JPH10106875A - Manufacturing method of rare-earth magnet - Google Patents

Manufacturing method of rare-earth magnet

Info

Publication number
JPH10106875A
JPH10106875A JP8280389A JP28038996A JPH10106875A JP H10106875 A JPH10106875 A JP H10106875A JP 8280389 A JP8280389 A JP 8280389A JP 28038996 A JP28038996 A JP 28038996A JP H10106875 A JPH10106875 A JP H10106875A
Authority
JP
Japan
Prior art keywords
powder
magnetic
magnetic field
rare
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8280389A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
光宗 片岡
Akio Hasebe
章雄 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8280389A priority Critical patent/JPH10106875A/en
Publication of JPH10106875A publication Critical patent/JPH10106875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PROBLEM TO BE SOLVED: To increase the magnetic energy product, by carrying out hydrogen absorption of R-T-B anisotropic magnetic powder in a specified temperature rang from a liquid nitrogen temperature prior to the stage of a magnetic field press, then pressing the powder in a magnetic field, dehydrogenating the powder in a vacuum after the pressing, and then sintering the powder. SOLUTION: Using Nd with a purity of 99.9%, Fe with a purity of 99.8% and B with a purity of 99.5%, these materials are measured to 31Nd-1.0B- Febal(wt.%) and high-frequency dissolution is carried out, thereby producing a R-T-B alloy. Then, after this alloy is heat-treated for homogenization and pulverized into powder having an average grain size of approximately 3μm, hydrogen absorption is carried out at 200 deg.C, thereby lowing the magnetic property of the powder. Then this magnetic powder is molded under a molding pressure of 2.0ton/cm<2> in a magnetic field of 25kOe. After the compact is dehydrogenated at 200 deg.C, the compact is sintered at 1050 deg.C, thereby producing a sintered magnet. Thus, the remnant magnetic flux density and the energy product are improved, and a rare-earth magnet having excellent magnetic property may be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類磁石の製造
方法に係わり、特に、希土類焼結磁石の磁気特性の向上
に関するもので、磁気特性を向上させ、高特性の磁石を
得る希土類磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth magnet, and more particularly to an improvement in the magnetic properties of a rare earth sintered magnet. It is about the method.

【0002】[0002]

【従来の技術】永久磁石材料は、各種電気製品から小型
精密機器、各種アクチュエーターまで広い分野で使用さ
れており、重要な電気、電子材料の一つに挙げられる。
2. Description of the Related Art Permanent magnet materials are used in a wide range of fields from various electric products to small precision instruments and various actuators, and are one of important electric and electronic materials.

【0003】近年、機器の小型化、高効率化の要求から
高性能な永久磁石が求められており、これらの要求を満
たす高性能希土類磁石の需要も、ここ数年、急速に延び
ている。
In recent years, high-performance permanent magnets have been demanded in order to reduce the size and efficiency of equipment, and the demand for high-performance rare-earth magnets meeting these demands has been rapidly increasing in recent years.

【0004】R−T−B系焼結磁石は、磁気エネルギー
が高いことで知られている。従来のR−T−B系焼結磁
石は、インゴットを均質化のための熱処理した後、粗粉
砕、微粉砕、磁場プレス、焼結して作製される。
[0004] RTB-based sintered magnets are known for their high magnetic energy. A conventional RTB-based sintered magnet is manufactured by subjecting an ingot to heat treatment for homogenization, followed by coarse pulverization, fine pulverization, magnetic field pressing, and sintering.

【0005】[0005]

【発明が解決しようとする課題】一般に磁性粉は、磁気
的凝集のために、閉磁路ネットワーク構造を形成する。
磁性粉の凝集は、希土類磁石では、配向度、粉末充填性
などに影響し、磁気特性を低下させる原因となってい
る。
Generally, magnetic powder forms a closed magnetic circuit network structure due to magnetic aggregation.
Aggregation of the magnetic powder affects the degree of orientation, powder filling, and the like of the rare-earth magnet, and is a cause of lowering the magnetic properties.

【0006】具体的には、従来の希土類磁石に用いる磁
性粉は、高いエネルギー積を得るために、高保磁力で、
かつ高磁化を有する。また、高いエネルギー積を得るた
めに、プレス工程の際、強磁場を印加し、粉末を配向さ
せる。
Specifically, the magnetic powder used for the conventional rare earth magnet has a high coercive force in order to obtain a high energy product.
And it has high magnetization. Also, in order to obtain a high energy product, a strong magnetic field is applied during the pressing step to orient the powder.

【0007】しかし、磁性粉の磁気的相互作用は、飽和
磁化の増加と共に増加する。従来、希土類磁石に用いる
磁性粉末は、磁気的相互作用が大きく、磁性粉の磁気的
凝集が強くなり、配向度が不十分なために、焼結磁石に
した際、期待される特性が得られていない。
However, the magnetic interaction of the magnetic powder increases as the saturation magnetization increases. Conventionally, magnetic powders used for rare-earth magnets have large magnetic interaction, strong magnetic agglomeration of the magnetic powder, and insufficient degree of orientation. Not.

