JPH0250975A - Method for stabilizing palladium hydrosol - Google Patents

Method for stabilizing palladium hydrosol

Info

Publication number
JPH0250975A
JPH0250975A JP20213888A JP20213888A JPH0250975A JP H0250975 A JPH0250975 A JP H0250975A JP 20213888 A JP20213888 A JP 20213888A JP 20213888 A JP20213888 A JP 20213888A JP H0250975 A JPH0250975 A JP H0250975A
Authority
JP
Japan
Prior art keywords
hydrosol
palladium
exchange resin
cation exchange
palladium hydrosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20213888A
Other languages
Japanese (ja)
Other versions
JP2626907B2 (en
Inventor
Toshiki Matsui
敏樹 松井
Tomoyuki Imai
知之 今井
Masaaki Fukukaito
福垣内 正昭
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP20213888A priority Critical patent/JP2626907B2/en
Publication of JPH0250975A publication Critical patent/JPH0250975A/en
Application granted granted Critical
Publication of JP2626907B2 publication Critical patent/JP2626907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To prevent the coagulation and precipitation of colloidal Pd particles having negative charges in Pd hydrosol and to stabilize the Pd hydrosol by allowing a cation exchange resin to exist in the Pd hydrosol. CONSTITUTION:An aq. Pd (II) salt soln. is reduced with a reducing agent such as sodium borohydride in the presence of a water soluble polymer, etc., to obtain Pd hydrosol contg. colloidal Pd particles having negative charges and a cation exchange resin is allowed to exist in the Pd hydrosol. The cation exchange resin may be of sulfonic acid type or carboxylic acid type and the pref. amt. of the resin used is >=0.1g/l. When activation treatment for electroless metal plating is carried out with the Pd hydrosol and water as a dispersion medium, impurities entering the Pd hydrosol are efficiently captured by the cation exchange resin. The coagulation and precipitation of the colloidal Pd are prevented, the Pd hydrosol is stabilized and continuous efficient use or repeated efficient use over a long period of time is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無電解金属めっきを施す際の触媒付与のため
に使用されるパラジウムヒドロゾルの安定化方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for stabilizing palladium hydrosol used for providing a catalyst during electroless metal plating.

〔従来の技術〕[Conventional technology]

紙や不織布などの繊維成形物、ガラス、セラミックス及
び高分子材料等は本来絶縁体であるが、これらを基材と
して無電解金属めっきによって各種金属を付与すること
により、磁気的性質や導電性等の電気的性質を持たせる
ことが行われている。
Fiber molded products such as paper and nonwoven fabrics, glass, ceramics, and polymeric materials are originally insulators, but by applying various metals to these base materials through electroless metal plating, they can be made to have magnetic properties, conductivity, etc. Efforts are being made to impart the same electrical properties.

また、金属や金属酸化物の場合にも、これらを基材とし
て無電解金属めっきによって他の各種金属を付与するこ
とにより、磁気的性質や電気的性質を改良したり、本来
有する特性とは全く別の新しい磁気的性質や電気的性質
を持たせることが行われている。
In addition, in the case of metals and metal oxides, by applying various other metals to these base materials through electroless metal plating, it is possible to improve their magnetic and electrical properties, or to improve their magnetic and electrical properties. Efforts are being made to impart new magnetic and electrical properties.

本発明者は、無電解金属めっきを施すに当たって、基材
(被めっき物)を水を分散媒とするパラジウムヒドロゾ
ル中に浸漬後、水洗を行うことで被めっき物表面にパラ
ジウムコロイドを付与し、次いで、無電解金属めっきす
る方法(例えば、特開昭61−207666号公報)を
提案している。
When performing electroless metal plating, the present inventor applied palladium colloid to the surface of the object to be plated by immersing the base material (the object to be plated) in palladium hydrosol using water as a dispersion medium and then washing with water. Then, a method of electroless metal plating (for example, JP-A-61-207666) has been proposed.

