JPH0124344B2 - - Google Patents

Info

Publication number
JPH0124344B2
JPH0124344B2 JP56155674A JP15567481A JPH0124344B2 JP H0124344 B2 JPH0124344 B2 JP H0124344B2 JP 56155674 A JP56155674 A JP 56155674A JP 15567481 A JP15567481 A JP 15567481A JP H0124344 B2 JPH0124344 B2 JP H0124344B2
Authority
JP
Japan
Prior art keywords
battery
fes
positive electrode
active material
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56155674A
Other languages
Japanese (ja)
Other versions
JPS5857262A (en
Inventor
Takahisa Oosaki
Shuji Yamada
Juichi Sato
Tsutomu Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56155674A priority Critical patent/JPS5857262A/en
Publication of JPS5857262A publication Critical patent/JPS5857262A/en
Publication of JPH0124344B2 publication Critical patent/JPH0124344B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は1.5V系有機溶媒電池の放電特性、と
りわけ放電電圧の平坦性を向上せしめる正極、更
に詳しくはその活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode that improves the discharge characteristics of a 1.5V organic solvent battery, particularly the flatness of the discharge voltage, and more particularly to its active material.

負極活物質としてリチウム、ナトリウム等の軽
金属を用いた有機溶媒電池は、エネルギー密度が
高く、広い温度領域で使用することができ、また
その貯蔵特性にもすぐれるなどの理由によつて、
電卓、時計、メモリのバツクアツプ電源として汎
用されている。
Organic solvent batteries that use light metals such as lithium and sodium as negative electrode active materials have high energy density, can be used in a wide temperature range, and have excellent storage characteristics.
It is widely used as a backup power source for calculators, watches, and memory.

この有機溶媒電池の発電要素は、負極、電解
液、正極から構成されており、一般に、負極とし
てはリチウム、ナトリウム等の軽金属が用いら
れ、また電解液としては、プロピレンカーボネー
ト、γ−ブチロラクトン、ジメトキシエタンなど
の有機溶媒中に、過塩素酸リチウム、ホウフツ化
リチウムなどの電解質を溶解して成る溶液が用い
られている。
The power generation element of this organic solvent battery consists of a negative electrode, an electrolyte, and a positive electrode. Generally, light metals such as lithium and sodium are used as the negative electrode, and propylene carbonate, γ-butyrolactone, and dimethoxy are used as the electrolyte. A solution is used in which an electrolyte such as lithium perchlorate or lithium borofluoride is dissolved in an organic solvent such as ethane.

この有機溶媒電池において、その正極活物質と
しては、3V系では二酸化マンガン(MnO2)、フ
ツ化炭素〔(CFx)n〕、また、1.5V系にあつて
は酸化ビスマス(Bi2O3)、酸化銅(CuO)、硫化
鉄(FeS)、二硫化鉄(FeS2)などが知られてい
る。
In this organic solvent battery, the positive electrode active materials include manganese dioxide (MnO 2 ) and carbon fluoride [(CFx)n] in the 3V system, and bismuth oxide (Bi 2 O 3 ) in the 1.5V system. , copper oxide (CuO), iron sulfide (FeS), iron disulfide (FeS 2 ), etc. are known.

一方、1.5V系電池としては、酸化銀電池、ア
ルカリマンガン電池が小型機器に広く用いられて
いる。しかしながら、酸化銀電池はその放電特性
が優れている反面その価格が高く、またアルカリ
マンガン電池は放電時その放電電圧の平坦性に劣
るという問題点がある。
On the other hand, as 1.5V batteries, silver oxide batteries and alkaline manganese batteries are widely used in small devices. However, although silver oxide batteries have excellent discharge characteristics, they are expensive, and alkaline manganese batteries have a problem in that the flatness of the discharge voltage during discharge is poor.

したがつて、エネルギー密度が高く、放電特性
に優れ、かつ安価な1.5V系の有機溶媒電池の開
発が強く望まれている。
Therefore, there is a strong desire to develop a 1.5V organic solvent battery that has high energy density, excellent discharge characteristics, and is inexpensive.