【0008】したがって、従来の製造方法によれば、粉
末の磁化が大きいほど磁気的相互作用が強く現れ、磁性
粉の磁気的凝集により、磁性粉の配向が不十分となり、
エネルギー積が低下するという問題点がある。
Therefore, according to the conventional manufacturing method, the larger the magnetization of the powder, the stronger the magnetic interaction appears, and due to the magnetic aggregation of the magnetic powder, the orientation of the magnetic powder becomes insufficient.
There is a problem that the energy product is reduced.

【0009】本発明の目的は、磁気エネルギー積が大き
く、磁気特性に優れた希土類磁石の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for producing a rare earth magnet having a large magnetic energy product and excellent magnetic properties.

【0010】[0010]

【課題を解決するための手段】本発明は、高特性化を図
るために、R−T−B系で表される合金、焼結体を解砕
して得られた磁性粉を磁場プレスの前段階までに水素吸
蔵処理をして、粉末の磁気特性を低下させ、プレス体を
成形し、脱水素処理を施し、その後、焼結することを特
徴としている。
SUMMARY OF THE INVENTION According to the present invention, a magnetic powder obtained by pulverizing an alloy or sintered body represented by an RTB system is used in a magnetic field press in order to improve the characteristics. It is characterized in that hydrogen absorption processing is performed by the previous stage to reduce the magnetic properties of the powder, a pressed body is formed, dehydrogenation processing is performed, and then sintering is performed.

【0011】従来法より、所望の粉砕粒径に粉砕して焼
結磁石の粉末にすると、高飽和磁化を持つ粉末ほど磁気
的凝集により、焼結磁石の成型時に配向が困難となり、
配向上の限界が生じる。
According to the conventional method, when powder is crushed to a desired crushed particle size to obtain a sintered magnet powder, the powder having a higher saturation magnetization becomes harder to be oriented during molding of the sintered magnet due to magnetic aggregation.
There are alignment limitations.

【0012】そこで、本発明では、粉砕後に水素吸蔵処
理して粉末の磁気特性を低下させ、磁場プレスし、その
後脱水素処理を施し焼結することで焼結磁石の磁気エネ
ルギー積を著しく向上させる。
Therefore, in the present invention, the magnetic properties of the powder are reduced by a hydrogen absorbing treatment after the pulverization, and the magnetic properties of the powder are reduced. .

【0013】本発明によれば、R−T−B系焼結磁石粉
末の製造工程において、粉砕後の粉末を水素吸蔵処理し
粉末の磁気特性を低下させ、最終的に脱水素処理を施す
ことで、エネルギー積が高いR−T−B系焼結磁石粉末
が得られ、上記R−T−B系焼結磁石粉末の製造方法に
より、エネルギー積が高い希土類焼結磁石が得られる。
According to the present invention, in the manufacturing process of the RTB-based sintered magnet powder, the powder after pulverization is subjected to a hydrogen absorbing treatment to reduce the magnetic properties of the powder and finally subjected to a dehydrogenation treatment. Thus, an RTB-based sintered magnet powder having a high energy product can be obtained, and a rare-earth sintered magnet having a high energy product can be obtained by the above-described method of manufacturing the RTB-based sintered magnet powder.

【0014】本発明における高性能の希土類焼結磁石
は、一般式Rx100-x-yy[ただし、式中、RはNd
を必須成分とするYを含む希土類元素から選択された少
なくとも一種、TはFeを主成分とする遷移金属Al、
Ga、Siの内から選択された少なくとも1種で表さ
れ、Rの組成値Xは8〜20、Bの組成値yは0≦y<
10.0(いずれもat%である)]で表される合金お
よび焼結体を解砕して得られた異方性磁性粉により形成
された希土類磁石の製造方法において、磁場プレスの前
段階までに前記磁性粉を液体窒素温度から200℃の温
度範囲で水素処理を施し、磁場中でプレスし、プレス
後、真空中で脱水素処理を施し、その後、焼結すること
によって得られる。
[0014] High-performance rare-earth sintered magnet of the present invention have the general formula R x T 100-xy B y [ In the formula, R represents Nd
At least one element selected from rare earth elements containing Y, which is an essential component, and T is a transition metal Al containing Fe as a main component;
It is represented by at least one selected from Ga and Si, the composition value X of R is 8 to 20, and the composition value y of B is 0 ≦ y <
10.0 (all are at%)] in a method for producing a rare earth magnet formed of anisotropic magnetic powder obtained by crushing an alloy and a sintered body, which is obtained by crushing a sintered body. By the time, the magnetic powder is subjected to hydrogen treatment in a temperature range from liquid nitrogen temperature to 200 ° C., pressed in a magnetic field, pressed, dehydrogenated in vacuum, and then sintered.

