JPH0252805B2 - - Google Patents

Info

Publication number
JPH0252805B2
JPH0252805B2 JP7948982A JP7948982A JPH0252805B2 JP H0252805 B2 JPH0252805 B2 JP H0252805B2 JP 7948982 A JP7948982 A JP 7948982A JP 7948982 A JP7948982 A JP 7948982A JP H0252805 B2 JPH0252805 B2 JP H0252805B2
Authority
JP
Japan
Prior art keywords
train
vehicle
relay
detector
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7948982A
Other languages
Japanese (ja)
Other versions
JPS58196408A (en
Inventor
Norio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP7948982A priority Critical patent/JPS58196408A/en
Publication of JPS58196408A publication Critical patent/JPS58196408A/en
Publication of JPH0252805B2 publication Critical patent/JPH0252805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/06Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness specially adapted for measuring length or width of objects while moving

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 この発明は編成車両(以下列車という)の走行
路に沿い、2個の車両検出器を所定の間隔で配設
し、走行路上を一定方向に走行する列車の長短を
判定する、車両編成長検出方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes two vehicle detectors arranged at a predetermined interval along the running path of a train set (hereinafter referred to as a train), and detects the length and shortness of the train running in a certain direction on the running path. The present invention relates to a method for detecting vehicle engine growth.

列車長を検出したい場合が鉄道に関する設備で
はしばしば生じる。例えば列車長より短かい駅ホ
ームに列車を進入させてそのまま降車口のドアを
開いたりすると、ホームのないところへ乗客を転
落させる危険を犯したり、降車できない不都合を
生じる。そのため列車長の長いものと短かいもの
とを区別し、ホーム長より長い列車に対しては、
そのホームへの進路を開通させないようにする必
要がある。本発明はこの列車長の長短を自動的に
精度よく検出し、前記の如き危険や不都合を事前
に防止することを目的とするものである。
In railway equipment, it is often necessary to detect the length of a train. For example, if a train enters a station platform that is shorter than the length of the train and then opens the exit door, there is a risk that the passengers may fall to a place where there is no platform, or there will be an inconvenience that they will not be able to get off the train. Therefore, we distinguish between long and short trains, and for trains that are longer than the platform length,
It is necessary to prevent the route to that platform from being opened. The object of the present invention is to automatically detect the length of the train with high precision and to prevent the above-mentioned dangers and inconveniences in advance.

列車長が一定長以上か末満かを判定する方法と
して、例えば第1図aに示す列車Tの走行路Lに
沿い、一定の距離Lcを隔てて2個の車両検知器
A,Bをそれぞれ配設し、検知器Aが列車の先頭
を検出したとき、検知器Bでも車両を検出してい
れば、同図bに示すようにその列車長が距離Lc
より長い列車Tlであり、検知器Aが列車の先頭
を検出したとき、検知器Bで車両を検出していな
ければ、同図cに示すようにその列車長が距離
Lcより短かい列車Tsであると判定する。また逆
に、同図d,eに示すように、検知器Bが列車の
後尾を検出したときの検知器Aの車両検出状態を
調べて判定することもできる。
For example, as a method for determining whether the train length is longer than a certain length or at the end of a certain length, two vehicle detectors A and B are placed along the running route L of the train T shown in Figure 1a, separated by a certain distance Lc. When detector A detects the head of a train, if detector B also detects a vehicle, the length of the train is equal to the distance Lc, as shown in Figure b.
If the train Tl is longer and detector A detects the head of the train, but detector B does not detect a vehicle, the length of the train is shorter than the distance as shown in c in the same figure.
It is determined that the train Ts is shorter than Lc. Conversely, as shown in Figures d and e, the determination can also be made by examining the vehicle detection state of detector A when detector B detects the tail of the train.

しかし上記二つの何れかの方法、すなわち列車
先頭の検出を基準にして後方検出器の車両検出状
態を調べる方法と、列車後尾の検出を基準にして
前方検出器の車両検出状態を調べる方法の何れか
の方法は次に述べるような欠点がある。
However, it is difficult to determine which of the two methods described above, namely, the method of checking the vehicle detection state of the rear detector based on the detection of the front of the train, or the method of checking the vehicle detection state of the front detector using the detection of the rear of the train as a reference. This method has the following drawbacks.