上記の無電解金属めっきに用いられているパラジウムヒ
ドロゾルは、塩化パラジウム(III塩などのパラジウ
ム塩水溶液を、界面活性剤の存在下で、水素化ホウ素ナ
トリウム、ヒドラジン等の水溶性還元剤で還元して得ら
れる粒径20〜50人のパラジウムコロイドを含む分散
液である。
The palladium hydrosol used in the above electroless metal plating is produced by reducing an aqueous palladium salt solution such as palladium chloride (III salt) with a water-soluble reducing agent such as sodium borohydride or hydrazine in the presence of a surfactant. This is a dispersion containing a palladium colloid with a particle size of 20 to 50 particles.

〔発明が解決しようとする課題] 前述のパラジウムヒドロゾルを使用して被めっき物の表
面にパラジウムコロイドを均−且つ強固に付与させるた
めには、パラジウムヒドロゾルが長期に亘り安定に保た
れることが望ましい。しかし、パラジウムヒドロゾルを
連続或いは長期にわたり繰り返して使用すると、パラジ
ウムヒドロゾル中のパラジウムコロイドが凝集沈澱して
使用できなくなるという状態が生じてくる。
[Problem to be solved by the invention] In order to uniformly and firmly apply palladium colloid to the surface of the object to be plated using the above-mentioned palladium hydrosol, the palladium hydrosol must be kept stable for a long period of time. This is desirable. However, when palladium hydrosol is used continuously or repeatedly over a long period of time, a situation arises in which the palladium colloid in the palladium hydrosol aggregates and precipitates, making it unusable.

パラジウムコロイドが凝集沈澱してくるのは、パラジウ
ムヒドロゾル中に被めっき物を浸漬処理した時に、被め
っき物の一部成分が溶出したり、また、被めっき物の前
処理(エンチング等)時の酸やアルカリ等が混入したり
し、これらの不純物(電解質)特に2価以上の陽イオン
がその原因と考えられ、このことがパラジウムヒドロゾ
ルを連続或いは長期にわたり繰り返し使用する際の難点
となっていた。゛ 従って、無電解金属めっきを施す際の触媒付与のために
使用されるパラジウムヒドロゾルは、通常、その使用に
当たっては、使用するたびに被めっき物の表面に付着さ
せるパラジウムコロイドの必要量よりも過剰のパラジウ
ムコロイドを存在させたものを調製し、使用後は過剰分
のパラジウムコロイドが残留しているにもかかわらず廃
棄しているのが現状である。
Palladium colloid coagulates and precipitates because some components of the plating object are eluted when the object is immersed in palladium hydrosol, or during pretreatment (etching, etc.) of the object to be plated. These impurities (electrolytes), especially divalent or higher cations, are considered to be the cause, and this poses a problem when using palladium hydrosol continuously or repeatedly over a long period of time. was. Therefore, when using palladium hydrosol, which is used to provide a catalyst during electroless metal plating, the amount of palladium colloid that is deposited on the surface of the object to be plated is usually lower than the amount required each time it is used. Currently, products containing an excess of palladium colloid are prepared and discarded after use, even though the excess palladium colloid remains.

本発明は、パラジウムヒドロゾルの使用に際しての上記
問題点を解決することを技術的課題とするものである。
The technical object of the present invention is to solve the above-mentioned problems when using palladium hydrosol.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記技術的課題を解決するために長期に
亘り鋭意検討を重ねた結果、パラジウムヒドロゾル中の
パラジウムコロイドを凝集沈澱させる原因と考えられる
不純物(電解質)着目し、パラジウムコロイド粒子を含
むパラジウムヒドロゾル中に陽イオン交換樹脂を存在さ
せ、これに被めっき物をパラジウムヒドロゾル中に浸漬
する際に混入する不純物を捕捉させれば、パラジウムコ
ロイドの凝集沈澱を防止できることを見出し、本発明を
完成するに至ったのである。
As a result of extensive research over a long period of time in order to solve the above technical problem, the present inventors focused on the impurity (electrolyte) that is thought to be the cause of coagulation and precipitation of palladium colloid in palladium hydrosol, and developed palladium colloid particles. It has been discovered that coagulation and precipitation of palladium colloid can be prevented by allowing a cation exchange resin to exist in a palladium hydrosol containing palladium hydrosol and trapping impurities mixed in when the object to be plated is immersed in the palladium hydrosol. This led to the completion of the present invention.

