JPH0251217B2 - - Google Patents

Info

Publication number
JPH0251217B2
JPH0251217B2 JP56037834A JP3783481A JPH0251217B2 JP H0251217 B2 JPH0251217 B2 JP H0251217B2 JP 56037834 A JP56037834 A JP 56037834A JP 3783481 A JP3783481 A JP 3783481A JP H0251217 B2 JPH0251217 B2 JP H0251217B2
Authority
JP
Japan
Prior art keywords
positive electrode
fes
organic solvent
active material
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56037834A
Other languages
Japanese (ja)
Other versions
JPS57152672A (en
Inventor
Shuji Yamada
Takahisa Oosaki
Juichi Sato
Tsutomu Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56037834A priority Critical patent/JPS57152672A/en
Publication of JPS57152672A publication Critical patent/JPS57152672A/en
Publication of JPH0251217B2 publication Critical patent/JPH0251217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は有機溶媒電池の放電特性を向上せしめ
る正極、更に詳しくはその活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode that improves the discharge characteristics of an organic solvent battery, and more particularly to an active material thereof.

負極活物質としてリチウム、ナトリウム等の軽
金属を用いた有機溶媒電池は、エネルギー密度が
高く、広い温度領域で使用することができ、また
その貯蔵特性もすぐれるなどの理由によつて、電
卓、時計、メモリのバツアツプ電源として汎用さ
れている。
Organic solvent batteries that use light metals such as lithium and sodium as negative electrode active materials have high energy density, can be used in a wide temperature range, and have excellent storage properties, so they are used in calculators and watches. It is widely used as a memory backup power supply.

この有機溶媒電池の発電要素は、負極、電解
液、正極から構成される。一般に、負極として
は、リチウム、ナトリウムなどの軽金属が用いら
れ、また電解液としては、プロピレンカーボネー
ト、γ−ブチロラクトン、ジメトキシエタンなど
の有機溶媒中に、過塩素酸リチウム、ホウフツ化
リチウムなどの電解質を溶解して成る溶液が用い
られる。
The power generation element of this organic solvent battery is composed of a negative electrode, an electrolyte, and a positive electrode. Generally, a light metal such as lithium or sodium is used as the negative electrode, and an electrolyte such as lithium perchlorate or lithium borofluoride is used in an organic solvent such as propylene carbonate, γ-butyrolactone, or dimethoxyethane. A solution obtained by dissolving it is used.

この有機溶媒電池において、その正極活物質と
しては3V系では二酸化マンガン(MnO2)、フツ
化炭素[(CFx)n]、また1.5V系では酸化ビス
マス(Bi2o3)、酸化銅(CuO)、硫化鉄(FeS)、
二酸化鉄(FeS2)が知られている。
In this organic solvent battery, the positive electrode active materials are manganese dioxide (MnO 2 ) and carbon fluoride [(CFx)n] in the 3V system, and bismuth oxide (Bi 2 o 3 ) and copper oxide (CuO 2 ) in the 1.5V system. ), iron sulfide (FeS),
Iron dioxide (FeS 2 ) is known.

一方、1.5V系電池として酸化銀電池が小型機
器に広く用いられているが、近年、銀の価格が高
騰し、該酸化銀電池が価格上昇している。そのた
め、放電特性にすぐれかつ安価な1.5V系有機溶
媒電池の開発が強く求められている。
On the other hand, silver oxide batteries are widely used as 1.5V batteries in small devices, but in recent years, the price of silver has soared, and the price of silver oxide batteries has increased. Therefore, there is a strong demand for the development of an inexpensive 1.5V organic solvent battery with excellent discharge characteristics.

さて、上記した正極活物質を含む正極を用いた
有機溶媒電池のうち、正極活物質CuO、FeSのも
のは、その放電電圧が1.2〜1.4Vと低く、また
Bi2O3のものは高価となる。そのため、FeS2を用
いた有機溶媒電池が注目を集めている。
Now, among organic solvent batteries using positive electrodes containing the above-mentioned positive electrode active materials, those with positive electrode active materials such as CuO and FeS have a low discharge voltage of 1.2 to 1.4V, and
Bi 2 O 3 products are expensive. Therefore, organic solvent batteries using FeS2 are attracting attention.

正極活物質にFeS2を用いた有機溶媒電池は既
に知られている(特開昭47−16928号)。
An organic solvent battery using FeS 2 as a positive electrode active material is already known (Japanese Patent Application Laid-open No. 16928/1983).

しかしながら、この電池は放電の進行ととも
に、放電電圧が2段階に変化して、放電平坦性に
劣る。また、正極活物質がFeSの電池は、放電電
圧が2段に変化することはないが、上記したよう
にその放電電圧は低くかつ容量密度もFeS2を正
極活物質として用いた電池よりも小さい。
However, in this battery, the discharge voltage changes in two stages as the discharge progresses, and the discharge flatness is poor. In addition, batteries with FeS as the positive electrode active material do not have a two-step change in discharge voltage, but as mentioned above, the discharge voltage is lower and the capacity density is lower than that of batteries with FeS 2 as the positive electrode active material. .

本発明者らは、正極活物質としてFeS2を含む
正極の上記のような欠点を解消するために鋭意研
究を重ねた結果、FeS2を予め不活性ガス中で所
定温度に加熱処理してから活物質として用いる
と、得られた有機溶媒電池の放電平坦性が改善さ
れ、かつ容量密度もFeSの場合に比べて大きくな
るという事実を見出し、本発明を完成するに到つ
た。
The inventors of the present invention have conducted extensive research to eliminate the above-mentioned drawbacks of positive electrodes containing FeS 2 as a positive electrode active material. The present invention was completed based on the discovery that when used as an active material, the discharge flatness of the obtained organic solvent battery is improved and the capacity density is also increased compared to the case of FeS.

本発明は、放電平坦性にすぐれかつ容量密度も
大きい有機溶媒電池に用いて有効な正極、とくに
その正極活物質を提供することに目的がある。
An object of the present invention is to provide a positive electrode, particularly a positive electrode active material thereof, which is effective for use in an organic solvent battery with excellent discharge flatness and high capacity density.

すなわち、本発明の正極は、活物質が不活性ガ
ス雰囲気中で400〜600℃に加熱処理されたFeS2
を含むことを特徴とする。
That is, in the positive electrode of the present invention, the active material is FeS 2 heat-treated at 400 to 600°C in an inert gas atmosphere.
It is characterized by including.

本発明にかかる正極活物質は、従来から活物質
として用いられているFeS2の粉末を不活性ガス
雰囲気中で加熱処理して得ることができるが、そ
の他FeS2とCuO、Cu2SあるいはBi2O3との混合
物を同様に処理して得ることもできる。不活性ガ
ス雰囲気としては窒素、アルゴン、ヘリウムの単
独又はこれらの混合ガスのいずれでも良い。
The positive electrode active material according to the present invention can be obtained by heat-treating FeS 2 powder, which has been conventionally used as an active material, in an inert gas atmosphere. A mixture with 2 O 3 can also be obtained by similar treatment. The inert gas atmosphere may be nitrogen, argon, helium, or a mixture thereof.

加熱処理温度は、400〜600℃の範囲に設定され
る。該温度が400℃未満の場合には、効果があら
われず、また600℃を越えるとFeS2の殆どが熱分
解してFeSに変化し、放電平坦性は改善されるが
その容量密度棒は小さくなり不都合である。
The heat treatment temperature is set in the range of 400 to 600°C. If the temperature is less than 400℃, no effect will appear, and if it exceeds 600℃, most of FeS 2 will thermally decompose and change to FeS, improving the discharge flatness, but the capacity density bar will be small. This is inconvenient.

本発明の正極は、上記のようにして得られた活
物質を、常用の導電材と結着材に混合した後、成
形することによつて容易に作製することができ
る。
The positive electrode of the present invention can be easily produced by mixing the active material obtained as described above with a commonly used conductive material and a binder, and then molding the mixture.

以下に本発明を、第1図に示した有機溶媒池に
則して、更に詳しく説明する。
The present invention will be explained in more detail below with reference to the organic solvent pond shown in FIG.

実施例 FeS2の粉末を窒素気流中で、300℃、400℃、
500℃、600℃、650℃の各温度で4時間加熱処理
して得られた5種類の試料粉末及びFeS粉末の計
6種類の粉末を用意した。
Example FeS 2 powder was heated at 300℃, 400℃ in a nitrogen stream,
A total of six types of powder were prepared, including five types of sample powders obtained by heat treatment at temperatures of 500°C, 600°C, and 650°C for 4 hours and FeS powder.

これら6種類の試料粉末が90.6重量%、黒鉛粉
末が7.4重量%、ポリテトラフロロエチレン粉末
が2.0重量%の配合比となるようにそれぞれの粉
末を秤量して配合した後、Vミキサーで混合し
た。得られた混合粉末を常法により成形して、直
径15mm厚み0.4mmの正極ペレツト6種類を作成し
た。300℃加熱処理したFeS2を有する正極を試料
1、400℃加熱処理したFeS2を有する正極を試料
2、500℃加熱処理したFeS2を有する正極を試料
3、600℃加熱処理したFeS2を有する正極を試料
4、650℃加熱処理したFeS2を有する正極を試料
5、FeSを有する正極を試料6とした。
These six types of sample powders were weighed and blended so that the blending ratio was 90.6% by weight, graphite powder 7.4% by weight, and polytetrafluoroethylene powder 2.0% by weight, and then mixed using a V-mixer. . The obtained mixed powder was molded by a conventional method to prepare six types of positive electrode pellets each having a diameter of 15 mm and a thickness of 0.4 mm. Sample 1 is a positive electrode with FeS 2 heat-treated at 300°C, Sample 2 is a positive electrode with FeS 2 heat-treated at 400°C, Sample 3 is a positive electrode with FeS 2 heat-treated at 500°C, and Sample 3 is a positive electrode with FeS 2 heat-treated at 600°C. Sample 4 was a positive electrode containing FeS 2 heat-treated at 650°C, Sample 5 was a positive electrode containing FeS, and Sample 6 was a positive electrode containing FeS.

次に、第1図に示すように、各正極1と金属リ
チウム円板2(負極)を、1M過塩素酸リチウム
を溶解するプロピレンカーボネート及び1、2−
ジメトキシエタンとから成る混合電解液を含浸保
持したセパレータ3を介して当接させ、これらを
ステンレススチール製のケース4に収納した後、
ケース4には、負極端子も兼ねる板5(負極封口
板)を端部周縁に設けたガスケツト6を介して冠
着し、更にケース4の開口端を内側方向に折り曲
げて封口して、直径20mm総高1.6mmの有機溶媒電
池を組立てた。
Next, as shown in FIG.
After being brought into contact with each other through a separator 3 impregnated with a mixed electrolyte consisting of dimethoxyethane and housed in a stainless steel case 4,
A plate 5 (negative electrode sealing plate) that also serves as a negative electrode terminal is attached to the case 4 via a gasket 6 provided around the edge of the end, and the open end of the case 4 is further bent inward and sealed to form a 20 mm diameter plate. An organic solvent battery with a total height of 1.6 mm was assembled.

なお、これら電池の組立ては、いずれも相対湿
度4%以下の乾燥雰囲気中で行なつた。
Note that these batteries were all assembled in a dry atmosphere with a relative humidity of 4% or less.

これら6種類の有機溶媒電池に6.5kΩの負荷を
接続し、常温で定負荷放電を行なつた。それぞれ
の電池の放電特性の結果を第2図に示した。
A load of 6.5 kΩ was connected to these six types of organic solvent batteries, and constant load discharge was performed at room temperature. The results of the discharge characteristics of each battery are shown in FIG.

第2図から明らかなように、本発明の正極(試
料2、3、4)を用いた電池は、試料1の正極を
用いた電池に比べ放電平坦性にすぐれており、ま
た試料5、試料6の正極を用いた電池に比べてそ
の放電持続時間が長く、容量密度の大きいことが
判明した。
As is clear from FIG. 2, the batteries using the positive electrodes of the present invention (Samples 2, 3, and 4) have superior discharge flatness compared to the batteries using the positive electrode of Sample 1. It was found that the discharge duration was longer and the capacity density was higher than that of the battery using the positive electrode of No. 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するための有機溶媒電
池の1例の縦断面図、第2図は、各試料番号の正
極を用いた有機溶媒電池の放電特性を表わす。 1……正極、2……負極(リチウム円板)、3
……セパレータ、4……ケース、5……負極封口
板、6……ガスケツト。
FIG. 1 is a longitudinal sectional view of an example of an organic solvent battery for explaining the present invention, and FIG. 2 shows the discharge characteristics of an organic solvent battery using positive electrodes of each sample number. 1...Positive electrode, 2...Negative electrode (lithium disk), 3
... Separator, 4 ... Case, 5 ... Negative electrode sealing plate, 6 ... Gasket.

Claims (1)

【特許請求の範囲】[Claims] 1 活物質が、不活性ガス雰囲気中で400〜600℃
に加熱処理された二硫化鉄を含む有機溶媒電池の
正極。
1 The active material is heated to 400 to 600℃ in an inert gas atmosphere.
An organic solvent battery positive electrode containing iron disulfide that has been heat-treated.
JP56037834A 1981-03-18 1981-03-18 Anode of organic solvent cell Granted JPS57152672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56037834A JPS57152672A (en) 1981-03-18 1981-03-18 Anode of organic solvent cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56037834A JPS57152672A (en) 1981-03-18 1981-03-18 Anode of organic solvent cell

Publications (2)

Publication Number Publication Date
JPS57152672A JPS57152672A (en) 1982-09-21
JPH0251217B2 true JPH0251217B2 (en) 1990-11-06

Family

ID=12508553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56037834A Granted JPS57152672A (en) 1981-03-18 1981-03-18 Anode of organic solvent cell

Country Status (1)

Country Link
JP (1) JPS57152672A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261054A1 (en) * 2009-04-14 2010-10-14 Michael Pozin Lithium Primary Cells

Also Published As

Publication number Publication date
JPS57152672A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
US4228226A (en) Nonaqueous secondary cell using vanadium oxide positive electrode
US3988164A (en) Cathode material for solid state batteries
Takeuchi et al. The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells
EP0618630A1 (en) Metaloxide composite-cathode material for high energy density batteries
JPH0368507B2 (en)
JPS5913828B2 (en) solid state battery
JPH0368506B2 (en)
JPH0578142B2 (en)
US4804597A (en) Organic electrolyte cell
US5030528A (en) Mixed solvent electrolytes for ambient temperature secondary lithium cells
JPH0251217B2 (en)
JPH0251218B2 (en)
JPS61135056A (en) Manufacture of organic electrolyte cell
JPH0316744B2 (en)
JPS59226468A (en) Manufacture of positive active material for organic electrolyte battery
JPH0251219B2 (en)
JPS5848357A (en) Manufacture of positive electrode for organic electrolyte battery
JPS6012665A (en) Reversible copper electrode
JPH0124344B2 (en)
EP0205784A2 (en) A solid state cell employing a cathode of molybdenum trisulfide and manganese dioxide and/or antimony trisulfide
JPH0316745B2 (en)
JP2521909B2 (en) Lithium / manganese dioxide secondary battery
JPS5844669A (en) Organic electrolyte battery
JPS624830B2 (en)
JPS5952515B2 (en) Manufacturing method for positive electrode active material for solid electrolyte batteries