例えば車両検知器A,Bが第2図fに示す列車
走行路Lの閉そく区間の境界イの両側、または同
図gに示す閉そく区間の境界ロをはさんでその両
側に配設されている場合(注、同図のSは閉そく
信号機)、先行列車T1と後続列車T2との区別がつ
かず、距離Lcより短かい列車T1を距離Lcより長
い列車と誤判定してしまうことである。同図f
は、第1図cのように先行列車T1の先頭が検知
器Aの点にきたとき、検知器Bを調べる方法で、
後続列車T2がすでに検知器Bの点に達している
と、距離Lcより長い一つの列車と誤判定される。
同様に第2図gは、第1図eのように後続列車
T2の後尾が、検知器Bの点を通過したとき、検
知器Aを調べる方法で、先行列車T1が未だ検知
器Aの点を通過し終つていないと、距離Lcより
長い一つの列車と誤判定される。このような誤判
定をしないためには、検知器A,Bを2列車以上
が同時に進入しない区間、例えば同一閉そく区間
内に設けなければならない。しかしながら同一閉
そく区間に設けたとしても無閉そく運転時には一
閉そく内に2列車以上入ることが考えられるの
で、尚誤判定の可能性が残される。
For example, vehicle detectors A and B are arranged on both sides of the boundary A of the block section of the train running path L shown in Figure 2 f, or on both sides of the boundary B of the block section shown in Figure 2 G. (Note: S in the diagram is a block signal), the preceding train T 1 and the following train T 2 cannot be distinguished, and the train T 1 , which is shorter than the distance Lc, is mistakenly judged as a train longer than the distance Lc. It is. Figure f
is a method of checking detector B when the head of the preceding train T1 comes to the point of detector A, as shown in Figure 1c.
If the following train T2 has already reached the point of detector B, it will be erroneously determined to be one train longer than the distance Lc.
Similarly, Fig. 2 g shows the following train as shown in Fig. 1 e.
When the tail of T 2 passes the point of detector B, detector A is checked. If the preceding train T 1 has not yet passed the point of detector A, one train longer than the distance Lc Misjudged as a train. In order to avoid such erroneous determinations, detectors A and B must be installed in sections where two or more trains do not enter at the same time, for example, within the same block section. However, even if such a block is provided in the same block section, it is possible that two or more trains may enter one block during non-block operation, so there is still a possibility of erroneous determination.

そこで本発明は、第1図b,cに示したよう
な、列車の先頭が検知器Aの設置点に到達したと
きに検知器Bを調べる方法と、同図d,eに示す
ように、列車の後尾が検知器Bの設置点を通過し
た直後に検知器Aを調べる方法の二つを合せて両
者の結果を比較し、列車の長短を最終的に判定す
ることにより、上述の欠点を解消したもので、検
知器の設置場所の制約を受けることなく正しい判
定を可能にしたものである。
Therefore, the present invention provides a method of checking detector B when the head of the train reaches the installation point of detector A, as shown in FIGS. 1b and 1c, and a method of checking detector B as shown in FIGS. By combining the two methods of checking detector A immediately after the tail of the train passes the installation point of detector B, comparing the results of both methods, and finally determining whether the train is long or short, the above-mentioned drawbacks can be overcome. This problem has been solved, and it is now possible to make correct judgments without being restricted by the location where the detector is installed.

以下本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は例えば第2図fに示した閉そく区間の
境界イにレール絶縁を施して軌道回路1T,2T
を構成し、閉そく区間を設定した軌道を列車走行
路Lとする線路に沿い、閉そく境界イを挾んで距
離Lcを隔てた2点に、光ビームの送受光器を車
両検知器として配設した1例である。すなわち、
AS,BSは送光器、AR,BRは受光器で送光器
ASと受光器ARとで車両検知器Aを、送光器BS
と受光器BRで車両検知器Bをそれぞれ構成した
場合の例である。
Figure 3 shows, for example, track circuits 1T and 2T with rail insulation applied to the boundary A of the block section shown in Figure 2 f.
A light beam transmitter/receiver was installed as a vehicle detector at two points separated by a distance Lc across the block boundary A, along the track where the train running path L is the track with the block section set. This is one example. That is,
AS, BS are transmitters, AR, BR are receivers and transmitters.
Vehicle detector A is formed by AS and light receiver AR, and light transmitter BS is
This is an example in which a vehicle detector B is configured by a light receiver BR and a light receiver BR.