即ち、本発明は、負電荷を有したパラジウムコロイド粒
子を含むパラジウムヒドロゾル中に陽イオン交換樹脂を
存在させることを特徴とするパラジウムヒドロゾルの安
定化方法である。
That is, the present invention is a method for stabilizing palladium hydrosol, which is characterized in that a cation exchange resin is present in palladium hydrosol containing negatively charged palladium colloidal particles.

〔作用〕[Effect]

先ず、本発明において最も重要な点は、負電荷を有した
パラジウムコロイド粒子を含むパラジウムヒドロゾル中
に陽イオン交換樹脂を存在させた点にある。陽イオン交
換樹脂を、負電荷を有したパラジウムコロイド粒子を含
むパラジウムヒドロゾル中に存在させた場合には、被め
っき物をパラジウムヒドロゾル中に浸漬する際に混入す
る不純物特に2価以上の陽イオンを効率よく捕捉させる
ことができるので、パラジウムヒドロゾル中のパラジウ
ムコロイドの凝集沈澱が惹起せず、その結果、安定な状
態を維持しつつ連続或いは長期にわたり繰り返し使用す
ることができるのである。
First, the most important point in the present invention is that a cation exchange resin is present in a palladium hydrosol containing negatively charged palladium colloidal particles. When a cation exchange resin is present in a palladium hydrosol containing negatively charged palladium colloidal particles, impurities, especially divalent or more valent cations, mixed in when the object to be plated is immersed in the palladium hydrosol can be removed. Since ions can be efficiently captured, the palladium colloid in the palladium hydrosol does not coagulate and precipitate, and as a result, it can be used continuously or repeatedly over long periods of time while maintaining a stable state.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明における負電荷を有したパラジウムコロイド粒子
を含むパラジウムヒドロゾルは、次の方法により調製す
ることができる。
The palladium hydrosol containing negatively charged palladium colloidal particles in the present invention can be prepared by the following method.

パラジウムfl[l塩の水溶液を水溶性高分子、陰イオ
ン性界面活性剤及び非イオン性界面活性剤のいずれか一
種又は二種との存在下で、水素化ホウ素ナトリウム、ヒ
ドラジン等の還元剤で還元処理すれば、負電荷を有した
パラジウムコロイド粒子を含むパラジウムヒドロゾルが
得られる。
An aqueous solution of palladium fl[l salt is treated with a reducing agent such as sodium borohydride or hydrazine in the presence of one or two of a water-soluble polymer, an anionic surfactant, and a nonionic surfactant. The reduction treatment yields a palladium hydrosol containing negatively charged palladium colloidal particles.

尚、水溶性高分子としては、ヒドロキシプロピルセルロ
ース、ポリ酢酸ビニル、ポリビニルアルコール、ポリビ
ニルピロリドン等が使用できる。
Note that, as the water-soluble polymer, hydroxypropylcellulose, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, etc. can be used.

また、界面活性剤としては、ドデシルベンゼンスルホン
酸ナトリウム等の陰イオン性界面活性剤、ポリエチレン
グリコール−P−ノニルフェニルエーテル等の非イオン
性界面活性剤を使用することができる。
Further, as the surfactant, anionic surfactants such as sodium dodecylbenzenesulfonate and nonionic surfactants such as polyethylene glycol-P-nonylphenyl ether can be used.

本発明における陽イオン交換樹脂としては、スルホン酸
型陽イオン交換樹脂、カルボン酸型陽イオン交換樹脂等
であり、好ましくはこれらをNa、K 、 NH4等の
1価の陽イオンに再生したものを使用することができる
The cation exchange resins used in the present invention include sulfonic acid type cation exchange resins, carboxylic acid type cation exchange resins, etc., and preferably those regenerated into monovalent cations such as Na, K, NH4, etc. can be used.