【0015】従って、本発明によれば、磁気エネルギー
積が大きく、磁気特性に優れた希土類磁石の製造方法を
提供することができる。
Therefore, according to the present invention, it is possible to provide a method of manufacturing a rare earth magnet having a large magnetic energy product and excellent magnetic properties.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態について説明
する。
Embodiments of the present invention will be described.

【0017】まず、出発原料として純度99.9%のN
d、99.8%のFe、99.5%のBを用意した。こ
れらの原料を31Nd−1.0B−Febal(wt
%)に秤量し、高周波溶解を行い、R−T−B系合金を
作製した。この合金を均質化熱処理し、粉砕し、平均粒
径約3μmの粉末にした後、粉末を200℃で水素処理
した。
First, as a starting material, 99.9% pure N
d, 99.8% Fe and 99.5% B were prepared. These raw materials were converted to 31Nd-1.0B-Febal (wt.
%) And subjected to high frequency melting to produce an RTB-based alloy. This alloy was subjected to a homogenizing heat treatment, pulverized to a powder having an average particle size of about 3 μm, and then the powder was hydrogenated at 200 ° C.

【0018】次に、この磁性粉を25kOeの磁界中で
2.0ton/cm2の成形圧力で成形した。その成形
体を200℃で真空中脱水素した後、1050℃で焼結
磁石とした。その磁気特性を測定した。
Next, this magnetic powder was molded at a molding pressure of 2.0 ton / cm 2 in a magnetic field of 25 kOe. The compact was dehydrogenated in vacuum at 200 ° C., and then sintered at 1050 ° C. The magnetic properties were measured.

【0019】比較例として、上記実施の形態と同組成の
合金を同様の手順で作製し、従来の製造方法で焼結磁石
を作製した。本発明及び比較例の各々の磁気特性も表1
に示す。
As a comparative example, an alloy having the same composition as that of the above embodiment was manufactured in the same procedure, and a sintered magnet was manufactured by a conventional manufacturing method. Table 1 also shows the magnetic properties of each of the present invention and the comparative example.
Shown in

【0020】 [0020]

【0021】表1より、本発明の希土類焼結磁石は、磁
気特性、特に残留磁束密度及びエネルギー積が向上して
いることが分かる。
From Table 1, it can be seen that the rare earth sintered magnet of the present invention has improved magnetic properties, in particular, residual magnetic flux density and energy product.

【0022】[0022]

【発明の効果】以上述べたごとく、本発明によれば、エ
ネルギー積が大きく、磁気特性に優れた希土類磁石の製
造方法を提供することが可能となった。
As described above, according to the present invention, it is possible to provide a method of manufacturing a rare earth magnet having a large energy product and excellent magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類焼結磁石のうち、一般式Rx
100-x-yy[ただし、式中、RはNdを必須成分とし、
Yを含む希土類元素から選択された少なくとも一種、T
はFeを主成分とする遷移金属およびAl、Ga、Si
の内から選択された少なくとも1種を表し、Rの組成値
Xは8〜20、Bの組成値yは0≦y<10.0(いず
れもat%である)]で表される合金および焼結体を解
砕して得られた異方性磁性粉により形成された希土類磁
石の製造方法であって、磁場プレスの前段階までに前記
磁性粉を液体窒素温度から200℃の温度範囲で水素処
理を施し、磁場中でプレスし、プレス後、真空中で脱水
素処理を施し、その後、焼結することを特徴とする希土
類磁石の製造方法。
1. A rare-earth sintered magnet of the general formula R x T
100-xy B y [In the formula, R represents an essential component of Nd,
At least one selected from rare earth elements containing Y;
Is a transition metal mainly composed of Fe and Al, Ga, Si
Wherein the composition value X of R is 8 to 20, the composition value y of B is 0 ≦ y <10.0 (all are at%)], and an alloy represented by the following formula: A method for producing a rare earth magnet formed from an anisotropic magnetic powder obtained by crushing a sintered body, wherein the magnetic powder is subjected to a temperature range from liquid nitrogen temperature to 200 ° C. before a magnetic field pressing step. A method for producing a rare earth magnet, which comprises subjecting to hydrogen treatment, pressing in a magnetic field, pressing, dehydrogenating in vacuum, and thereafter sintering.
JP8280389A 1996-09-30 1996-09-30 Manufacturing method of rare-earth magnet Pending JPH10106875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8280389A JPH10106875A (en) 1996-09-30 1996-09-30 Manufacturing method of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8280389A JPH10106875A (en) 1996-09-30 1996-09-30 Manufacturing method of rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH10106875A true JPH10106875A (en) 1998-04-24

Family

ID=17624349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8280389A Pending JPH10106875A (en) 1996-09-30 1996-09-30 Manufacturing method of rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH10106875A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031432A (en) * 2001-07-16 2003-01-31 Showa Denko Kk Rare-earth sintered magnet and method of manufacturing the same
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
WO2011145477A1 (en) * 2010-05-19 2011-11-24 住友電気工業株式会社 Powder for magnetic member, powder compact, and magnetic member
JP2012033865A (en) * 2010-07-01 2012-02-16 Sumitomo Electric Ind Ltd Powder for magnetic member, powder compact, and magnetic member
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
US20120176212A1 (en) * 2009-08-28 2012-07-12 Intermetallics Co., Ltd. METHOD AND SYSTEM FOR PRODUCING SINTERED NdFeB MAGNET, AND SINTERED NdFeB MAGNET PRODUCED BY THE PRODUCTION METHOD
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
CN103177867A (en) * 2013-03-27 2013-06-26 山西恒立诚磁业有限公司 Preparation method and device of sintering neodymium iron boron permanent magnet
US9076584B2 (en) 2009-12-04 2015-07-07 Sumitomo Electric Industries, Ltd. Powder for magnet
US9314843B2 (en) 2010-04-15 2016-04-19 Sumitomo Electric Industries, Ltd. Powder for magnet
US11270840B2 (en) 2015-07-01 2022-03-08 The University Of Birmingham Magnet production

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648586B2 (en) * 2001-07-16 2011-03-09 昭和電工株式会社 Rare earth sintered magnet manufacturing method and rare earth sintered magnet
JP2003031432A (en) * 2001-07-16 2003-01-31 Showa Denko Kk Rare-earth sintered magnet and method of manufacturing the same
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
US7592279B1 (en) 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
US20120176212A1 (en) * 2009-08-28 2012-07-12 Intermetallics Co., Ltd. METHOD AND SYSTEM FOR PRODUCING SINTERED NdFeB MAGNET, AND SINTERED NdFeB MAGNET PRODUCED BY THE PRODUCTION METHOD
US9076584B2 (en) 2009-12-04 2015-07-07 Sumitomo Electric Industries, Ltd. Powder for magnet
US9435012B2 (en) 2009-12-04 2016-09-06 Sumitomo Electric Industries, Ltd. Method for producing powder for magnet
US9129730B1 (en) 2009-12-04 2015-09-08 Sumitomo Electric Industries, Ltd. Rare-earth-iron-based alloy material
US9460836B2 (en) 2010-04-15 2016-10-04 Sumitomo Electric Industries, Ltd. Powder for magnet
US9314843B2 (en) 2010-04-15 2016-04-19 Sumitomo Electric Industries, Ltd. Powder for magnet
WO2011145477A1 (en) * 2010-05-19 2011-11-24 住友電気工業株式会社 Powder for magnetic member, powder compact, and magnetic member
KR101362036B1 (en) * 2010-05-19 2014-02-11 스미토모덴키고교가부시키가이샤 Powder for magnetic member, powder compact, and magnetic member
US9196403B2 (en) 2010-05-19 2015-11-24 Sumitomo Electric Industries, Ltd. Powder for magnetic member, powder compact, and magnetic member
CN103151130A (en) * 2010-05-19 2013-06-12 住友电气工业株式会社 Powder for magnetic member, powder compact, and magnetic member
JP2012033865A (en) * 2010-07-01 2012-02-16 Sumitomo Electric Ind Ltd Powder for magnetic member, powder compact, and magnetic member
CN103177867B (en) * 2013-03-27 2015-06-17 山西恒立诚磁业有限公司 Preparation method and device of sintering neodymium iron boron permanent magnet
CN103177867A (en) * 2013-03-27 2013-06-26 山西恒立诚磁业有限公司 Preparation method and device of sintering neodymium iron boron permanent magnet
US11270840B2 (en) 2015-07-01 2022-03-08 The University Of Birmingham Magnet production

Similar Documents

Publication Publication Date Title
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPS6110209A (en) Permanent magnet
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6181606A (en) Preparation of rare earth magnet
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS6181603A (en) Preparation of rare earth magnet
US5055129A (en) Rare earth-iron-boron sintered magnets
JPH1092617A (en) Permanent magnet and its manufacture
JPS6181607A (en) Preparation of rare earth magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
US4981513A (en) Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
EP0597582A1 (en) Rare-earth magnet powder material
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPH06112027A (en) Manufacture of high-quality magnet material
JPH0328503B2 (en)
JPH06283318A (en) Manufacture of rare-earth permanent magnet
US5015304A (en) Rare earth-iron-boron sintered magnets
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
KR970009409B1 (en) Permanent magnet material processing method
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS63278208A (en) Manufacture of rare earth permanent magnet
JPS5848606A (en) Production of permanent magnet of rare earths