さて、上記した正極活物質を含む正極とリチウ
ム負極とを組合せた1.5V系有機溶媒電池のうち、
正極活物質がCuO、FeSのものはその放電電圧が
1.2〜1.4Vと1.5Vよりやや低く、Bi2O3のものは
高価である。そのため、FeS2を用いた有機溶媒
電池が注目を集め、それは既に特開昭47−16928
号に開示されている。
Now, among the 1.5V organic solvent batteries that combine a positive electrode containing the above-mentioned positive electrode active material and a lithium negative electrode,
When the positive electrode active material is CuO or FeS, the discharge voltage is
1.2-1.4V, slightly lower than 1.5V, and Bi 2 O 3 is expensive. Therefore, organic solvent batteries using FeS 2 have attracted attention, and have already been published in Japanese Patent Application Laid-Open No. 47-16928.
Disclosed in the issue.

しかしながら、FeS2を正極活物質とする有機
溶媒電池は、その放電電圧が一般に1.5Vより高
く、また放電の進行とともに、放電電圧が2段階
に変化してその放電平坦性に劣るという欠点があ
る。
However, organic solvent batteries using FeS 2 as the positive electrode active material have the disadvantage that their discharge voltage is generally higher than 1.5V, and that the discharge voltage changes in two stages as discharge progresses, resulting in poor discharge flatness. .

本発明者は、正極活物質としてFeS2を含む正
極に関する上記のような欠点を解消するために鋭
意研究を重ねた結果、表面の一部が酸化鉄で覆わ
れたFeS2を正極活物質とする有機溶媒電池にお
いては、放電電圧の平坦性が改善され、かつその
容量密度もFeS2を活物質とする電池に比べて増
大するとの事実を見出し、本発明の電池を開発す
るに到つた。
As a result of intensive research to eliminate the above-mentioned drawbacks of cathodes containing FeS 2 as a cathode active material, the inventors have discovered that FeS 2 , the surface of which is partially covered with iron oxide, can be used as a cathode active material. The present inventors discovered that in organic solvent batteries, the flatness of the discharge voltage is improved and the capacity density is increased compared to batteries using FeS 2 as the active material, leading to the development of the battery of the present invention.

本発明は、放電平坦性にすぐれかつ容量密度も
大きい有機溶媒電池に用いて有効な正極、とりわ
けその活物質の提供を目的とする。
An object of the present invention is to provide a positive electrode, particularly an active material thereof, which is effective for use in an organic solvent battery having excellent discharge flatness and high capacity density.

本発明の正極は、表面の一部が酸化鉄である二
硫化鉄を活物質とすることを特徴とする。
The positive electrode of the present invention is characterized in that the active material is iron disulfide, the surface of which is partially iron oxide.

本発明にかかる正極活物質は、従来から活物質
として用いられているFeS2の粉末を空気又は酸
素ガス中で熱処理してFeS2の表面の一部を酸化
鉄にする方法、又は、真空中でFeS2の粉末の薄
層上に常法によつてFeを蒸着し、それを空気中
に取り出して蒸着せしめたFeを酸化する方法な
どによつて容易に調製することができる。調製の
容易さという点からして前者の方法が好んで適用
される。
The positive electrode active material according to the present invention can be produced by heat-treating FeS 2 powder, which has been conventionally used as an active material, in air or oxygen gas to turn a part of the surface of FeS 2 into iron oxide, or by heating it in a vacuum. It can be easily prepared by depositing Fe on a thin layer of FeS 2 powder using a conventional method, then taking it out into the air, and oxidizing the deposited Fe. The former method is preferably applied in terms of ease of preparation.

前者の方法にあつては、用いるFeS2粉末の粒
度、酸素濃度、熱処理温度、熱処理時間などによ
つて、FeS2表面に生成する酸化鉄(Fe2O3)の量
(FeS2表面への酸化鉄の被覆面積、酸化鉄の厚み
等)が変動するのでこれら条件は一義的に定まら
ない。例えば、平均粒径30μのFeS2粉末を空気中
で熱処理する場合には、300〜350℃の温度で7〜
9時間程度の熱処理を施すことが好ましい。いず
れにしても、本発明にかかる活物質はFeS2粉末
の表面の一部分、好ましくは、過半部分が酸化鉄
で覆われていることが必要であるが、FeS2粉末
の表面全体が完全に酸化鉄で覆われている場合に
は、本発明の効果は得られない。つまり、FeS2
の表面の少なくとも一部分は、酸化鉄に覆われる
ことなく露出し、FeS2自体が電池反応に寄与す
る必要がある。
In the former method, the amount of iron oxide (Fe 2 O 3 ) generated on the FeS 2 surface (the amount of iron oxide (Fe 2 O 3 ) generated on the FeS 2 surface) depends on the particle size of the FeS 2 powder used, oxygen concentration, heat treatment temperature, heat treatment time, etc. These conditions cannot be uniquely determined because the area covered by iron oxide, the thickness of iron oxide, etc.) vary. For example, when heat-treating FeS 2 powder with an average particle size of 30μ in air, the
It is preferable to perform heat treatment for about 9 hours. In any case, the active material according to the present invention requires that a portion of the surface of the FeS 2 powder, preferably a majority portion, be covered with iron oxide, but the entire surface of the FeS 2 powder must be completely oxidized. If it is covered with iron, the effects of the present invention cannot be obtained. That is, FeS 2
At least a portion of the surface of FeS 2 must be exposed without being covered with iron oxide, and FeS 2 itself must contribute to the cell reaction.

本発明の正極は、上記のようにして調製された
活物質を、黒鉛、アセチレンブラツク等の常用の
導電材と、ポリテトラフロロエチレン、ポリエチ
レン等の結着材とともに混合した後、所定形状
(例えばペレツト)に成形して得ることができる。
The positive electrode of the present invention is produced by mixing the active material prepared as described above with a commonly used conductive material such as graphite or acetylene black, and a binder such as polytetrafluoroethylene or polyethylene, and then mixing the active material into a predetermined shape (e.g. It can be obtained by forming into pellets.

本発明の電池においては、放電時には次のよう
な電池反応が進行する。
In the battery of the present invention, the following battery reaction progresses during discharge.

4Li+FeS2→2Li2S+Fe 以下に、本発明を第1図に示した構造の有機溶
媒電池に則して更に詳しく説明する。
4Li+FeS 2 →2Li 2 S+Fe The present invention will be explained in more detail below with reference to the organic solvent battery having the structure shown in FIG.

実施例 市販のFeS2粉末(平均粒径30μ)を空気中で
320℃、8時間熱処理した。処理後の粉末の表面
には酸化鉄の生成していることをESCAによつて
確認した。
Example: Commercially available FeS 2 powder (average particle size 30μ) was mixed in air.
Heat treatment was performed at 320°C for 8 hours. It was confirmed by ESCA that iron oxide was formed on the surface of the treated powder.

得られたFeS2粉末、黒鉛粉末(導電材)及び
ポリテトラフロロエチレン粉末(結着材)をそれ
ぞれ90.6重量%、7.4重量%、2.0重量%となるよ
うに秤量し、これらをVミキサーで混合した後、
直径1.5mm厚み0.4mmのペレツトを成形した。これ
を正極とした。
The obtained FeS 2 powder, graphite powder (conductive material), and polytetrafluoroethylene powder (binder) were weighed to be 90.6% by weight, 7.4% by weight, and 2.0% by weight, respectively, and mixed in a V-mixer. After that,
Pellets with a diameter of 1.5 mm and a thickness of 0.4 mm were molded. This was used as the positive electrode.

次いで第1図に示す如く、上記方法で得た正極
1と金属リチウム円板よりなる負極2とを、1モ
ル濃度の過塩素リチウムが溶解されたプロピレン
カーボネートと1,2−ジメトキシエタンとの混
合電解液を含浸保持させたセパレータ3を介して
当接し、これらをステンレス製の電池ケース4に
装填した後、電池ケース4に負極端子を兼ねる負
極封口板5を端部周縁に設けたガスケツト6を介
して設置し、さらに電池ケース4の開口部を内側
方向に折り曲げて封口し、直径20mm、総高1.6mm
の有機溶媒電池を組立てた。これを電池Aとし
た。
Next, as shown in FIG. 1, the positive electrode 1 obtained by the above method and the negative electrode 2 made of a metal lithium disk were mixed with propylene carbonate and 1,2-dimethoxyethane in which 1 molar concentration of lithium perchloride was dissolved. After making contact through a separator 3 impregnated with electrolyte and loading them into a stainless steel battery case 4, a gasket 6 having a negative electrode sealing plate 5, which also serves as a negative electrode terminal, provided around the edge of the battery case 4 is attached to the battery case 4. Then, the opening of the battery case 4 is bent inward and sealed, and the diameter is 20 mm and the total height is 1.6 mm.
An organic solvent battery was assembled. This was designated as battery A.

比較のため、上記した熱処理を施さないFeS2
を用いたことを除いては実施例と同様の方法で電
池B、市販のFeS(平均粒径30μ)を用いたことを
除いては実施例と同様の方法で電池C、市販の
Fe2O3(平均粒径30μm)を用いたことを除いては
実施例と同様の方法で電池Dを作製した。
For comparison, FeS 2 without the above heat treatment
Battery B was prepared in the same manner as in the example except that FeS was used. Battery C was prepared in the same manner as in the example except that commercially available FeS (average particle size 30μ) was used.
Battery D was produced in the same manner as in Example except that Fe 2 O 3 (average particle size: 30 μm) was used.

これら4個の電池につき、常温、13KΩの定負
荷放電特性を測定したところ第2図に示した結果
が得られた。図中、Aは実施例の電池Aの放電曲
線、Bは電池B、Cは電池C、Dは電池Dの放電
曲線をそれぞれ表わす。
When the constant load discharge characteristics of these four batteries at room temperature and 13KΩ were measured, the results shown in FIG. 2 were obtained. In the figure, A represents the discharge curve of battery A, B represents the discharge curve of battery B, C represents the discharge curve of battery C, and D represents the discharge curve of battery D, respectively.

図から明らかなように、本発明の正極を用いた
電池Aは、従来のFeSを含む正極の電池Cより放
電電圧が高くかつ容量も大きく、また、活物質が
FeS2のみである正極の電池Bに比べて放電電圧
の平坦性が改善されしかもその放電容量も若干大
きいことが判明した。
As is clear from the figure, battery A using the positive electrode of the present invention has a higher discharge voltage and larger capacity than battery C using the conventional positive electrode containing FeS, and the active material is
It was found that the flatness of the discharge voltage was improved and the discharge capacity was also slightly larger than that of Battery B, which had a positive electrode containing only FeS 2 .

本発明の電池の電池容量が、比較例の電池の電
池容量より大きいのは、正極活物質として表面の
一部が酸化鉄である二硫化鉄を用いているためで
あると考えられる。
The reason why the battery capacity of the battery of the present invention is larger than that of the battery of the comparative example is considered to be because iron disulfide, whose surface is partially composed of iron oxide, is used as the positive electrode active material.

すなわち、酸化鉄と二硫化鉄とでは結晶構造が
異なるために、活物質製造の際の処理時や放電時
に、母体である二硫化鉄粒子の表面に、微小なク
ラツクを生じると考えられる。その結果、二硫化
鉄の電池反応に関与する面積が増大し、二硫化鉄
の利用率が高まる。したがつて、本願発明の正極
活物質を用いた電池は、二硫化鉄だけ、あるいは
酸化鉄だけの場合より電池容量が増大するものと
推定される。
That is, since iron oxide and iron disulfide have different crystal structures, it is thought that minute cracks are generated on the surface of iron disulfide particles, which are the matrix, during processing and discharge during active material production. As a result, the area involved in the battery reaction of iron disulfide increases, and the utilization rate of iron disulfide increases. Therefore, it is estimated that a battery using the positive electrode active material of the present invention has a higher battery capacity than a battery using only iron disulfide or only iron oxide.

以上のように、本発明の正極を用いると、放電
特性に優れた1.5V系有機溶媒電池を製造するこ
とができ、その工業的価値は極めて大である。
As described above, by using the positive electrode of the present invention, a 1.5V organic solvent battery with excellent discharge characteristics can be manufactured, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための有機溶媒電池
の1例の縦断面図、第2図は電池A、電池B、電
池C及び電池Dの連続放電特性を示す曲線であ
る。 1……正極、2……負極(リチウム円板)、3
……セパレータ(有機電解液を含浸保持)、4…
…電池ケース、5……負極封口板、6……ガスケ
ツト。
FIG. 1 is a longitudinal cross-sectional view of an example of an organic solvent battery for explaining the present invention, and FIG. 2 is a curve showing continuous discharge characteristics of battery A, battery B, battery C, and battery D. 1...Positive electrode, 2...Negative electrode (lithium disk), 3
...Separator (impregnated and held with organic electrolyte), 4...
...Battery case, 5...Negative electrode sealing plate, 6...Gasket.

Claims (1)

【特許請求の範囲】[Claims] 1 表面の一部が酸化鉄である二硫化鉄を活物質
とする有機溶媒電池の正極。
1 A positive electrode for an organic solvent battery whose active material is iron disulfide whose surface is partly iron oxide.
JP56155674A 1981-09-30 1981-09-30 Positive electrode of organic solvent battery Granted JPS5857262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155674A JPS5857262A (en) 1981-09-30 1981-09-30 Positive electrode of organic solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155674A JPS5857262A (en) 1981-09-30 1981-09-30 Positive electrode of organic solvent battery

Publications (2)

Publication Number Publication Date
JPS5857262A JPS5857262A (en) 1983-04-05
JPH0124344B2 true JPH0124344B2 (en) 1989-05-11

Family

ID=15611094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155674A Granted JPS5857262A (en) 1981-09-30 1981-09-30 Positive electrode of organic solvent battery

Country Status (1)

Country Link
JP (1) JPS5857262A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515596A (en) * 2013-09-11 2014-01-15 广州鹏辉能源科技股份有限公司 Sulfur-iron-containing positive electrode material and lithium battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636794A (en) * 1979-09-04 1981-04-10 Hitachi Cable Fire detector
JPS5684877A (en) * 1979-12-12 1981-07-10 Sanyo Electric Co Ltd Battery with nonaqueous electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636794A (en) * 1979-09-04 1981-04-10 Hitachi Cable Fire detector
JPS5684877A (en) * 1979-12-12 1981-07-10 Sanyo Electric Co Ltd Battery with nonaqueous electrolyte

Also Published As

Publication number Publication date
JPS5857262A (en) 1983-04-05

Similar Documents

Publication Publication Date Title
JPH0368507B2 (en)
US4228226A (en) Nonaqueous secondary cell using vanadium oxide positive electrode
JPH0368506B2 (en)
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH0124344B2 (en)
EP0170411A1 (en) Galvanic cell
JPS6259412B2 (en)
JPS62186470A (en) Non-aqueous electrolytic solution cell
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP2807481B2 (en) Cathode of non-aqueous electrolyte battery
JPH0251219B2 (en)
JPH0251218B2 (en)
JPH0353743B2 (en)
JPH0316744B2 (en)
JPS6153828B2 (en)
JPS581971A (en) Organic electrolyte battery
JPH0770315B2 (en) Non-aqueous electrolyte battery
JPS61163564A (en) Nonaqueous electrolytic solution
JPS6151749A (en) Nonaqueous electrolyte battery
JPS6142858A (en) Nonaqueous electrolyte battery
JPS6012677A (en) Solid electrolyte secondary battery
JPH0251217B2 (en)
JPS62219465A (en) Secondary cell
JPS6166363A (en) Nonaqueous electrolyte cell
JPH02262275A (en) Nonaqueous electrolyte secondary battery