第4図aは車両検知器Aを構成する送光器AS
と受光器ARおよび受光リレーALのブロツク図
で、受光器ARが送光器ASからの光ビームlaを受
光すると受光リレーALが動作し、光ビームlaが
遮断されて受光入力がなくなると受光リレーAL
は復旧する。第4図bは車両検知器Bを構成する
送光器BSと受光器BRおよび受光リレーBLのブ
ロツク図で、受光器BRが送光器BSからの光ビー
ムlbを受光すると受光リレーBLが動作し、光ビ
ームlbが遮断されて受光入力がなくなると受光リ
レーBLは復旧する。
Figure 4a shows the light transmitter AS that constitutes the vehicle detector A.
In the block diagram of the photoreceiver AR and photoreceiver relay AL, when the photoreceiver AR receives the light beam la from the sender AS, the photoreceiver relay AL operates, and when the light beam la is blocked and there is no light receiving input, the photoreceiver relay operates. AL
will be restored. Figure 4b is a block diagram of the light transmitter BS, light receiver BR, and light receiving relay BL that make up the vehicle detector B. When the light receiver BR receives the light beam lb from the light transmitter BS, the light receiving relay BL operates. However, when the light beam lb is interrupted and the light reception input disappears, the light reception relay BL is restored.

第5図aは第4図aによつて構成されている車
両検知器Aにおける車両検知リレーALRの検知
条件回路である。同図の接点ALは受光リレーAL
の接点(以下接点はその属するリレーと同記号で
示す)、接点1TRは軌道回路1Tの軌道リレー
1TR(図示せず)の接点で、軌道回路1Tに列
車有りの条件でのみ、光ビームlaの遮断を検知し
てリレーALRが復旧し、車両検知を行なう。同
図bは緩動、緩放持性を持つ反応リレーALPRの
条件回路である。同図cは第4図bによつて構成
されている車両検知器Bにおける車両検知リレー
BLRの検知条件回路で、同図の接点BLは受光リ
レーBLの接点、接点2TRは軌道回路2Tの軌
道リレー2TR(図示せず)の接点である。この
場合は軌道回路2Tに列車有りの条件下で光ビー
ムlbが遮断されたことを検出してリレーBLRが
復旧し車両検知を行なう。車両以外の物体により
光ビームla,lbが遮断された場合は軌道回路1
T,2Tにより車両を検知しているので車両検知
リレーALR,BLRは復旧しない。同図dは緩放
特性を持つ反応リレーBLPRの条件回路である。
FIG. 5a shows a detection condition circuit for the vehicle detection relay ALR in the vehicle detector A constructed as shown in FIG. 4a. The contact AL in the figure is the light receiving relay AL
Contact 1TR is the contact of track relay 1TR (not shown) of track circuit 1T (hereinafter, contacts are shown with the same symbols as the relays to which they belong), and the light beam la is connected only under the condition that there is a train in track circuit 1T. Detecting the interruption, the relay ALR recovers and performs vehicle detection. Figure b shows the conditional circuit for the reaction relay ALPR, which has slow motion and slow release characteristics. Figure 4c shows a vehicle detection relay in vehicle detector B configured as shown in Figure 4b.
In the BLR detection condition circuit, the contact BL in the figure is the contact of the light receiving relay BL, and the contact 2TR is the contact of the track relay 2TR (not shown) of the track circuit 2T. In this case, under the condition that there is a train on the track circuit 2T, it is detected that the light beam lb is interrupted, the relay BLR is restored, and the vehicle is detected. If the light beams la and lb are blocked by an object other than the vehicle, track circuit 1
Since the vehicle is detected by T and 2T, the vehicle detection relays ALR and BLR do not recover. Figure d shows a conditional circuit for a reaction relay BLPR with slow release characteristics.

第6図aは車両検知器A,Bの配置間距離Lc
より短かい列車長を検出する短列車長検出リレー
LLcの検出条件回路であり、同図bは距離Lcよ
り長い列車長を検出する長列車長検出リレー
MLcの条件回路である。
Figure 6a shows the distance Lc between vehicle detectors A and B.
Short train length detection relay that detects shorter train lengths
This is the detection condition circuit for LLc, and figure b shows the long train length detection relay that detects a train length longer than distance Lc.
This is the conditional circuit of MLc.

つぎに第3図〜第7図を用いて、列車長の長短
判定の動作状態を説明する。いまある列車が車両
検知器Bの設置点を通過し、例えば第1図eの列
車Tsの位置にあるとき、すなわち、第7図1の
短編成列車T1が線路Lの軌道回路2T上にある
ときは、軌道リレー2TR(図示せず)が復旧し
ている。またこの列車T1が車両検知器Bの設置
点を通過中は、光ビームlbがこの列車T1により
遮断されているから、車両検知器Bの受光リレー
BLが復旧している。従つて第5図cの検知リレ
ーBLRの励磁回路が断たれ、リレーBLRは復旧
し、同図dの反応リレーBLPRは動作している。
而して列車T1の後尾が車両検器Bの設置点を通
過し終えると、検知リレーBLRが動作し、反応
リレーBLPRは復旧するが、直ちには復旧せず、
その緩放特性による一定時間動作状態を保持して
いるので、第6図aの回路において、電源(+)
→動作接点BLR→動作接点BLPR→動作接点
ALR→復旧接点MLc→短列車長検出リレーLLc
→電源(−)の回路によりリレーLLcが動作す
る。すなわち列車T1が短列車であることを検知
する。
Next, the operating state of train length determination will be explained using FIGS. 3 to 7. When a current train passes through the installation point of the vehicle detector B and is at the position of the train Ts in Figure 1 e, for example, when the short train T 1 in Figure 7 1 is on the track circuit 2T of the track L. At some point, orbital relay 2TR (not shown) has been restored. Also, while this train T1 is passing through the installation point of vehicle detector B, the light beam lb is blocked by this train T1 , so the light receiving relay of vehicle detector B
BL has been restored. Therefore, the excitation circuit of the detection relay BLR shown in FIG. 5c is cut off, the relay BLR is restored, and the reaction relay BLPR shown in FIG. 5d is operating.
When the tail of train T1 finishes passing the installation point of vehicle inspection device B, the detection relay BLR is activated and the reaction relay BLPR is restored, but it is not restored immediately.
Since the operating state is maintained for a certain period of time due to its slow release characteristics, in the circuit of Figure 6a, the power supply (+)
→ Operating contact BLR → Operating contact BLPR → Operating contact
ALR → Recovery contact MLc → Short train length detection relay LLc
→Relay LLc is activated by the power supply (-) circuit. In other words, it is detected that train T1 is a short train.

なお、第5図aの車両検知リレーALRは、列
車T1が第7図1の位置から同図2の位置に進ん
でも、車両検知器Aの設置位置に達しないうち
は、光ビームlaを受光して動作しており、その反
応リレーALPRは復旧しているので、一旦動作し
たリレーLLcは、反応リレーBLPRが復旧して上
記の励磁回路を断たれてを、復旧接点ALPR→動
作接点LLcの回路を介してその動作を自己保持す
る。このようにして列車T1の存在を検出し記憶
する。第7図3は列車T1が車両検知器Aの設置
点に到達する以前に後接の短編成列車T2が車両
検知器Bの設置点を通過中の状態を示したもの
で、この場合も短列車長検出リレーLLcは復旧接
点ALPR→動作接点LLcの自己保持回路を介して
動作状態を保持している。すなわち、後続の列車
に影響されることなく短編成列車の検出を保持し
ている。
Furthermore, even if the train T1 moves from the position shown in Fig. 7 1 to the position shown in Fig. 7 2, the vehicle detection relay ALR in Fig. 5a does not emit the light beam la until it reaches the installation position of the vehicle detector A. It receives light and is operating, and its reaction relay ALPR has recovered, so once the reaction relay BLPR has recovered and the above excitation circuit is cut off, the relay LLc switches from the recovery contact ALPR to the operation contact LLc. Its operation is self-maintained through the circuit. In this way, the presence of train T1 is detected and stored. Figure 7 3 shows a situation where the following short train T 2 is passing through the installation point of vehicle detector B before train T 1 reaches the installation point of vehicle detector A. In this case, The short train length detection relay LLc maintains its operating state via a self-holding circuit from the recovery contact ALPR to the operation contact LLc. In other words, detection of short trains is maintained without being affected by subsequent trains.

つぎに第7図4に示すように、列車T1が車両
検知器Aの設置点を通過中で、列車T2が車両検
知器Bの設置点を通過し終えた状態では、第5図
aの車両検知リレーALRが復旧し、同図bの反
応リレーALPRは動作するので、短列車長検出リ
レーLLcは復旧接点ALR→動作接点LLcの回路を
介してその動作を自己保持し、短編成列車検出の
記憶を保持する。さらに列車T1が進行して第7
図5に示すように車両検知器Aの設置点を通過し
終えると、第5図aの車両検知リレーALRが動
作し、同図bの反応リレーALPRは復旧するが直
には復旧せず一定時間動作状態を保持している。
一方同図dの反応リレーBLPRはすでに復旧して
いるので、短列車長検出リレーLLcの励磁回路は
すべて断たれ、反応リレーALPRの復旧前にリレ
ーLLcは復旧する。
Next, as shown in FIG. 7 4, when train T 1 is passing through the installation point of vehicle detector A and train T 2 has finished passing through the installation point of vehicle detector B, as shown in FIG. Since the vehicle detection relay ALR of 1 is restored and the reaction relay ALPR of figure b is activated, the short train length detection relay LLc self-maintains its operation via the circuit from the restoration contact ALR to the operation contact LLc, and the short train Retains memory of detection. Furthermore, train T 1 progresses and the 7th
As shown in Figure 5, when the vehicle has passed the installation point of the vehicle detector A, the vehicle detection relay ALR shown in Figure 5 a operates, and the reaction relay ALPR shown in Figure 5 b recovers, but does not recover immediately and remains constant. Retains time operating status.
On the other hand, since the reaction relay BLPR in Figure d has already been restored, all the excitation circuits of the short train length detection relay LLc are cut off, and the relay LLc is restored before the reaction relay ALPR is restored.

また列車T1が車両検知器Aの設置点を通過し
終つたとき、後続の列車T2が車両検知器Bの設
置点にとどまつていた場合でも、リレーBLRの
復旧により、第6図aの接点BLRは開となつて
いるのでリレーLLcは復旧する。すなわち初期状
態に戻る。一方このとき第6図bの長列車を検知
するリレーMLcはリレーLLcが動作中は動作で
きず、列車T1が車両検知器Aの設置点を通過し
終つたときはレーALRが動作してその復旧接点
ALRが開となるのでやはり動作できない。すな
わち列車T2が車両検知器Bの設置点にあつて、
列車T1が車両検知器Aの設置点を通過し終つて
も長編成列車検知とはならない。
Furthermore, when train T 1 has passed the installation point of vehicle detector A, even if the following train T 2 remains at the installation point of vehicle detector B, due to the restoration of relay BLR, the Since contact BLR is open, relay LLc is restored. In other words, it returns to the initial state. On the other hand, at this time, relay MLc, which detects a long train in Figure 6b, cannot operate while relay LLc is operating, and when train T 1 has passed the installation point of vehicle detector A, relay ALR is activated. Its recovery contact
Since ALR is open, it still cannot operate. That is, if train T 2 is the installation point of vehicle detector B,
Even if train T1 passes through the installation point of vehicle detector A, it will not be detected as a long train.

次に後続列車の列車長検出の回路動作を説明す
る。
Next, the circuit operation for detecting the length of the following train will be explained.

第7図6に示すように、列車T1が進行し去り、
後続列車T2が車両検知器Aの設置点を通過の際
は、第5図aの車両検知リレーALRが復旧し、
第5図bの回路において、電源(+)→復旧接点
ALR→反応リレーALPR→電源(−)の回路で
反応リレーALPRが動作するが、該反応リレー
ALPRは前述のごとく緩動特性を持つているので
すぐには動作せず、一定時分復旧状態に保たれる
ので、第6図aの回路において、電源(+)→復
旧接点ALR→復旧接点ALPR→動作接点BLR→
復旧接点BLPR→復旧接点MLc→リレーLLc→電
源(−)の励磁回路により短列車長検出リレー
LLcが動作して列車T2が短列車長であることを
検出、記憶し、列車T2が車両検知器Aの設置点
を通過し終えると、車両検知リレーALRが動作
することにより前記励磁回路を断たれて復旧し列
車T2を短列車長と判定する。
As shown in Figure 7 6, train T 1 moves on and leaves.
When the following train T2 passes the installation point of vehicle detector A, the vehicle detection relay ALR shown in Figure 5a is restored,
In the circuit shown in Figure 5b, power supply (+) → recovery contact
The reaction relay ALPR operates in the ALR → reaction relay ALPR → power supply (-) circuit, but the reaction relay
As mentioned above, ALPR has a slow-moving characteristic, so it does not operate immediately and is kept in the recovery state for a certain period of time. ALPR→Operating contact BLR→
Recovery contact BLPR → Recovery contact MLc → Relay LLc → Short train length detection relay by power supply (-) excitation circuit
LLc operates to detect and memorize that train T 2 is a short train length, and when train T 2 finishes passing the installation point of vehicle detector A, vehicle detection relay ALR operates and the excitation circuit is activated. After the train was cut off, it was restored and train T 2 was determined to be the short train commander.

以上は先行列車T1、後続列車T1が共に短編成
列車である場合の第6図aの回路動作の説明であ
る。つぎに、先行列車T1が短編成列車で、後続
列車T2が設定長Lc以上の長編成列車(第7図3
〜6の列車T2に破線の延長線で図示)である場
合の第6図の回路動作について述べる。
The above is an explanation of the circuit operation in FIG. 6a when both the preceding train T 1 and the following train T 1 are short trains. Next, the preceding train T 1 is a short train, and the following train T 2 is a long train with a set length Lc or more (Fig. 7 3
The operation of the circuit shown in FIG. 6 will be described in the case where the train T 2 is shown by a broken line extending from train T 2 to 6).

後続列車T2が上述の長編成列車の場合でも、
列車T1,T2が第7図3または4の位置にあると
きは、すでに述べたように、短列車長検出リレー
LLcが動作状態にあるので、その復旧接点LLcは
開放されており、第6図bの長列車長検出リレー
MLcの励磁回路が断たれてリレーMLcは動作せ
ず、列車T2が長編成列車であるとすると検出は
行なわれない。また列車T1およびT2(ただし長編
成)が第7図5の位置にあるときは、第6図aの
回路は、すでに述べたことから明かなように、何
れも構成されず、短列車長検出リレーLLcは復旧
する。さらに列車T1が進行し去り、第7図6に
示すように列車T2の先頭が車両検知器Aに到達
したとき、第6図bの条件回路が構成されて長列
車長検出リレーMLcが動作し、列車T2が設定長
Lc以上の長編成列車であると検出する。
Even if the following train T 2 is the above-mentioned long train,
When trains T 1 and T 2 are in the positions 3 or 4 in Figure 7, the short train length detection relay is activated as described above.
Since LLc is in the operating state, its recovery contact LLc is open, and the long train length detection relay in Figure 6b
Since the excitation circuit of MLc is cut off, relay MLc does not operate, and if train T2 is a long train, no detection is performed. Furthermore, when trains T 1 and T 2 (long trains) are in the position shown in Fig. 7 5, the circuit shown in Fig. 6 Long detection relay LLc is restored. Furthermore, when the train T 1 moves away and the head of the train T 2 reaches the vehicle detector A as shown in FIG. 7, the condition circuit shown in FIG. Operates and trains T 2 set length
It is detected that the train is a long train of Lc or longer.

第7図7〜11は先行列車T3が設定長Lc以上
の長編成列車であり、後続列車T4が設定長Lc末
満の短編成列車である場合における第6図の回路
動作説明用列車位置の関係例を示す図である。第
7図7は実質的に同図6と同一状態であり、すで
に述べたように、第6図bの回路が構成されて長
列車長検出リレーMLcが動作し、列車T3が長編
成列車であることを検出、記憶する。つぎに列車
T3が第7図8の位置にあつて車両検知器Aの設
置点を通過中に後続列車T4が車両検知器Bの設
置点を通過しつつある場合、車両検知リレー
ALR,BLRは共に復旧していて、短列車長検出
リレーLLcも復旧しているので、第6図bの回路
により長列車長検出リレーMLcは動作を継続す
る。さらに第7図9に示すように、列車T3が車
両検知器Aの設置点を通過中に、後続列車T4
車両検知器Bの設置点を通過し終えた状態では、
車両検知リレーBLRは動作するが一方の車両検
知リレーALRは依然復旧しているので、長列車
長検出リレーMLcはなお動作を継続する。
7 to 11 are trains for explaining the circuit operation of FIG. 6 when the preceding train T 3 is a long train with a set length Lc or more, and the following train T 4 is a short train with a set length Lc or more. FIG. 3 is a diagram showing an example of a positional relationship. Fig. 7 is substantially the same state as Fig. 6, and as already mentioned, the circuit shown in Fig. 6b is configured and the long train length detection relay MLc operates, so that train T3 Detect and remember that. Next train
If T 3 is in the position shown in Figure 7 and 8 and is passing through the installation point of vehicle detector A, and the following train T 4 is passing through the installation point of vehicle detector B, the vehicle detection relay
Since both ALR and BLR have been restored and the short train length detection relay LLc has also been restored, the long train length detection relay MLc continues to operate by the circuit shown in FIG. 6b. Further, as shown in FIG. 7 and 9, while train T 3 is passing through the installation point of vehicle detector A, the following train T 4 has finished passing through the installation point of vehicle detector B.
Vehicle detection relay BLR operates, but one vehicle detection relay ALR is still restored, so long train length detection relay MLc continues to operate.

しかるに、第7図10に示すように、列車T3
が車両検知器Aを通過し終えた状態では、車両検
知リレーALRが動作するので第6図bの長列車
長検出リレーMLcは復旧し、長列車の検出、記
憶の状態はリセツトされる。列車T4は、先行列
車T3がなければ、車両検知器Bの設置点を通過
したときに短列車長検知リレーLLcが動作して短
列車であることを検出すべきところ、列車T3
よりその機会を失なつてしまつたことになる。し
かし列車T3が進行し去り、列車T4がさらに進ん
で、第7図11に示すように、車両検知器Aの設
置点に到達すると、この場合は同図6の列車T2
(ただし短列車)と同様の状態となり、すでに述
べた通り短列車長検出リレーLLcが動作して列車
T4が短編成列車であることを検出する。
However, as shown in Figure 7-10, train T 3
When the train has passed through the vehicle detector A, the vehicle detection relay ALR is activated, so the long train length detection relay MLc shown in FIG. 6b is restored, and the long train detection and storage states are reset. If train T 4 had not been preceded by train T 3 , the short train length detection relay LLc would have operated when it passed the installation point of vehicle detector B to detect that it was a short train. That opportunity would have been lost. However, when train T 3 moves on and train T 4 moves further and reaches the installation point of vehicle detector A as shown in FIG. 7, in this case train T 2 in FIG.
(However, it is a short train), and as mentioned above, the short train length detection relay LLc operates and the train
Detects that T 4 is a short train.

以上を要約すると、 (i) 判定する検出点を固定しない。すなわち、あ
るときは車両検知器Bで列車有りから無しに、
別のときは検知器Aで列車無しから有りに変化
したとき。
To summarize the above, (i) The detection point to be judged is not fixed. In other words, at some point, vehicle detector B changes from there being a train to not being there.
Another time was when detector A changed from no train to one.

(ii) 判定する時期を逸した場合は、つぎの機会に
行なう。すなわち検知器Bで判定できなかつた
ときは検知器Aで行なう。このようにして本発
明は2列車が連続して運転される場合において
も誤判定を防止することを可能にし、しかも長
短を判定する列車の検出点を1個所に固定しな
いことを特徴とするもので、列車を運転するう
えに顕著な効果を奏するものである。
(ii) If the time for making a judgment is missed, it will be made at the next opportunity. That is, when detector B cannot make a determination, detector A is used. In this way, the present invention makes it possible to prevent erroneous judgments even when two trains are operated in succession, and is characterized in that the detection point of a train for judging whether it is long or short is not fixed at one location. This has a remarkable effect on train operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は所定距離の間隔で配設した2個の車両
検知器と検知する列車の位置および列車長との関
係説明図、第2図は閉そく区間の境界を挾んで配
設した車両検知器と連続運転列車との関係説明
図、第3図は本発明の1実施例たる車両検知器の
配設概要図、第4図は車両検知器の1実施例たる
光ビーム送受器のブロツク図、第5図は車両検知
リレーおよびその反応リレーの条件回路図、第6
図は設定距離長と列車長との長短を判定する条件
回路図、第7図は同上回路の動作説明用列車位置
関係図である。 L:列車走行路、A,B:車両検知器、Lc:
一定長の設定距離、AS,BS:送光器、AR,
BR:受光器、AL,BL:受光リレー、ALR,
BLR:車両検知リレー、LLc:短列車長検出リ
レー、MLc:長列車検出リレー。
Figure 1 is an explanatory diagram of the relationship between two vehicle detectors placed at a predetermined distance apart, the position of the train to be detected, and the length of the train, and Figure 2 is a diagram of the relationship between two vehicle detectors placed at a predetermined distance apart, and the train length to be detected. 3 is a schematic diagram of the arrangement of a vehicle detector which is an embodiment of the present invention, and FIG. 4 is a block diagram of a light beam transceiver which is an embodiment of the vehicle detector. Figure 5 is a condition circuit diagram of the vehicle detection relay and its reaction relay;
The figure is a conditional circuit diagram for determining the length of the set distance and the train length, and FIG. 7 is a train position relationship diagram for explaining the operation of the above circuit. L: Train running path, A, B: Vehicle detector, Lc:
Fixed length setting distance, AS, BS: Light transmitter, AR,
BR: Light receiver, AL, BL: Light receiving relay, ALR,
BLR: Vehicle detection relay, LLc: Short train length detection relay, MLc: Long train detection relay.

Claims (1)

【特許請求の範囲】[Claims] 1 一定方向に走行する編成車両の走行路に沿
い、一定距離を隔てて2個の車両検知器を配設
し、先に車両を検出する一方の車両検知器の設置
点を前記車両の後尾が通過し終えたとき、後に該
車両を検知する他方の車両検知器が車両を検出し
ているか否かを照査し、かつ前記他方の車両検知
器が編成車両の先頭を検出したとき、前記一方の
車両検知器が車両を検出しているか否かを照査す
る、前記二つの照査の何れかの結果により、一定
長以上の編成車両か、一定長末満の編成車両かを
判定することを特徴とする車両編成長検出方法。
1. Two vehicle detectors are installed at a certain distance apart along the running route of a train set traveling in a certain direction, and the installation point of one of the vehicle detectors that detects the vehicle first is located so that the rear of the vehicle is When the vehicle has finished passing, it is checked whether the other vehicle detector that will detect the vehicle later detects the vehicle, and when the other vehicle detector detects the head of the vehicle formation, the one vehicle detector detects the vehicle. The vehicle is characterized by determining whether the vehicle is a vehicle of a set length of a certain length or more or a vehicle of a set length at the end of a certain length, based on the result of either of the two checks to check whether the vehicle detector detects a vehicle. Vehicle growth detection method.
JP7948982A 1982-05-12 1982-05-12 Method for detecting length of train composition Granted JPS58196408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7948982A JPS58196408A (en) 1982-05-12 1982-05-12 Method for detecting length of train composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7948982A JPS58196408A (en) 1982-05-12 1982-05-12 Method for detecting length of train composition

Publications (2)

Publication Number Publication Date
JPS58196408A JPS58196408A (en) 1983-11-15
JPH0252805B2 true JPH0252805B2 (en) 1990-11-14

Family

ID=13691309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7948982A Granted JPS58196408A (en) 1982-05-12 1982-05-12 Method for detecting length of train composition

Country Status (1)

Country Link
JP (1) JPS58196408A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020236A (en) * 1990-02-12 1991-06-04 Pietzsch Ag Method of measuring the distance between the axles or wheels of a vehicle, and device for doing so

Also Published As

Publication number Publication date
JPS58196408A (en) 1983-11-15

Similar Documents

Publication Publication Date Title
US3731087A (en) Hot box alarm system
JPH0252805B2 (en)
EP3686079A1 (en) Train detection system for a railway track section, associated railway track section, and associated method for detecting presence of a railway vehicle on a track section
KR100751057B1 (en) Communication based automatic train control system and method
JP5173371B2 (en) Vehicle home detection device
JP2011093432A (en) Train detecting device
JP3374036B2 (en) Train detection device
JPH078344Y2 (en) Control device for level crossing alarm equipment
JP5225430B2 (en) Automatic train control device
JP4726166B2 (en) Train detection management system and train approach advance detection method
US3145958A (en) Detection system for railway cars
JPH08244614A (en) Vehicle detecting device
JP3273558B2 (en) Vehicle detection device
JPH06171509A (en) On-vehicle device
JPH02189267A (en) Train detector
JPS58177765A (en) Method of detecting length of coupling of car
JP2820420B2 (en) Vehicle detection device
JP3405845B2 (en) Train detection device
JP3026423B2 (en) Control device for level crossing trouble notification means
JP4333855B2 (en) Automatic train control device
JPS5878862A (en) Method of controlling railroad crossing between single track territory
JPS6052019B2 (en) Vehicle detection device
JPH07137636A (en) Railroad crossing control device
JP4915795B2 (en) On-vehicle / ground-to-ground information transmission equipment
JPS5932997B2 (en) train detection device