JP3769152B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP3769152B2
JP3769152B2 JP24960399A JP24960399A JP3769152B2 JP 3769152 B2 JP3769152 B2 JP 3769152B2 JP 24960399 A JP24960399 A JP 24960399A JP 24960399 A JP24960399 A JP 24960399A JP 3769152 B2 JP3769152 B2 JP 3769152B2
Authority
JP
Japan
Prior art keywords
powder
conductive paste
conductive
resin
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24960399A
Other languages
Japanese (ja)
Other versions
JP2001076534A (en
Inventor
弘憲 賤機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP24960399A priority Critical patent/JP3769152B2/en
Publication of JP2001076534A publication Critical patent/JP2001076534A/en
Application granted granted Critical
Publication of JP3769152B2 publication Critical patent/JP3769152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste excellent in ultraviolet ray resistance and weather resistance and having high device bonding reliability in outdoor use or around a photo-semiconductor element. SOLUTION: This conductive paste comprises an organic binder, a solvent or/and a monomer, and conductive powder. The conductive paste including silver powder as the conductive powder contains 0.1-10% of a compound including one or more benzotriazole skeletons in a molecule and having a methacryloyl group or a hydroxyethyl group as a functional group, e.g. a compound of the formula against a resin solid, or the above compound is copolymerized with a monomer reacted with the functional group, e.g. methyl methacrylate, in advance and contained, or it is effective to contain 5-20 wt.% of titanium oxide powder as part of the conductive powder against the whole conductive powder.

Description

【0001】
【発明の属する技術分野】
本発明は、特に化合物半導体チップをマウントする半導体装置のアッセンブリーや各種部品類の接着等に使用するもので、耐紫外線、耐候性に優れた導電性ペーストに関する。
【0002】
【従来の技術】
一般に導電性ペーストは、エポキシ樹脂等の熱硬化性樹脂結合剤(バインダー)と導電性粉末とから構成され、各種電子部品の接着、コーティング、印刷による回路形成等に適用されている。熱硬化性樹脂である結合剤は、硬化剤により熱硬化して有機溶剤に不溶となり、また、耐熱性、耐湿性、耐候性等が付与される。
【0003】
また、半導体装置において、金属薄板(リードフレーム)上の所定部分にLED、IC、LSI等の化合物半導体チップを接続する工程は、素子の長期信頼性に影響を与える重要な工程の一つである。従来からこの接続方法として、低融点の合金(半田)を用いてろう付けをする方法、導電性ペースト(接着剤)を使用する方法等がある。
【0004】
【発明が解決しようとする課題】
しかし半田を使用する方法は、一部実用化されているが半田や半田ボールが飛散して電極等に付着し、腐食断線の原因となる可能性が指摘されている。一方、樹脂を結合剤とする導電性ペーストの場合は、通常銀粉末を配合したエポキシ樹脂が用いられ、約15年程前から一部実用化されてきた。しかし、信頼性の面でシリコンチップにおけるAu−Si共晶合金を生成させる共晶法に比較して満足すべきものが得られなかった。
【0005】
これら樹脂ペーストを使用する場合は、半田法に比べて耐熱性に優れる等の長所を有するが、その反面、樹脂やその硬化剤が半導体素子接着用としてつくられたものでないため、アルミニウム電極の腐食を促進し断線不良の原因となる場合が多く、素子の信頼性はAu−Si共晶法に劣っていた。
【0006】
さらに近年の電子機器の軽薄短小化に伴い、これらは屋外に設置されて使用されることが多くなり、これに伴い電子機器に使用される導電性ペースト材料にも耐候性が強く求められるようになった。加えて発光波長450〜500nm付近の光半導体素子が開発されたことにより、このアッセンブリ工程や光半導体素子周辺で使用される導電性ペーストには、従来以上に耐紫外線性が強く要求されるようになった。
【0007】
しかし、従来の導電性ペーストは、そのほとんどが通常のエポキシ樹脂をベースとしているため、耐候性には劣っていた。耐候性を改善するため、脂環式エポキシ樹脂や水添型エポキシ樹脂を用いることもあるが、これらはアミンやフェノール系硬化剤との反応性が劣るので、酸無水物系硬化剤を使用することになる。この場合、一液型の配合ではポットライフが短くなり、作業性の点で問題があった。加えて脂環式エポキシ樹脂硬化物は脆いものが多く、接着面積の小さな半導体チップでは十分な接着強度が出にくく、かつクラックの発生も懸念された。
【0008】
また、エポキシ樹脂より耐候性に優れているアクリルやポリウレタン系樹脂では、逆に耐熱性が低いため、アッセンブリ工程や実装工程中の熱履歴によるチップ剥離が問題となる可能性が高かった。従って、物理的、電気的な接合信頼性の向上を目指して、耐紫外線性、耐候性の強い導電性ペーストの開発が強く要望されていた。
【0009】
本発明は、上記の事情に鑑みてなされたもので、従来の導電性ペーストの性能を低下することなく、耐紫外線性、耐候性に優れた導電性ペーストを提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明者は、上記の目的を達成しようと鋭意研究を重ねた結果、後述する組成のペーストを用いることにとって、上記の目的を達成できることを見いだし、本発明を完成したものである。
【0011】
即ち、本発明は、少なくとも有機バインダー、溶剤又は/及びモノマー、並びに導電性粉末からなるとともに、該導電性粉末の一部として銀系粉末を含む導電性ペーストにおいて、分子内にベンゾトリアゾール骨格を1個以上含み、かつ官能基としてメタクリロイル基をもつ化合物を、この官能基と反応するモノマーとあらかじめ共重合させて含有させるという導電性ペーストであり、さらにまた、導電性粉末の一部として、酸化チタン粉末を該導電性粉末全体に対し5〜20重量%の割合に含有させるという導電性ペーストである。
【0012】
以下、本発明を詳細に説明する。
【0013】
本発明に用いる有機バインダーとしては、特に種類に制限はなく、また熱硬化系でも熱可塑系でもよく、従来より知られているエポキシ系、フェノール系、メラミン系、セルロース系、アクリル系、ポリイミド系およびこれらの混合変性樹脂系などが用いられる。変性樹脂は単に溶解混合してもよいし、加熱反応により部分的に結合させたものでもよい。また反応に必要であれば硬化触媒を使用することもできる。
【0014】
耐熱性の低い有機バインダーでは、高温高湿条件下、例えば、121℃,2気圧でのプレッシャークッカーテストのような条件下では導電性ペースト硬化皮膜が劣化する。それ故、このような厳しい条件下での信頼性を要求される場合には、耐熱性の高いバインダーを選ぶ必要がある。例えば、ポリイミド変性樹脂や平均エポキシ基数3以上のノボラックエポキシ樹脂をフェノール樹脂で硬化させる系などが挙げられる。
【0015】
また、ペースト硬化物の耐候性を向上させるため、耐候性に強い有機バインダーとして、脂環式エポキシ樹脂、水添型エポキシ樹脂、アクリル系樹脂、ポリウレタン系樹脂などを単独もしくは前述した樹脂等の2種類以上と混合変性して使用すると、なお一層好ましい。この場合は、要求される特性に応じて、硬化物の耐熱性、耐湿性を調整する必要がある。
【0016】
これらの樹脂はペースト製造前に、あらかじめ溶剤やモノマーで溶解混合させておくことが望ましい。ここで用いる溶剤としては、これらの樹脂を溶解することができるものであり、例えば、ジオキサン、ヘキサン、トルエン、メチルセロソルブ、シクロヘキサン、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトールアセテート、ジエチレングリコールジメチルエーテル、ジアセトンアルコール、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン等が挙げられ、これらは単独又は2種以上混合して使用することができる。また、モノマーとしては、n−ブチルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p−sec−ブチルフェニルグリシジルエーテル、グリシジルメタクリレート、t−ブチルフェニルグリシジルエーテル、ジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,6−ヘキサンジオールグリシジルエーテル等が挙げられ、これらは単独又は2種以上混合して使用することができる。また、溶剤とモノマーとを混合して使用することもできる。溶剤を使用する場合、硬化温度や硬化時間等の条件に合わせ、沸点をよく検討して溶剤を選択する必要がある。
【0017】
本発明に用いる導電性粉末としては、例えば銀粉末、表面に銀層を有する粉末、銅粉末、ニッケル粉末、カーボン等が挙げられ、これらは単独又は2種以上混合して使用することができる。導電性粉末の配合割合は、特に制限されるものではないが電気特性を重視する場合には、導電性粉末/(変性樹脂の固形分+導電性粉末)の割合が70〜95重量%の範囲であることが望ましい。
【0018】
本発明に用いるベンゾトリアゾール骨格を含む化合物は、紫外線吸収剤として作用する。従来から使用されている低分子の紫外線吸収剤では、樹脂との相溶性が悪いため、ブリードにより添加部数が減少してしまったり、加熱加工時の蒸散によるロス、紫外線吸収剤の低い溶解性に起因する添加部数の制限、温水・酸・アルカリ・アルコール・油への溶出などの問題から、本来もっている紫外線吸収剤の特性を十分発揮することができなかった。
【0019】
そこで、このような問題を解決し紫外線吸収効果を高めるためには、従来の低分子タイプより、反応型の高分子タイプの紫外線吸収剤を使用することが好ましい。具体的には、ベンゾトリアゾールを骨格に、官能基としてメタクリロイル基を導入した、次式に示す2−(2´−ヒドロキシ−5´メタアクリロキシエチルフェニル)−2H−ベンゾトリアゾール(大塚化学(株)社製、商品名)や、
【化1】

Figure 0003769152
官能基にヒドロキシエチル基を導入した、次式に示す化合物(大塚化学(株)社製、商品名)
【化2】
Figure 0003769152
が挙げられる。
【0020】
さらに高分子タイプの紫外線吸収剤は、そのまま配合してもよいが、その官能基がベース樹脂との反応性に乏しい場合には、あらかじめ官能基と反応するモノマーで共重合ポリマーをつくり、それを配合しても同様の効果が得られる。
【0021】
その配合割合は、樹脂固形分に対して0.1〜10重量部であることが望ましい。配合量が0.1重量部未満では、紫外線による樹脂の劣化を抑える効果がなくなる。また、10重量部を超えると、ペーストの硬化物特性が低下するため、信頼性に欠け好ましくない。
【0022】
本発明に用いる酸化チタン粉末は、平均粒径5μm以下が望ましい。5μmを超えるとペースト性状や作業性が悪くなり硬化物の塗膜表面も粗くなる。その配合量範囲は、導電性ペースト中の全導電性粉末に対して5〜20重量%であり、特に好ましくは10〜15重量%である。酸化チタン粉末の配合量が5重量%未満では、紫外線防止効果が低下し、また20重量%を超えると、硬化物塗膜が脆く弱くなるとともに、基材への密着性、導電性が低下し、塗料や接着剤としての性能に欠けるようになる。また、酸化チタンは一般に顔料として使用される結晶形としてルチル型とアナターゼ型があるが、耐紫外線性を向上させるためには、紫外線吸収量の多いルチル型を用いる方が好ましい。これらは、単独又は2種以上混合して使用することができる。
【0023】
本発明の導電性ペーストは、上述した変性樹脂、溶剤モノマー又はこれらの混合物、および導電性粉末を必須成分とするが、本発明の目的に反しない限り、また必要に応じて、硬化触媒、消泡剤、カップリング剤、その他の添加剤を配合することができる。この導電性ペーストは、常法に従い上述した各成分を十分混合した後、更に例えばディスパース、ニーダー、三本ロールミル等による混練処理を行い、その後減圧脱泡して製造することができる。こうして製造した導電性ペーストは、各種半導体素子・電子部品の接着、コーティング等に使用することができる。
【0024】
【作用】
本発明の導電性ペーストは、ベンゾトリアゾール系紫外線吸収剤に官能基として末端アクリル基やヒドロキシエチル基をもたせることにより、紫外線吸収剤とベース樹脂とを反応させたり、あるいは末端アクリル基をメタクリル酸メチル系やスチレン系モノマーであらかじめ共重合させた高分子量体として添加することで、従来の紫外線吸収剤の欠点である樹脂との分散性、ブリードアウト、硬化時の熱によるロスなどを解決し、紫外線防止効果を高めたことで目的を達成したものである。加えて、紫外線吸収効果のある酸化チタン粉末を併用することによって、紫外線吸収効果はさらに高めることが可能である。
【0025】
この手法により、ベースとなる樹脂の耐候性を考慮しなくても、耐候性、耐紫外線性に優れた導電性ペーストを得ることができる。
【0026】
【発明の実施形態】
次に本発明を実施例によって説明するが、本発明はこれらの実施例によって限定されるものではない。以下の実施例および比較例において「部」とは特に説明のない限り「重量部」を意味する。
【0027】
参考例1
クレゾールノボラック型エポキシ樹脂のEOCN103S(大日本インキ化学工業社製、商品名)80部、ビスフェノールA型エポキシ樹脂のエピコート#1007(油化シェルエポキシ社製、商品名)20部に対し、硬化剤としてフェノール樹脂BRG558(昭和高分子社製、商品名)40部を、ジエチレングリコールジエチルエーテル140部中で85℃,1時間溶解反応を行い、粘稠な樹脂を得た。この樹脂28部に、硬化触媒としてイミダゾールの2−エチル−4−メチルイミダゾール0.2部、添加剤0.8部、平均粒径4μmのリン片状銀粉62部、平均粒径1μmのルチル型酸化チタン粉末7部および前述の化2の化合物1部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して導電性ペーストを製造した。
【0028】
実施例1
エポキシ樹脂のYL983U(油化シェルエポキシ社製、商品名)5.5部、脂環式エポキシ樹脂のセロキサイドの2021(ダイセル化学工業社製、商品名)7部、同樹脂のGT302(ダイセル化学工業社製、商品名)2部、エポキシ樹脂希釈剤のPG207S(日本化薬社製、商品名)3.5部、カチオン系触媒のSI−80L(三新化学社製、商品名)0.3部、添加剤0.7部、平均粒径4μmのリン片状銀粉70部、平均粒径1μmのルチル型酸化チタン粉末8部および次式に示す化3の共重合体3部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して導電性ペーストを製造した。化3の共重合体は、前述の化1の化合物70部とメタクリル酸メチル30部の共重合体である。
【0029】
【化3】
Figure 0003769152
(但し、式中、m、nは1以上の整数を表す)
比較例
参考例1の配合において、ルチル型酸化チタン粉末と化2の化合物を配合せずに他はすべて参考例1と同様にして導電性ペーストを製造した。
【0030】
参考例、実施例および比較例で得た導電性ペーストについて、リードフレーム(銅系)と2×2mmのシリコンチップとの接着強度(常温,熱時)、体積抵抗率を、耐候性加速試験の前後で評価した。その結果を表1に示したが、いずれも本発明が優れており、本発明の顕著な効果が認られた。
【0031】
【表1】
Figure 0003769152
*1:2mm×2mmチップ(高さ300μm)を、リードフレーム(銅系、ベッド面は銀メッキ)上に、導電性ペーストを用いて接着し、150℃×1hの温度で硬化した。硬化後、テンションゲージを用いて剪断方向の接着強度を測定した。熱時接着強度は250℃のヒートブロック上で測定した。
【0032】
*2:サンシャインウエザオメーターを使用して加速した。
【0033】
*3:ガラス板の上に導電性ペーストを5mm×50mmのサイズにスキージ塗布し、所定の(150℃×1hの温度)硬化条件で硬化させた。硬化後、ペースト塗膜両端間の抵抗値と塗膜厚を測定し、体積抵抗率に換算した。
【0034】
【発明の効果】
以上の説明および表1から明らかなように、本発明の導電性ペーストは、耐紫外線性、耐候性に優れており、この導電性ペーストを使用することによって屋外使用や光半導体素子周辺でのデバイスの物理的、電気的な接合信頼性の向上に対応でき、工業上大変有益なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive paste that is particularly excellent in UV resistance and weather resistance, and is used for assembling a semiconductor device on which a compound semiconductor chip is mounted, bonding various components, and the like.
[0002]
[Prior art]
In general, a conductive paste is composed of a thermosetting resin binder (binder) such as an epoxy resin and a conductive powder, and is applied to circuit formation by bonding, coating, and printing of various electronic components. The binder, which is a thermosetting resin, is thermally cured by the curing agent and becomes insoluble in the organic solvent, and is given heat resistance, moisture resistance, weather resistance, and the like.
[0003]
In a semiconductor device, the step of connecting a compound semiconductor chip such as an LED, IC, LSI or the like to a predetermined portion on a thin metal plate (lead frame) is one of the important steps affecting the long-term reliability of the element. . Conventionally, as this connection method, there are a method of brazing using a low melting point alloy (solder), a method of using a conductive paste (adhesive), and the like.
[0004]
[Problems to be solved by the invention]
However, some methods using solder have been put to practical use, but it has been pointed out that solder and solder balls may scatter and adhere to electrodes and the like, leading to corrosion disconnection. On the other hand, in the case of a conductive paste using a resin as a binder, an epoxy resin containing a silver powder is usually used and has been put into practical use for about 15 years. However, in terms of reliability, a satisfactory one was not obtained as compared with the eutectic method for producing an Au—Si eutectic alloy in a silicon chip.
[0005]
When these resin pastes are used, they have advantages such as excellent heat resistance compared to the solder method, but on the other hand, since the resin and its curing agent are not made for bonding semiconductor elements, corrosion of aluminum electrodes As a result, the reliability of the device was inferior to that of the Au—Si eutectic method.
[0006]
As electronic devices are becoming lighter, thinner and shorter in recent years, these devices are often installed outdoors, and as a result, the weather resistance of conductive paste materials used in electronic devices is also strongly required. became. In addition, the development of an optical semiconductor device having an emission wavelength of 450 to 500 nm has made it necessary for the conductive paste used in the assembly process and the periphery of the optical semiconductor device to have higher UV resistance than ever before. became.
[0007]
However, since most of the conventional conductive pastes are based on ordinary epoxy resins, they have poor weather resistance. In order to improve the weather resistance, alicyclic epoxy resins and hydrogenated epoxy resins may be used, but these have poor reactivity with amines and phenolic curing agents, so acid anhydride curing agents are used. It will be. In this case, the pot life is shortened with the one-component formulation, and there is a problem in terms of workability. In addition, there are many brittle alicyclic epoxy resin cured products, and it is difficult to obtain sufficient adhesive strength with a semiconductor chip having a small adhesion area, and there is also concern about the occurrence of cracks.
[0008]
On the other hand, acrylic and polyurethane resins, which have better weather resistance than epoxy resins, have low heat resistance. Therefore, chip peeling due to thermal history during the assembly process and mounting process is likely to be a problem. Accordingly, there has been a strong demand for the development of a conductive paste having high UV resistance and weather resistance in order to improve physical and electrical bonding reliability.
[0009]
This invention is made | formed in view of said situation, It aims at providing the conductive paste excellent in ultraviolet-ray resistance and a weather resistance, without reducing the performance of the conventional conductive paste.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by using a paste having the composition described later, and has completed the present invention.
[0011]
That is, the present invention is a conductive paste comprising at least an organic binder, a solvent or / and a monomer, and a conductive powder, and a silver-based powder as a part of the conductive powder. It is a conductive paste containing a compound containing at least one and having a methacryloyl group as a functional group by copolymerizing with a monomer that reacts with the functional group in advance , and as a part of the conductive powder, titanium oxide This is a conductive paste in which the powder is contained in a proportion of 5 to 20% by weight with respect to the entire conductive powder.
[0012]
Hereinafter, the present invention will be described in detail.
[0013]
The organic binder used in the present invention is not particularly limited, and may be a thermosetting type or a thermoplastic type. Conventionally known epoxy type, phenol type, melamine type, cellulose type, acrylic type, polyimide type These mixed modified resin systems are also used. The modified resin may be simply dissolved and mixed, or may be partially bonded by a heating reaction. A curing catalyst can also be used if necessary for the reaction.
[0014]
With an organic binder having low heat resistance, the cured conductive paste film deteriorates under high temperature and high humidity conditions, such as a pressure cooker test at 121 ° C. and 2 atm. Therefore, when reliability under such severe conditions is required, it is necessary to select a binder having high heat resistance. For example, a system in which a polyimide-modified resin or a novolak epoxy resin having an average epoxy group number of 3 or more is cured with a phenol resin can be used.
[0015]
In addition, in order to improve the weather resistance of the cured paste, an alicyclic epoxy resin, a hydrogenated epoxy resin, an acrylic resin, a polyurethane resin, or the like as an organic binder having a strong weather resistance is used alone or as a resin described above. It is even more preferable that it is mixed and modified with more than one type. In this case, it is necessary to adjust the heat resistance and moisture resistance of the cured product according to the required characteristics.
[0016]
These resins are desirably dissolved and mixed in advance with a solvent or a monomer before the paste is produced. As the solvent used here, those resins can be dissolved, for example, dioxane, hexane, toluene, methyl cellosolve, cyclohexane, butyl cellosolve, butyl cellosolve acetate, butyl carbitol acetate, diethylene glycol dimethyl ether, diacetone alcohol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone and the like can be mentioned, and these can be used alone or in combination. Moreover, as a monomer, n-butyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, glycidyl methacrylate, t-butylphenyl Examples include glycidyl ether, diglycidyl ether, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, butanediol diglycidyl ether, trimethylolpropane triglycidyl ether, and 1,6-hexanediol glycidyl ether. These can be used alone or in admixture of two or more. Moreover, a solvent and a monomer can be mixed and used. When using a solvent, it is necessary to select the solvent by carefully examining the boiling point according to the conditions such as the curing temperature and the curing time.
[0017]
Examples of the conductive powder used in the present invention include silver powder, powder having a silver layer on the surface, copper powder, nickel powder, carbon and the like, and these can be used alone or in combination. The blending ratio of the conductive powder is not particularly limited, but when electric characteristics are important, the ratio of conductive powder / (modified resin solid content + conductive powder) is in the range of 70 to 95% by weight. It is desirable that
[0018]
The compound containing a benzotriazole skeleton used in the present invention acts as an ultraviolet absorber. Conventionally used low molecular weight UV absorbers have poor compatibility with resins, so the number of added parts decreases due to bleeding, loss due to transpiration during heat processing, and low UV absorber solubility. Due to problems such as limitation of the number of added parts and elution into warm water, acid, alkali, alcohol, and oil, the characteristics of the inherent ultraviolet absorber could not be fully exhibited.
[0019]
Therefore, in order to solve such problems and enhance the ultraviolet absorption effect, it is preferable to use a reactive polymer type ultraviolet absorber rather than a conventional low molecular type. Specifically, 2- (2′-hydroxy-5′methacryloxyethylphenyl) -2H-benzotriazole (Otsuka Chemical Co., Ltd.) represented by the following formula, in which a methacryloyl group is introduced as a functional group using benzotriazole as a skeleton. ), Product name),
[Chemical 1]
Figure 0003769152
A compound represented by the following formula in which a hydroxyethyl group is introduced as a functional group (trade name, manufactured by Otsuka Chemical Co., Ltd.)
[Chemical 2]
Figure 0003769152
Is mentioned.
[0020]
In addition, polymer type UV absorbers may be blended as they are, but if their functional groups are poorly reactive with the base resin, a copolymer is made in advance with monomers that react with the functional groups. The same effect can be obtained even if blended.
[0021]
The blending ratio is desirably 0.1 to 10 parts by weight with respect to the resin solid content. If the blending amount is less than 0.1 parts by weight, the effect of suppressing deterioration of the resin due to ultraviolet rays is lost. On the other hand, when the amount exceeds 10 parts by weight, the cured product characteristics of the paste are deteriorated, so that the reliability is not preferred.
[0022]
The titanium oxide powder used in the present invention preferably has an average particle size of 5 μm or less. If it exceeds 5 μm, the paste properties and workability will deteriorate, and the surface of the cured film will also become rough. The blending amount range is 5 to 20% by weight, particularly preferably 10 to 15% by weight, based on the total conductive powder in the conductive paste. When the blending amount of the titanium oxide powder is less than 5% by weight, the effect of preventing ultraviolet rays decreases. When the blending amount exceeds 20% by weight, the cured coating film becomes brittle and weak, and the adhesion to the substrate and the conductivity decrease. , Performance as a paint or adhesive will be lacking. Titanium oxide generally has a rutile type and an anatase type as a crystal form used as a pigment. In order to improve the ultraviolet resistance, it is preferable to use a rutile type having a large ultraviolet absorption. These can be used individually or in mixture of 2 or more types.
[0023]
The conductive paste of the present invention contains the above-mentioned modified resin, solvent monomer or mixture thereof, and conductive powder as essential components. However, unless it is contrary to the object of the present invention, a curing catalyst, Foaming agents, coupling agents, and other additives can be blended. This conductive paste can be produced by sufficiently mixing the above-described components according to a conventional method, and further performing a kneading process using, for example, a disperser, a kneader, a three-roll mill, etc., and then degassing under reduced pressure. The conductive paste thus produced can be used for bonding, coating, etc. of various semiconductor elements and electronic components.
[0024]
[Action]
The conductive paste of the present invention has a terminal acryl group or a hydroxyethyl group as a functional group in the benzotriazole-based UV absorber to react the UV absorber with the base resin, or the terminal acrylic group is converted to methyl methacrylate. Addition as a high molecular weight copolymer pre-copolymerized with styrene and styrene monomers solves the disadvantages of conventional UV absorbers such as dispersibility with resin, bleed-out, and heat loss during curing. The purpose was achieved by increasing the prevention effect. In addition, the ultraviolet absorption effect can be further enhanced by using a titanium oxide powder having an ultraviolet absorption effect in combination.
[0025]
By this method, a conductive paste having excellent weather resistance and ultraviolet resistance can be obtained without considering the weather resistance of the base resin.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Next, although an Example demonstrates this invention, this invention is not limited by these Examples. In the following examples and comparative examples, “parts” means “parts by weight” unless otherwise specified.
[0027]
Reference example 1
Curing agent for 80 parts of cresol novolac type epoxy resin EOCN103S (trade name, manufactured by Dainippon Ink and Chemicals, Inc.) and 20 parts of bisphenol A type epoxy resin Epicoat # 1007 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) 40 parts of phenol resin BRG558 (trade name, manufactured by Showa Polymer Co., Ltd.) was dissolved in 140 parts of diethylene glycol diethyl ether at 85 ° C. for 1 hour to obtain a viscous resin. To 28 parts of this resin, 0.2 part of imidazole 2-ethyl-4-methylimidazole as a curing catalyst, 0.8 part of additive, 62 parts of flaky silver powder with an average particle diameter of 4 μm, rutile type with an average particle diameter of 1 μm 7 parts of titanium oxide powder and 1 part of the above-mentioned chemical compound 2 were mixed, further kneaded with three rolls, and degassed under reduced pressure to produce a conductive paste.
[0028]
Example 1
YL983U of epoxy resin (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) 5.5 parts, 202 parts of celoxide of alicyclic epoxy resin (trade name, manufactured by Daicel Chemical Industries Ltd.) 7 parts, GT302 of the same resin (Daicel Chemical Industries) 2 parts, epoxy resin diluent PG207S (Nippon Kayaku Co., Ltd., trade name) 3.5 parts, cationic catalyst SI-80L (Sanshin Chemical Co., trade name) 0.3 Part, 0.7 part of additive, 70 parts of flaky silver powder having an average particle diameter of 4 μm, 8 parts of rutile titanium oxide powder having an average particle diameter of 1 μm, and 3 parts of a copolymer represented by the following formula: Further, a kneading process was performed with three rolls, and degassed under reduced pressure to produce a conductive paste. The copolymer of Chemical Formula 3 is a copolymer of 70 parts of the compound of Chemical Formula 1 and 30 parts of methyl methacrylate.
[0029]
[Chemical 3]
Figure 0003769152
(In the formula, m and n represent an integer of 1 or more.)
Comparative example
A conductive paste was produced in the same manner as in Reference Example 1 except that the compound of Reference Example 1 was not mixed with the rutile-type titanium oxide powder and the chemical formula 2 compound.
[0030]
For the conductive pastes obtained in the Reference Examples, Examples and Comparative Examples, the adhesion strength (room temperature and heat) between the lead frame (copper) and the 2 × 2 mm silicon chip, the volume resistivity, and the weather resistance acceleration test It was evaluated before and after. The results are shown in Table 1, all of which are excellent in the present invention, and a remarkable effect of the present invention was recognized.
[0031]
[Table 1]
Figure 0003769152
* 1: A 2 mm × 2 mm chip (height 300 μm) was bonded onto a lead frame (copper-based, the bed surface was silver-plated) using a conductive paste, and cured at a temperature of 150 ° C. × 1 h. After curing, the adhesive strength in the shear direction was measured using a tension gauge. The hot bond strength was measured on a 250 ° C. heat block.
[0032]
* 2: Accelerated using a sunshine weatherometer.
[0033]
* 3: A conductive paste was squeezed onto a glass plate to a size of 5 mm × 50 mm, and cured under predetermined (150 ° C. × 1 h) curing conditions. After curing, the resistance value and the coating thickness between both ends of the paste coating were measured and converted to volume resistivity.
[0034]
【The invention's effect】
As can be seen from the above description and Table 1, the conductive paste of the present invention is excellent in ultraviolet resistance and weather resistance, and by using this conductive paste, it can be used outdoors or in a device around an optical semiconductor element. It is possible to cope with the improvement of the physical and electrical joint reliability, and is very useful industrially.

Claims (2)

少なくとも有機バインダー、溶剤又は/及びモノマー、並びに導電性粉末からなるとともに、該導電性粉末の一部として銀系粉末を含む導電性ペーストにおいて、分子内にベンゾトリアゾール骨格を1個以上含み、かつ官能基としてメタクリロイル基をもつ化合物と、前記官能基と反応するモノマーとをあらかじめ共重合させてなる共重合ポリマーを、樹脂固形分に対し0.1〜10%の割合に含有させることを特徴とする導電性ペースト。A conductive paste comprising at least an organic binder, a solvent or / and a monomer, and a conductive powder, and including a silver-based powder as a part of the conductive powder, including at least one benzotriazole skeleton in the molecule and functional A copolymer having a methacryloyl group as a group and a monomer that reacts with the functional group in advance is copolymerized in a proportion of 0.1 to 10% based on the resin solid content. Conductive paste. 導電性粉末の一部として、酸化チタン粉末を該導電性粉末全体に対し5〜20重量%の割合に含有させる請求項1記載の導電性ペースト。The electrically conductive paste of Claim 1 which contains a titanium oxide powder in the ratio of 5 to 20 weight% with respect to this whole electrically conductive powder as a part of electrically conductive powder.
JP24960399A 1999-09-03 1999-09-03 Conductive paste Expired - Fee Related JP3769152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24960399A JP3769152B2 (en) 1999-09-03 1999-09-03 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24960399A JP3769152B2 (en) 1999-09-03 1999-09-03 Conductive paste

Publications (2)

Publication Number Publication Date
JP2001076534A JP2001076534A (en) 2001-03-23
JP3769152B2 true JP3769152B2 (en) 2006-04-19

Family

ID=17195487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24960399A Expired - Fee Related JP3769152B2 (en) 1999-09-03 1999-09-03 Conductive paste

Country Status (1)

Country Link
JP (1) JP3769152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052029A (en) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd Die bond agent and optical semiconductor device
KR20150043988A (en) 2013-10-15 2015-04-23 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-curable conductive silicone composition, conductive adhesive comprising the composition, conductive die-bonding material comprising the composition, and optical semiconductor device having cured product of the die-bonding material
KR20170093104A (en) 2014-12-08 2017-08-14 신에쓰 가가꾸 고교 가부시끼가이샤 Transparent resin composition, adhesive comprising composition, die bond material comprising composition, conductive connection method using composition, and optical semiconductor device obtained using method
KR20230057928A (en) 2021-10-22 2023-05-02 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom
KR20230169710A (en) 2022-06-09 2023-12-18 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom
KR20230169717A (en) 2022-06-09 2023-12-18 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569109B2 (en) * 2004-01-08 2010-10-27 住友ベークライト株式会社 Metal-containing paste and semiconductor device
JP2006310195A (en) 2005-04-28 2006-11-09 Tdk Corp Transparent conductor
JP4479609B2 (en) 2005-06-30 2010-06-09 Tdk株式会社 Transparent conductor and transparent conductive material
JP5126175B2 (en) * 2009-07-27 2013-01-23 住友ベークライト株式会社 Metal-containing paste and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315866A (en) * 1986-07-07 1988-01-22 Copal Co Ltd Electrically conductive composition for thick-film paste
JP4112024B2 (en) * 1995-11-21 2008-07-02 日立化成工業株式会社 Circuit connection member
JP2961307B2 (en) * 1996-03-28 1999-10-12 大塚化学株式会社 Bisbenzotriazolyl phenol compound
JP3714575B2 (en) * 1997-03-26 2005-11-09 ダイセル化学工業株式会社 Ultraviolet absorber, method for producing the same and synthetic resin composition
JP3026432B2 (en) * 1997-05-23 2000-03-27 日立化成工業株式会社 Circuit connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052029A (en) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd Die bond agent and optical semiconductor device
KR20150043988A (en) 2013-10-15 2015-04-23 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-curable conductive silicone composition, conductive adhesive comprising the composition, conductive die-bonding material comprising the composition, and optical semiconductor device having cured product of the die-bonding material
KR20170093104A (en) 2014-12-08 2017-08-14 신에쓰 가가꾸 고교 가부시끼가이샤 Transparent resin composition, adhesive comprising composition, die bond material comprising composition, conductive connection method using composition, and optical semiconductor device obtained using method
KR20230057928A (en) 2021-10-22 2023-05-02 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom
KR20230169710A (en) 2022-06-09 2023-12-18 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom
KR20230169717A (en) 2022-06-09 2023-12-18 한국다이요잉크 주식회사 Curable transparent resin composition, and articles derived therefrom

Also Published As

Publication number Publication date
JP2001076534A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US4732702A (en) Electroconductive resin paste
JP3769152B2 (en) Conductive paste
JPH05331355A (en) Conductive paste
JP2001332124A (en) Conductive paste and optical semiconductor device
JP2001316596A (en) Nonconductive paste
JP2893782B2 (en) Conductive adhesive and semiconductor device
JP2006073811A (en) Die bonding paste
JP2002134529A (en) Insulating paste and optical semiconductor device
JPH0662738B2 (en) Conductive resin paste
JP2006073812A (en) Die bonding paste
JP3348131B2 (en) Compound semiconductor device
JP4734687B2 (en) Resin paste for semiconductor and semiconductor device using the same
JPH08245765A (en) Compound semiconductor device
JP2002212492A (en) Electroconductive coating
JP3440446B2 (en) Conductive paste
JP3534848B2 (en) Insulating paste
JPS62218413A (en) Paste
JP2001023869A (en) Conductive paste for solid electrolytic capacitor
JP3846921B2 (en) Insulating paste
JP2003263921A (en) Conductive paste
JP2010050017A (en) Light-resistant conductive paste and element connecting method
JPH10219187A (en) Electrical-insulation paste
JPH10223660A (en) Compound semiconductor device
JPH09259636A (en) Conductive paste
JPH08245764A (en) Electroconductive paste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees