を含むビス(シリルプロピル)カー
ボネートとすることが出来る。 本発明のビス(シリルプロピル)カーボネート
は、前記一般式から或いは前記性状の説明からも
明らかなように、カーボネート基と両端に珪素を
含む化合物である。該カーボネート基は前記した
ように加熱することによつて炭酸ガスとして離脱
するので、この性状を利用した発泡剤としての用
途がある。また前記した含有珪素に基因し撥水性
の強いものであるので撥水剤としての用途も有す
る。 また、本発明のビス(シリルプロピル)カーボ
ネートは部分的に又は完全に加水分解させること
によつて高密度に架橋した強固な透明被膜とする
ことが出来る。例えば、ガラス、セメント、モル
タル等の無機材料;紙、木材、セルロース、プラ
スチツク等の有機材料について種々の形態の加工
物の表面に塗布した後、加水分解することにより
該加工物表面に透明で強固な被膜を形成すること
ができる。 本発明を更に具体的に説明するために以下実施
例を挙げて説明するが、本発明はこれらの実施例
に限定されるものではない。 実施例 1 ビス(3―ジクロロメチルシリルプロピル)カ
ーボネート(37.2g、0.1モル)、無水ベンゼン
(50ml)の混合物を食塩/氷を用いた寒剤浴で冷
却し、撹拌しながら無水エタノール(70ml)と無
水ベンゼン(70ml)の混合物をゆつくり滴下し
た。滴下終了後も冷却を続けながら2時間撹拌し
た。さらに撹拌下、該冷却溶液に乾燥窒素ガスを
通気して大部分の塩化水素を追い出した後、乾燥
アンモニアガスを、もはや塩化アンモニウムの白
色沈殿が生成しなくなるまで通気した。再び乾燥
窒素ガスを該冷却溶液に通気することにより、過
剰のアンモニアガスを追い出した。生成した塩化
アンモニウムを加圧ろ過により除去し、さらにろ
液中に含まれる低沸点成分を蒸留によつて除いた
後、残渣を真空蒸留することにより沸点154℃/
2mmHgの無色透明液体(35.1g)を得た。赤外
線吸収スペクトルを測定したところ1745cm-1にカ
ーボネート基のカルボニル結合に由来する強い吸
収が認められた。その元素分析値はC48.97%、
H9.57%であつてC17H38O7Si2(410.65)に対する
計算値であるC49.72%、H9.33%に一致した。ま
た質量スペクトルを測定したところm/e364に分
子量に相当する分子イオンピーク(M )からエ
タノールが脱離したと考えられるピーク、即ちM
―46のピークが観察された。またm/e175に
(C2H5O)2CH3SiCH2CH2CH2 に対応するピー
ク、m/e133に(C2H5O)2CH3Si に対応するピ
ークが観察された。さらに 13C−nmrを測定し、
観察された各ピークの化学シフト値を解析した結
果は次の通りであつた。 以上の結果から単離生成物がビス(3―ジエト
キシメチルシリルプロピル)カーボネートである
ことが明らかとなつた。 収率は用いたビス(3―ジクロロメチルシリル
プロピル)カーボネートに対して85.5%であつ
た。 実施例 2 無水エタノールのかわりに無水メタノールを用
いた以外は実施例1と同様に行なつたところ沸点
128〜131℃/2mmHgの無色透明な液体(31.6g)
を得た。 赤外線吸収スペクトルを測定したところ1745cm
-1にカーボネート基のカルボニル結合に基づく吸
収が認められた。その元素分析値はC44.31%、
H8.54%であつてC13H30O7Si2(354.55)に対する
計算値であるC44.04%、H8.53%によく一致し
た。また質量スペクトルを測定したところ、m/
e322に分子量に相当する分子イオンピーク(M
)からメタノールが脱離したと考えられるピー
ク、即ちM ―32のピークが観察された。また、
m/e147に(CH3O)2CH3SiCH2CH2CH2M に
対応する強いピーク、m/e105に
(CH3O)2CH3SiM に対応する強いピークが観察
された。さらに 13C―nmrを測定し観測された各
ピークの化学シフト値を解析した結果は次の通り
であつた。 上記の結果から単離生成物がビス(3―ジメト
キシメチルシリルプロピル)カーボネートである
ことが明らかとなつた。収率は用いたビス(3―
ジクロロメチルシリルプロピル)カーボネートに
対して89.1%であつた。 実施例 3 ジアリルカーボネート(29.6g、0.2モル)、無
水ベンゼン(120ml)、白金黒(18mg)の混合物に
ジエトキシメチルシラン(33.5g)を滴下しなが
ら、磁気撹拌下に2時間加熱還流した。反応混合
物を加圧ろ過した後、水浴上30〜50℃で低沸点成
分を真空(約2mmHg)留去した後、残渣を2回
真空蒸留することにより沸点154℃/2mmHgの無
色透明な液体(61.5g)を得た。 このものについて種々のスペクトル測定を行な
い、実施例1で別途合成法を記載して得られたビ
ス(3―ジエトキシメチルシリルプロピル)カー
ボネートと同一であることを確認した。収率はジ
アルキルカーボネートに対して81.6%であつた。 実施例 4 ジエトキシメチルシラン(69.2g)のかわりに
ジメトキシメチルシラン(53.1g)を用いた以外
は実施例3と同様に行なつたところ、沸点129〜
131℃/2mmHgの無色透明な液体(28.4g)を得
た。 このものについて種々のスペクトル測定を行な
い、実施例2で別途合成法を記載して得られたビ
ス(3―ジメトキシメチルシリルプロピル)カー
ボネートと同一であることを確認した。収率はジ
アリルカーボネートに対して80.1%であつた。 参考例 本発明のビス(シリルプロピル)カーボネート
及び公知の各種の珪素含有カーボネート化合物を
それぞれ被膜形成剤として用い、該被膜形成剤の
保存安定性及び得られた被膜の耐擦傷性を評価し
た。 被膜を形成させるプラスチツク成形品として、
市販のポリメチルメタクリレート板状体を用い
た。まず、前処理としてポリメチルメタクリレー
ト板状体をメタノールで洗浄して充分に風乾し、
表面を清浄な状態とした。その後、本発明のビス
(シリルプロピル)カーボネート及び公知の各種
の珪素含有カーボネート合物を用いた下記組成の
被膜形成剤中に上記のポリメチルメタクリレート
板状体を浸漬し、室温で充分風乾した後、80℃で
3時間加熱硬化させて被膜を形成させた。 被膜形成剤は、各成分の合計濃度が加水分解及
び縮合反応後の反応生成物の濃度に換算して30重
量%になるように溶媒のイソプロピルアルコール
に溶解及び分散させ、次いで、アルコキシ基又は
ハロゲン原子の加水分解に必要な量の0.05規定塩
酸を室温で添加して1日放置熱成した後、硬化触
媒として酢酸ナトリウム/酢酸(1/10重量比)
を反応生成物の換算量に対して2重量%加えて調
製した。
In addition to the peak corresponding to [Formula], a peak considered to be due to methanol being desorbed from the peak (M) corresponding to the corresponding molecular weight, ie, a peak M-32, is observed. Similarly, unique peaks can be observed when R and R' are used in other combinations. (d) Determine the weight percent of each of carbon, hydrogen, and silicon by elemental analysis, and then subtract the sum of the weight percent of each recognized element from 100 to determine the weight percent of oxygen.
can be calculated, and therefore the compositional formula of the product can be determined. The bis(silylpropyl) carbonate of the present invention is a colorless, odorless, transparent liquid with a high boiling point, and will be specifically shown in the examples below, but as with general organic compounds, the larger the molecular weight, the higher the boiling point. There is a tendency to The bis(silylpropyl) carbonate of the present invention is well soluble in common organic solvents such as benzene, ether, hexane, chloroform, carbon tetrachloride, acetonitrile, and N,N-dimethylformamide. When the compound of the present invention is dissolved in an alcohol different from the alcohol corresponding to the alkoxy group represented by R′O, the alkoxy group gradually dissolves depending on the amount of alcohol serving as a solvent or depending on the conditions. It is common for all of the alkoxy groups to be converted to a different type of alkoxy group used as a solvent. Furthermore, when the carbonate represented by the above general formula is added to a water-containing solvent, an exothermic hydrolysis reaction occurs and the carbonate is converted into the corresponding polysilsesquioxane compound. In this case, compounds in which the moiety corresponding to R'O in the above general formula is a halogen atom tend to have a higher rate of hydrolysis reaction than the compounds of the present invention in which R'O is an alkoxy group. Further, the hydrolysis is greatly promoted by adding bases such as sodium hydroxide, potassium hydroxide, and ammonia, or acids such as hydrochloric acid, sulfuric acid, and acetic acid to the solvent. When the bis(silylpropyl) carbonate of the present invention is heated to 200°C or higher without a solvent or in an inert solvent, a decarboxylation reaction occurs continuously. The decarboxylation reaction tends to become more intense as the heating temperature becomes higher. Note that the decomposed product after the decarboxylation reaction is also generally a colorless and transparent liquid. The method for producing bis(silylpropyl) carbonate of the present invention is not particularly limited and may be obtained by any method. A typical manufacturing method that is generally suitably employed will be described below. That is, diallyl carbonate represented by the following formula and the general formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) By reacting with an alkyldialkoxysilane represented by the following in the presence of a catalyst, the desired target can be obtained in good yield. Bis(silylpropyl) carbonate can be obtained. The diallyl carbonate represented by the above formula is not limited to its production method, and for example, those obtained by known production methods can be used without particular limitation. Also, alkyldialkoxysilane has the general formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) The compound can be used without being limited to its manufacturing method. The catalyst used in the reaction is not particularly limited as long as it is a catalyst commonly used in so-called hydrosilylation reactions, but examples include chloroplatinic acid, potassium chloroplatinate, platinum black, Pt/ C,
Platinum compounds such as Pt/alumina, pt/silica, PtCl 2 (PPh 3 ) 2 ; PdCl 2 , PdCl 2 (PPh 3 ) 2 , PdCl 2
Palladium compounds such as (C 6 H 5 CN) 2 ; RhCl 3 ,
Rhodium compounds such as RhCl(PPh 3 ) 3 are suitable. Representative examples of the reaction between diallyl carbonate and alkyldialkoxysilane in the present invention will be described in detail in the Examples below. Although the above reaction can generally be carried out without a solvent, it is generally carried out in the presence of a solvent. As the solvent, any polar nonaqueous solvent that does not react with the raw materials or the catalyst can be used without particular limitation, and generally hydrocarbon solvents such as benzene, toluene, hexane, etc.; halogenated hydrocarbons such as chloroform, carbon tetrachloride, etc. Ether solvents such as dimethyl ether and diethyl ether are preferably used. Further, the reaction conditions are not particularly limited, but may vary depending on the type of raw material, the type of catalyst, the presence or absence of a solvent, etc., so it is preferable to select suitable conditions in advance and carry out the reaction. Generally, it is sufficient to select a temperature of -20 to 160°C for several tens of minutes to 40 hours. Further, since the reaction pressure proceeds sufficiently under atmospheric pressure, it is usually sufficient to carry out the reaction at normal pressure, but it is also possible to carry out the reaction under increased pressure or reduced pressure if necessary. In addition to being obtained by reacting diallyl carbonate and alkoxysilane according to the above reaction formula, the compound of the present invention can also be obtained by the following method. That is, the general formula (However, Y is a halogen atom, and R has 1 to 6 carbon atoms.
is an alkyl group. ) and the general formula R′OH (where R′ is the same or different type of carbon number 1 to 6)
is an alkyl group. ) in the presence or absence of a catalyst. In this case, generally the alkyl group in the above general formula may be either straight or branched as long as it has 1 to 6 carbon atoms. In addition, the catalyst in the above reaction is generally a base and can be used without particular limitation, especially ammonia,
1-3 lower alkylamines such as diethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, isobutylamine, n-amylamine, isoamylamine, triethylamine, di-7-butylamine;
Nitrogen-containing compounds such as aromatic amines such as aniline, pyridine, N,N-dimethylaniline, O-toluidine, m-toluidine, p-toluidine, benzylamine, α-phenylethylamine, and β-phenylethylamine are preferably used. used. Furthermore, as mentioned above, the compound of the present invention is
The lower the alkoxy group is, the more likely it is to be substituted with a higher alkoxy group. Therefore, by utilizing this property, the bis(silylpropyl) carbonate of the present invention containing a lower alkoxy group can be substituted with a higher alkoxy group. The desired bis(silylpropyl) carbonate containing an alkoxy group can be obtained by contacting it with an alcohol and continuously separating the lower alcohol produced by the substitution reaction by means such as fractional distillation. The bis(silylpropyl) carbonate of the present invention is a compound containing a carbonate group and silicon at both ends, as is clear from the general formula or from the description of the properties. Since the carbonate group is released as carbon dioxide gas by heating as described above, this property can be used as a blowing agent. Furthermore, since it has strong water repellency due to the silicon content mentioned above, it can also be used as a water repellent. Further, the bis(silylpropyl) carbonate of the present invention can be partially or completely hydrolyzed to form a strong transparent coating that is highly crosslinked. For example, inorganic materials such as glass, cement, and mortar; and organic materials such as paper, wood, cellulose, and plastics are applied to the surface of various types of workpieces and then hydrolyzed to make them transparent and strong. A coating can be formed. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 A mixture of bis(3-dichloromethylsilylpropyl) carbonate (37.2 g, 0.1 mol) and anhydrous benzene (50 ml) was cooled in a salt/ice cryogen bath and mixed with anhydrous ethanol (70 ml) with stirring. A mixture of anhydrous benzene (70ml) was slowly added dropwise. After the dropwise addition was completed, the mixture was stirred for 2 hours while continuing to cool. With further stirring, dry nitrogen gas was bubbled through the cooled solution to drive out most of the hydrogen chloride, and then dry ammonia gas was bubbled through until no more white precipitate of ammonium chloride formed. Excess ammonia gas was driven off by again bubbling dry nitrogen gas through the cooled solution. After removing the generated ammonium chloride by pressure filtration and further removing low-boiling components contained in the filtrate by distillation, the residue was vacuum distilled to a boiling point of 154℃/
A colorless transparent liquid (35.1 g) with a pressure of 2 mmHg was obtained. When the infrared absorption spectrum was measured, a strong absorption derived from the carbonyl bond of the carbonate group was observed at 1745 cm -1 . Its elemental analysis value is C48.97%,
The H content was 9.57%, which matched the calculated values of C 49.72% and H 9.33% for C 17 H 38 O 7 Si 2 (410.65). In addition, when the mass spectrum was measured, there was a peak at m/e364 that is considered to be the desorption of ethanol from the molecular ion peak (M) corresponding to the molecular weight, that is, M
-46 peaks were observed. Further, a peak corresponding to (C 2 H 5 O) 2 CH 3 SiCH 2 CH 2 CH 2 was observed at m/e175, and a peak corresponding to (C 2 H 5 O) 2 CH 3 Si was observed at m/e133. Furthermore, 13 C−nmr was measured,
The results of analyzing the chemical shift values of each observed peak were as follows. The above results revealed that the isolated product was bis(3-diethoxymethylsilylpropyl) carbonate. The yield was 85.5% based on the bis(3-dichloromethylsilylpropyl) carbonate used. Example 2 The same procedure as Example 1 was carried out except that anhydrous methanol was used instead of anhydrous ethanol, and the boiling point was
Colorless and transparent liquid (31.6g) at 128-131℃/2mmHg
I got it. The infrared absorption spectrum was measured and it was 1745 cm.
Absorption based on the carbonyl bond of the carbonate group was observed in -1 . Its elemental analysis value is C44.31%,
The H8.54% was in good agreement with the calculated values of C44.04 % and H8.53% for C13H30O7Si2 ( 354.55 ). Also, when we measured the mass spectrum, we found that m/
The molecular ion peak corresponding to the molecular weight (M
), a peak considered to be due to the desorption of methanol, ie, a peak of M-32, was observed. Also,
A strong peak corresponding to (CH 3 O) 2 CH 3 SiCH 2 CH 2 CH 2 M was observed at m/e147, and a strong peak corresponding to (CH 3 O) 2 CH 3 SiM was observed at m/e105. Furthermore, the results of 13 C-nmr measurement and analysis of the chemical shift values of each observed peak were as follows. The above results revealed that the isolated product was bis(3-dimethoxymethylsilylpropyl) carbonate. The yield is the bis(3-
It was 89.1% based on dichloromethylsilylpropyl) carbonate. Example 3 Diethoxymethylsilane (33.5 g) was added dropwise to a mixture of diallyl carbonate (29.6 g, 0.2 mol), anhydrous benzene (120 ml), and platinum black (18 mg) while heating under reflux for 2 hours under magnetic stirring. After filtering the reaction mixture under pressure, low-boiling components were distilled off under vacuum (approximately 2 mmHg) on a water bath at 30-50°C, and the residue was vacuum distilled twice to obtain a colorless transparent liquid with a boiling point of 154°C/2 mmHg ( 61.5g) was obtained. Various spectral measurements were performed on this product, and it was confirmed that it was the same as bis(3-diethoxymethylsilylpropyl) carbonate obtained by separately describing the synthesis method in Example 1. The yield was 81.6% based on dialkyl carbonate. Example 4 The same procedure as Example 3 was performed except that dimethoxymethylsilane (53.1g) was used instead of diethoxymethylsilane (69.2g), and the boiling point was 129~
A colorless and transparent liquid (28.4 g) was obtained at 131° C./2 mmHg. Various spectral measurements were performed on this product, and it was confirmed that it was the same as bis(3-dimethoxymethylsilylpropyl) carbonate obtained by separately describing the synthesis method in Example 2. The yield was 80.1% based on diallyl carbonate. Reference Example The bis(silylpropyl) carbonate of the present invention and various known silicon-containing carbonate compounds were used as film-forming agents, and the storage stability of the film-forming agents and the scratch resistance of the resulting films were evaluated. As a plastic molded product that forms a film,
A commercially available polymethyl methacrylate plate was used. First, as a pretreatment, the polymethyl methacrylate plate was washed with methanol and thoroughly air-dried.
The surface was kept clean. Thereafter, the above-mentioned polymethyl methacrylate plate was immersed in a film forming agent having the following composition using the bis(silylpropyl) carbonate of the present invention and various known silicon-containing carbonate compounds, and was thoroughly air-dried at room temperature. A film was formed by heating and curing at 80°C for 3 hours. The film forming agent is dissolved and dispersed in isopropyl alcohol as a solvent so that the total concentration of each component is 30% by weight in terms of the concentration of the reaction product after hydrolysis and condensation reaction, and then the alkoxy group or halogen Add the amount of 0.05N hydrochloric acid necessary for atomic hydrolysis at room temperature, heat it for one day, and then add sodium acetate/acetic acid (1/10 weight ratio) as a curing catalyst.
was added in an amount of 2% by weight based on the equivalent amount of the reaction product.

【表】 得られた被膜の厚さは、いずれも5〜10μmで
あつた。 各被膜形成剤から得た被膜の評価結果を第1表
に示した。 尚、被膜の性能評価は下記の方法により実施し
た。 (1) 耐擦傷性試験 福田機械工業(株)製耐擦傷性試験器に、#0000
のスチールウールを取り付け、1Kg荷重下試験
片表面を10回往復させた後の表面の傷つき程度
を目視により観察し、全く傷つかなかつた状態
をA、そしてポリメチルメタリレート生地の非
常に傷つき易い状態をEとして、A〜Eの5段
階にて評価した。 (2) 保存安定性試験 各被膜形成剤を40℃に保つた温水槽に放置
し、下記の基準で評価した。 20日以上粘度変化のないものをA、1週間で
ゲル化したものをB、3日以内でゲル化したも
のをCとして3段階にて表示した。
[Table] The thickness of the obtained coatings was 5 to 10 μm in all cases. Table 1 shows the evaluation results of the films obtained from each film forming agent. The performance of the coating was evaluated by the following method. (1) Scratch resistance test #0000 in a scratch resistance tester manufactured by Fukuda Machinery Co., Ltd.
After attaching steel wool and reciprocating the surface of the specimen 10 times under a load of 1 kg, the degree of damage to the surface was visually observed. was evaluated in five stages from A to E. (2) Storage stability test Each film-forming agent was left in a hot water tank kept at 40°C and evaluated according to the following criteria. The results were classified into three levels: A for those with no change in viscosity for 20 days or more, B for those that gelled in one week, and C for those that gelled within 3 days.

【表】 但し、No.1〜4は比較参考例である。
[Table] However, Nos. 1 to 4 are comparative reference examples.

Claims (1)

【特許請求の範囲】 1 一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。) で示されるビス(シリルプロピル)カーボネー
ト。 2 ジアリルカーボネートと一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。) で示されるシラン化合物とを触媒の存在下に反応
させることを特徴とする一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。) で示されるビス(シリルプロピル)カーボネート
の製造方法。 3 一般式 (但し、Yはハロゲン原子で、Rは炭素数1〜6
のアルキル基である。) で示されるビス(ハロシリルプロピル)カーボネ
ートと一般式 R′OH (但し、R′はRと同種もしくは異種の炭素数1
〜6のアルキル基である。) で示されるアルコールとを触媒の存在下又は不存
在下に反応させることを特徴とする一般式 (但し、RおよびR′は同種もしくは異種の炭素
数1〜6のアルキル基である。) で示されるビス(シリルプロピル)カーボネート
の製造方法。
[Claims] 1. General formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) Bis(silylpropyl) carbonate represented by: 2 Diallyl carbonate and general formula (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) A general formula characterized by reacting a silane compound represented by the following in the presence of a catalyst: (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) A method for producing bis(silylpropyl) carbonate represented by: 3 General formula (However, Y is a halogen atom, and R has 1 to 6 carbon atoms.
is an alkyl group. ) Bis(halosilylpropyl) carbonate with the general formula R′OH (where R′ is the same or different type of carbon number 1)
~6 alkyl group. ) is reacted with the alcohol represented by the following in the presence or absence of a catalyst: (However, R and R' are the same or different alkyl groups having 1 to 6 carbon atoms.) A method for producing bis(silylpropyl) carbonate represented by:
JP58017409A 1983-02-07 1983-02-07 Bis(silylpropyl) carbonate and its preparation Granted JPS59144791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017409A JPS59144791A (en) 1983-02-07 1983-02-07 Bis(silylpropyl) carbonate and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017409A JPS59144791A (en) 1983-02-07 1983-02-07 Bis(silylpropyl) carbonate and its preparation

Publications (2)

Publication Number Publication Date
JPS59144791A JPS59144791A (en) 1984-08-18
JPH0259156B2 true JPH0259156B2 (en) 1990-12-11

Family

ID=11943199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017409A Granted JPS59144791A (en) 1983-02-07 1983-02-07 Bis(silylpropyl) carbonate and its preparation

Country Status (1)

Country Link
JP (1) JPS59144791A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZH. OBSHCH. KHIM.=1973 *

Also Published As

Publication number Publication date
JPS59144791A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
US4996344A (en) Fluorine-containing organosilicon compound and process for preparing the same
US4584393A (en) Bis(aminoalkyl)disiloxanes and method and intermediates for their preparation
US5300613A (en) Fluorine-containing organosilicon compounds
JP3414134B2 (en) N, N-bis (trimethylsilyl) aminopropylsilane compound and method for producing the same
US4631346A (en) Silyl carbamates and their use in the preparation of bis (aminoalkyl) disiloxanes
US4294975A (en) Hydroalkenyloxysilanes
JP4332708B2 (en) Chlorosilane compound having bissilylamino group and method for producing the same, and method for producing organooxysilane compound having bissilylamino group
JPH0259156B2 (en)
JP3826959B2 (en) Organosilicon compound and method for producing the same
US5081260A (en) 3-(2-oxo-1-pyrrolidinyl)-propylsilanes and method for preparing the silane compounds
JP3666551B2 (en) Process for producing bis (3-aminopropyldimethylsilyl) benzene compound
JPS6340437B2 (en)
EP0687680B1 (en) Organosilicon compound and process for its production
JPH01275586A (en) Fluorine-containing silane coupling agent and production thereof
JPS58121292A (en) Bis(silylpropyl) carbonate and its preparation
JP2000053686A (en) Fluoroalkylalkoxysilane and its production
JPH036154B2 (en)
JPS6377886A (en) Organosilicon compound
US5329039A (en) Organosilicon compound
JP3589740B2 (en) Fullerene-containing compound, resin composition and cured product thereof
JPS62149688A (en) Chloropropenyldialkoxysilane
JPS62298594A (en) Organic silicon compound
JPH0356491A (en) Fluorine-containing sulfonamidosilane and production thereof
JP2980250B2 (en) Method for producing 3- (2-oxo-1-pyrrolidinyl) propylsilane compound
CA1274532A (en) Silyl carbamates and their use in the preparation of bis(aminoalkyl) disiloxanes