負電荷を有したパラジウムコロイド粒子を含むパラジウ
ムヒドロゾル中に存在させる陽イオン交換樹脂の量は、
パラジウムヒドロゾル1尼に対して0.1g以上が好ま
しい。0,1gより少ない場合は、パラジウムヒドロゾ
ル中に陽イオン交換樹脂を存在させる効果が充分でない
The amount of cation exchange resin present in the palladium hydrosol containing negatively charged palladium colloidal particles is:
The amount is preferably 0.1 g or more per 1 portion of palladium hydrosol. If it is less than 0.1 g, the effect of the presence of the cation exchange resin in the palladium hydrosol will not be sufficient.

パラジウムヒドロゾル中に陽イオン交換樹脂を存在させ
るに当たっては、直接粒状で混合させてもよいが、不織
布等で陽イオン交換樹脂をパックし、この不織布パック
をパラジウムヒドロゾル中に存在させておくという状態
がより好ましい。
When making the cation exchange resin exist in the palladium hydrosol, it is possible to mix it directly in the form of granules, but it is also possible to pack the cation exchange resin with a nonwoven fabric, etc., and make this nonwoven fabric pack exist in the palladium hydrosol. The condition is more favorable.

〔実施例] 次に、実施例及び比較例により本発明を説明する。〔Example] Next, the present invention will be explained with reference to Examples and Comparative Examples.

〈パラジウムヒドロゾルの調製〉試料A−D。<Preparation of palladium hydrosol> Samples A-D.

試料:A 塩化パラジウム(I[+ 250μmolを塩化ナトリ
ウム1.25 m molを含む水溶液2.5mlに溶
解し、次いで、純水で94蔵に希釈した。この溶液を激
しく攪拌しながら、ポリビニルアルコール25■を含む
水溶液1 mlを加え、次いで、水素化ホウ素ナトリウ
ム1m molを含む水溶液5滅を滴下すると、溶液の
色が急、変し、負電荷を有したパラジウムコロイド粒子
を含むpH9,0のパラジウムヒドロゾルを得た。
Sample: A 250 μmol of palladium chloride (I [+) was dissolved in 2.5 ml of an aqueous solution containing 1.25 mmol of sodium chloride, and then diluted to 94 μmol with pure water. While vigorously stirring this solution, 25 μmol of polyvinyl alcohol When 1 ml of an aqueous solution containing (1) was added and then 5 ml of an aqueous solution containing 1 m mol of sodium borohydride was added dropwise, the color of the solution suddenly changed and palladium at pH 9.0 containing negatively charged palladium colloidal particles was added. A hydrosol was obtained.

試料:B 塩化パラジウム(IO50μmolを塩化ナトリウム2
50μmolを含む水溶液2 、5 mflに溶解し、
次いで、純水で94戒に希釈した。この溶液を激しく攪
拌しながら、ドデシルベンゼンスルホン酸ナトリウム1
0mgを含む水溶液1 mlを加え、次いで、水素化ホ
ウ素ナトリウム200μmolを含む水溶液5成を滴下
すると、溶液の色が象、変し、負電荷を有したパラジウ
ムコロイド粒子を含むpH8,7のパラジウムヒドロゾ
ルを得た。
Sample: B Palladium chloride (50 μmol of IO was mixed with 2 sodium chloride)
Dissolved in 2.5 mfl of an aqueous solution containing 50 μmol,
Then, it was diluted to 94 precepts with pure water. While stirring this solution vigorously, add 1 portion of sodium dodecylbenzenesulfonate.
When 1 ml of an aqueous solution containing 0 mg of sodium borohydride was added, and then 5 aqueous solutions containing 200 μmol of sodium borohydride were added dropwise, the color of the solution changed, indicating that palladium hydride with a pH of 8.7 containing negatively charged palladium colloidal particles was added. Got Sol.

試料:C 水溶性高分子としてポリビニルアルコール15mgと界
面活性剤としてドデシルベンゼンスルホン酸ナトリウム
25mgとを使用した以外は、試料Aと同様にして負電
荷を有したパラジウムコロイド粒子を含むpu 8.8
のパラジウムヒドロゾルを得た。
Sample: C Pu 8.8 containing negatively charged palladium colloid particles in the same manner as Sample A except that 15 mg of polyvinyl alcohol was used as the water-soluble polymer and 25 mg of sodium dodecylbenzenesulfonate was used as the surfactant.
A palladium hydrosol was obtained.

試料:D 水溶性高分子としてポリ酢酸ビニル25■と界面活性剤
としてポリエチレングリコール−P−ノニルフェニルエ
ーテル25mgとを使用した以外は、試料Bと同様にし
て負電荷を有したパラジウムコロイド粒子を含むpH8
,7のパラジウムヒドロゾルを得た。
Sample: D Contains negatively charged palladium colloidal particles in the same manner as Sample B, except that 25 mg of polyvinyl acetate was used as the water-soluble polymer and 25 mg of polyethylene glycol-P-nonylphenyl ether was used as the surfactant. pH8
, 7 was obtained.

実施例1 試料Aのパラジウムヒドロゾル50成中に、カルボン酸
系弱酸性イオン交換樹脂(ダウエックスCCト2室町化
学工業■製)をNa型に再生した0、3gのNa型カル
ボン酸系弱酸性イオン交換樹脂を不織布にパックした状
態で存在させ、次いで、40゛Cに昇温した。このパラ
ジウムヒドロゾル中へ表面に正電荷を有したチタン酸バ
リウム系成形体(円筒型φ6肛×φ2.3祁×7.5肛
)25個を15分間浸漬した後、炉別し、パラジウムヒ
ドロゾルだけを別容器に移した。
Example 1 During the formation of the palladium hydrosol 50 of Sample A, 0.3 g of Na-type weakly acidic carboxylic acid ion exchange resin (manufactured by DOWEX CCTO 2 Muromachi Chemical Industry Co., Ltd.) was regenerated into Na-type. An acidic ion exchange resin was present in a packed state in a nonwoven fabric, and then the temperature was raised to 40°C. After immersing 25 pieces of barium titanate-based molded bodies (cylindrical shape φ6 holes x φ2.3 holes x 7.5 holes) with positive charges on the surface into this palladium hydrosol for 15 minutes, they were separated into a furnace and palladium Only the sol was transferred to a separate container.

続いて、炉別後の前記パラジウムヒドロゾルを用いて、
前記一連の操作を20回連続繰り返して合計500個の
チタン酸バリウム系成形体に触媒付与を施した。20回
連続繰り返した後のパラジウムヒドロゾルは、パラジウ
ムコロイドの凝集沈澱が惹起しておらず安定な状態を維
持していた。
Subsequently, using the palladium hydrosol after furnace separation,
The above series of operations was repeated 20 times to apply a catalyst to a total of 500 barium titanate molded bodies. The palladium hydrosol after 20 consecutive repetitions maintained a stable state without causing coagulation and precipitation of palladium colloid.

実施例2 陽イオン交換樹脂として、Na型カルボン酸系弱酸性イ
オン交換樹脂の代わりに、スルホン酸系強酸性イオン交
換樹脂(ダウエックス50W−×8室町化学工業■製)
のNa型に再生したNa型スルホン酸系強酸性イオン交
換樹脂2.5gを使用し、15回の操作を連続繰り返し
た以外は、実施例1と同様にして合計375個のチタン
酸バリウム系成形体に触媒付与を施した。15回連続繰
り返した後のパラジウムヒドロゾルは、パラジウムコロ
イドの凝集沈澱が惹起しておらず安定な状態を維持して
いた。
Example 2 As a cation exchange resin, a sulfonic acid type strong acid ion exchange resin (manufactured by DOWEX 50W-×8 Muromachi Chemical Industry ■) was used instead of a Na type carboxylic acid type weak acid ion exchange resin.
A total of 375 barium titanate moldings were made in the same manner as in Example 1, except that 2.5 g of the Na-type sulfonic acid-based strongly acidic ion exchange resin regenerated to the Na-type was used and the operation was repeated 15 times. The body was catalyzed. The palladium hydrosol after 15 consecutive repetitions maintained a stable state without causing coagulation and precipitation of palladium colloid.

実施例3 試料Bのパラジウムヒドロゾル100d中に、カルボン
酸系弱酸性イオン交換樹脂(ダウエックスCCR−2室
町化学工業■製)をに型に再生した0、3gのに型カル
ボン酸系弱酸性イオン交換樹脂を不織布にパンクした状
態で存在させ、次いで、40°Cに昇温した。このパラ
ジウムヒドロゾル中へ表面に正電荷を有したチタン酸バ
リウム系成形体(φ20mmX2mm) 5個を15分
間浸漬した後、炉別し、パラジウムヒドロゾルだけを別
容器に移した。
Example 3 In 100 d of the palladium hydrosol of Sample B, 0.3 g of a weakly acidic carboxylic acid ion exchange resin (DOWEX CCR-2 manufactured by Muromachi Chemical Industry Co., Ltd.) was regenerated into a mold. The ion exchange resin was present in the nonwoven fabric in a punctured state, and then the temperature was raised to 40°C. Five pieces of barium titanate molded bodies (φ20 mm x 2 mm) each having a positive charge on the surface were immersed in this palladium hydrosol for 15 minutes, and then separated in a furnace, and only the palladium hydrosol was transferred to a separate container.

続いて、炉別後の前記パラジウムヒドロゾルを用いて、
前記一連の操作を40回連続繰り返して合計200個の
チタン酸バリウム系成形体に触媒付与を施した。40回
連続繰り返した後のパラジウムヒドロゾルは、パラジウ
ムコロイドの凝集沈澱が惹起しておらず安定な状態を維
持していた。
Subsequently, using the palladium hydrosol after furnace separation,
The above series of operations was repeated 40 times to apply a catalyst to a total of 200 barium titanate molded bodies. The palladium hydrosol after 40 consecutive cycles maintained a stable state without causing coagulation and precipitation of palladium colloid.

実施例4 試料Cのパラジウムヒドロゾル50威中に、カルボン酸
系弱酸性イオン交換樹脂(ダウエックスCCR−2室町
化学工業■製)をNH4型に再生した1、0gのNH4
型カルボン酸系弱酸性イオン交換樹脂を不織布乙こバッ
クした状態で存在させ、次いで、40°Cに昇温した。
Example 4 1.0 g of NH4, which was obtained by regenerating carboxylic acid-based weakly acidic ion exchange resin (DOWEX CCR-2 manufactured by Muromachi Chemical Industry Co., Ltd.) into the NH4 form, was added to the palladium hydrosol 50 of Sample C.
A type carboxylic acid type weakly acidic ion exchange resin was made to exist in a state covered with a non-woven fabric, and then the temperature was raised to 40°C.

このパラジウムヒドロゾル中へ表面に正電荷を有したチ
タン酸ストロンチウム系成形体(φ6 mm X 0.
18mm ) 20個を15分間浸漬した後、炉別し、
パラジウムヒドロゾルだけを別容器に移した。
A strontium titanate-based molded body having a positive charge on the surface (φ6 mm
18mm) After immersing 20 pieces for 15 minutes, they were separated into furnaces,
Only the palladium hydrosol was transferred to a separate container.

続いて、r別後の前記パラジウムヒドロゾルを用いて、
前記一連の操作を20回連続繰り返して合計400個の
チタン酸ストロンチウム系成形体に触媒付与を施した。
Subsequently, using the palladium hydrosol after r separation,
The above series of operations was repeated 20 times to apply a catalyst to a total of 400 strontium titanate molded bodies.

20回連続繰り返した後のパラジウムヒドロゾルは、パ
ラジウムコロイドの凝集沈澱が惹起しておらず安定な状
態を維持していた。
The palladium hydrosol after 20 consecutive repetitions maintained a stable state without causing coagulation and precipitation of palladium colloid.

実施例5 試料りのパラジウムヒドロゾル50mQ中に、スルホン
酸系強酸性イオン交換樹脂(ダウエックス50t#−X
8室町化学工業■製)をに型に再生した2、0gのに型
スルボン酸系強酸性イオン交換樹脂を不織布にパックし
た状態で存在させ、次いで、40°Cに昇温した。この
パラジウムヒドロゾル中へ表面ニ正電荷を有したチタン
酸ジルコン酸鉛系成形体(40mmX 8 mmX0.
2 mm) 5個を15分間浸漬した後炉別し、パラジ
ウムヒドロゾルだけを別容器に移した。
Example 5 A sulfonic acid-based strongly acidic ion exchange resin (Dowex 50t#-X) was added to a sample of palladium hydrosol 50mQ.
8 Muromachi Kagaku Kogyo ■) was regenerated into a mold and 2.0 g of a molded sulfonic acid-based strongly acidic ion exchange resin was placed in a packed state in a nonwoven fabric, and then the temperature was raised to 40°C. A lead zirconate titanate molded body (40 mm x 8 mm x 0.5 mm
After immersing 5 pieces (2 mm) for 15 minutes, they were separated from the furnace, and only the palladium hydrosol was transferred to a separate container.

続いて、炉別後の前記パラジウムヒドロゾルを用いて、
前記一連の操作を20回連続繰り返して合計100個の
チタン酸ジルコン酸鉛系成形体に触媒付与を施した。2
0回連続繰り返した後のパラジウムヒドロゾルは、パラ
ジウムコロイドの凝集沈澱が惹起しておらず安定な状態
を維持していた。
Subsequently, using the palladium hydrosol after furnace separation,
The above series of operations was repeated 20 times to apply a catalyst to a total of 100 lead zirconate titanate molded bodies. 2
The palladium hydrosol after 0 consecutive repetitions maintained a stable state without causing coagulation and precipitation of palladium colloid.

比較例1 試料Aのパラジウムヒドロゾル中に陽イオン交換樹脂を
存在させない以外は、実施例1と同様な操作を繰り返し
たが、3回連続繰り返した後のパラジウムヒドロゾル中
には、パラジウムコロイドの凝集沈澱が認められた。
Comparative Example 1 The same operation as in Example 1 was repeated except that the cation exchange resin was not present in the palladium hydrosol of sample A, but the palladium colloid was present in the palladium hydrosol after three consecutive repetitions. Agglomerated precipitate was observed.

比較例2 試料Bのパラジウムヒドロゾル中に陽イオン交換樹脂を
存在させない以外は、実施例3と同様な操作を繰り返し
たが、5回連続繰り返した後のパラジウムヒドロゾル中
には、パラジウムコロイドの凝集沈澱が認められた。
Comparative Example 2 The same operation as in Example 3 was repeated except that the cation exchange resin was not present in the palladium hydrosol of sample B, but the palladium colloid was present in the palladium hydrosol after 5 consecutive repetitions. Agglomerated precipitate was observed.

〔発明の効果〕〔Effect of the invention〕

本発明に係るパラジウムヒドロゾルの安定化方法は、前
出実施例に示した通り、パラジウムヒト0ゾル中ムこ被
めっき物を浸漬処理する際に混入する不純物を、該パラ
ジウムヒドロゾル中に予め陽イオン交換樹脂を存在させ
ておくことによって効率良く捕捉させることができるこ
とに起因して、パラジウムコロイドの凝集沈澱が惹起せ
ず、その結果、安定な状態を維持することができる。
As shown in the previous example, the method for stabilizing palladium hydrosol according to the present invention is to remove impurities that are mixed into the palladium hydrosol during immersion treatment of the muco-plated object in the palladium hydrosol. Since the presence of the cation exchange resin enables efficient capture, coagulation and precipitation of palladium colloid does not occur, and as a result, a stable state can be maintained.

従って、本発明方法によれば、無電解金属めっきを施す
際の触媒付与のために使用する負電荷を有したパラジウ
ムコロイド粒子を含むパラジウムヒドロゾルを連続或い
は長期にわたり繰り返し、効率的に使用することができ
る。
Therefore, according to the method of the present invention, palladium hydrosol containing negatively charged palladium colloid particles used for providing a catalyst during electroless metal plating can be used continuously or repeatedly over a long period of time and efficiently. Can be done.

Claims (1)

【特許請求の範囲】[Claims] (1)負電荷を有したパラジウムコロイド粒子を含むパ
ラジウムヒドロゾル中に陽イオン交換樹脂を存在させる
ことを特徴とするパラジウムヒドロゾルの安定化方法。
(1) A method for stabilizing palladium hydrosol, which comprises making a cation exchange resin exist in palladium hydrosol containing negatively charged palladium colloidal particles.
JP20213888A 1988-08-12 1988-08-12 Palladium hydrosol stabilization method Expired - Fee Related JP2626907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20213888A JP2626907B2 (en) 1988-08-12 1988-08-12 Palladium hydrosol stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20213888A JP2626907B2 (en) 1988-08-12 1988-08-12 Palladium hydrosol stabilization method

Publications (2)

Publication Number Publication Date
JPH0250975A true JPH0250975A (en) 1990-02-20
JP2626907B2 JP2626907B2 (en) 1997-07-02

Family

ID=16452588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20213888A Expired - Fee Related JP2626907B2 (en) 1988-08-12 1988-08-12 Palladium hydrosol stabilization method

Country Status (1)

Country Link
JP (1) JP2626907B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899288A2 (en) * 1997-08-29 1999-03-03 Taisei Chemical Industries Ltd Process for producing dispersion of functional compound
US7220140B2 (en) 2005-10-17 2007-05-22 Hosiden Corporation Board connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899288A2 (en) * 1997-08-29 1999-03-03 Taisei Chemical Industries Ltd Process for producing dispersion of functional compound
EP0899288A3 (en) * 1997-08-29 2001-03-28 Taisei Chemical Industries Ltd Process for producing dispersion of functional compound
US7220140B2 (en) 2005-10-17 2007-05-22 Hosiden Corporation Board connector

Also Published As

Publication number Publication date
JP2626907B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US6197252B1 (en) Binder removal
WO2006049831A1 (en) Method of production of high purity silver particles
KR100855509B1 (en) Methods for producing spherical particles of cobalt hydroxide
TW200413120A (en) Process for producing metal fine powder
US2390272A (en) Purification of gelatinous hydroxides
JPH0847917A (en) Method for stabilization of ceramic suspension
CN109879349A (en) A kind of preparation method of slightly acidic water processing special molding filter core
JPH09256007A (en) Production of copper powder
CN117047121B (en) Silver powder preparation method
CN110818408A (en) Preparation method of ceramic and ceramic
JPH0250975A (en) Method for stabilizing palladium hydrosol
EP0514473A1 (en) Process for making finely divided particles of silver metal
JP6405013B1 (en) Manufacturing method of membrane filter for suppressing microorganisms
JPS63307208A (en) Production of fine noble metal powder
CN106669698B (en) It is a kind of to be used to synthesize copper bismuth catalyst of 1,4- butynediols and preparation method thereof
JPH10176207A (en) Highly active noble metal cluster
JPH0258353B2 (en)
JPH0415984B2 (en)
JP2742449B2 (en) High performance zirconia sol and method for producing the same
KR101931663B1 (en) Method for Manufacturing Filter Membrane for Inhibiting Microorganisms
JP3981318B2 (en) Treatment method of electroless nickel plating aging solution
RU2283208C2 (en) Silver powder production method
JPH06218273A (en) Fine particles carrying metal and production thereof
JPS58161725A (en) Production of magnetic metallic iron powder
JPS6379975A (en) Production of metal plated inorganic particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees