JPH0248184B2 - - Google Patents

Info

Publication number
JPH0248184B2
JPH0248184B2 JP61075302A JP7530286A JPH0248184B2 JP H0248184 B2 JPH0248184 B2 JP H0248184B2 JP 61075302 A JP61075302 A JP 61075302A JP 7530286 A JP7530286 A JP 7530286A JP H0248184 B2 JPH0248184 B2 JP H0248184B2
Authority
JP
Japan
Prior art keywords
weight
resin
conductivity
coating film
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61075302A
Other languages
Japanese (ja)
Other versions
JPS62230869A (en
Inventor
Kazumasa Eguchi
Fumio Nakaya
Shinichi Wakita
Hisatoshi Murakami
Tsunehiko Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP61075302A priority Critical patent/JPS62230869A/en
Priority to DE8787104248T priority patent/DE3782522T2/en
Priority to EP87104248A priority patent/EP0239901B1/en
Priority to US07/029,830 priority patent/US4789411A/en
Priority to CA000532964A priority patent/CA1287557C/en
Priority to AU70764/87A priority patent/AU608215B2/en
Priority to KR1019870003053A priority patent/KR910001805B1/en
Publication of JPS62230869A publication Critical patent/JPS62230869A/en
Publication of JPH0248184B2 publication Critical patent/JPH0248184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅粉末を含有する良好な導電性を有
する導電塗料に関し、より詳しくは、絶縁基板上
にスクリーン印刷などで導電回路を形成し、回路
の塗膜を加熱硬化させた後、該塗膜上にフラツク
ス剤を用いて直接半田付をすることができる導電
塗料に関する。 (従来技術) 銀ペーストの比抵抗は、10-4Ω・cm級と良好な
導電性を有するので、電子機器の印刷回路用材料
として従来から広く使用されてきたが、銀粉末は
高価であり、コストに占める割合も大きく、且つ
銀ペーストで形成された導電回路を湿気雰囲気中
で直流電圧を印加すると、銀マイグレーシヨンを
起し回路を短絡する事故が発生するので、銀ペー
ストに代替し得る安価な銅ペーストの出現が強く
要望されている。 銅粉末と熱硬化性樹脂とからなる導電性ペース
トの塗膜を加熱硬化させると、銅の活性化が大き
いため、空気中およびバインダーの樹脂中に含ま
れる酸素が銅粉末と化合して、その表面に酸化膜
を形成し著しくその導電性を阻害し、又は経時と
共に導電性が全く消失するものとなる。そのた
め、各種の添加剤を加えて、銅粉末の酸化を防止
し安定した導電性とした銅ペーストが種々開示さ
れている。しかし、その導電性は10-3Ω・cm級の
ものが多く、導電性の長期の安定性に難点があ
る。しかも、得られる銅ペーストの塗膜に、直接
半田付を適用することができない問題がある。 (発明が解決しようとする問題点) 公知の銅ペーストによつて絶縁基板上に形成さ
れた導電回路は、前記のように半田付が直接適用
することができないため、回路の塗膜に活性化処
理を施して無電解メツキするか、又は塗膜を陰極
としてメツキ液中で電気銅メツキを施した後に、
銅面上に半田付がなされる。かかる場合、塗膜と
銅メツキとの層間の結合が確実でないと実用に供
されない。 従つて、無電解メツキ又は/および電気メツキ
を施す必要のない半田付可能な銅ペーストが開発
されると、印刷回路の形成工程が大巾に短縮され
るのでその経済的メリツトは多大なものとなる。
ここに、銅ペーストとして具備すべき問題点は、
銀ペーストと同等な導電性を有すること、ス
クリーン印刷、凹版印刷、ハケおよびスプレー塗
りなどができること、絶縁基板上への塗膜の密
着性がよいこと、細線回路が形成できること、
塗膜上への半田付性がすぐれていること、半
田コートの導電回路の導電性が長期にわたつて維
持できること、である。 本発明は、かかる問題を解決することを目的と
するもので、半田付可能な導電塗料を提供するこ
とにある。 (問題点を解決するための手段) 本発明者らは、上記の問題を解決するために鋭
意検討を重ねた結果、金属銅粉にP―tert―ブチ
ルフエノール樹脂と金属表面活性化樹脂と熱硬化
性樹脂を予め配した樹脂混和物を加え、更に飽和
脂肪酸又は不飽和脂肪酸の金属塩と金属キレート
形成剤を配した導電塗料とすると、導電性が向上
し、且つその硬化塗膜上に極めて良好な半田付を
全面に施すことができることを見出して本発明を
完成させたものである。 本発明は、金属銅粉85〜95重量%と樹脂混和物
15〜5重量%(P―tert―ブチルフエノール樹脂
2〜30重量%、金属表面活性化樹脂2〜30重量
%、残部を熱硬化性樹脂とを配した樹脂混和物)
との合計100重量部に対して、飽和脂肪酸又は不
飽和脂肪酸の金属塩1〜8重量部と金属キレート
形成剤1〜50重量部を配して成ることを特徴とす
るものである。 ここにおいて、本発明で使用する金属銅粉と
は、片状、樹技状、球状、不定形状、などのいず
れの形状であつてもよく、その粒径は100μm以下
が好ましく、特に、1〜30μmが好ましい。粒径
が1μm未満のものは酸化されやすく、得られる塗
膜の導電性が低下し半田付性が悪くなる。 金属銅粉の配合量は、樹脂混和物との配合にお
いて85〜95重量%の範囲で用いられ、好ましくは
87〜93重量%である。 配合量が85重量%未満では、導電性が低下する
と共に半田付性が悪くなり、逆に95重量%を超え
るときは、金属銅粉が十分にバインドされず、得
られる塗膜も脆くなり、導電性が低下すると共に
スクリーン印刷性も悪くなる。 樹脂混和物のP―tert―ブチルフエノール樹脂
とは、P―tert―ブチルフエノールとホルマリン
とをアルカリ性触媒の存在下で加熱重合して得ら
れるもので、その重合度は50以下のものを使用す
ることが好ましい。 例えば、重合度が50をこえるものを使用し、得
られた塗膜を加熱硬化すると、バインドーとして
の熱硬化性樹脂の三次元網目構造の形成が阻害さ
れて、導電性を低下させる原因となる。 樹脂混和物中のP―tert―ブチルフエノール樹
脂の配合量は、2〜30重量%の範囲である。好ま
しくは5〜10重量%である。 配合量が2重量%未満では、得られた塗膜の加
熱硬化直後の導電性は良好な値を示すが、経時的
に導電性が低下するので好ましくなく、逆に30重
量%を超えるときは加熱硬化させた塗膜が脆くな
ると共に、配合された熱硬化性樹脂の三次元網目
構造の形成を阻害し、導電性を低下させるので好
ましくない。 樹脂混和物中の金属表面活性化樹脂とは、活性
ロジン、又は部分水添ロジン、完全水添ロジン、
エステル化ロジン、マレイン化ロジン、不均化ロ
ジン、重合ロジンなどの変性ロジンから選ばれる
少なくとも一種を使用する。好ましいロジンは活
性ロジン又はマレイン化ロジンである。 樹脂混和物中の金属表面活性化樹脂の配合量
は、2〜30重量%の範囲で用いられ、好ましくは
5〜10重量%である。配合量が2重量%未満で
は、半田付性が悪くなり、逆に30重量%を超える
ときは、導電性の低下をまねき、且つ半田付性に
対する増量効果も認められないので好ましくな
い。 樹脂混和物中の熱硬化性樹脂とは、本発明に係
る導電塗料中の金属銅粉およびその他の成分をバ
インドするものであり、常温で液状を呈する高分
子物質で、加熱硬化によつて高分子物質となるも
のであればよく、例えば、フエノール、アクリ
ル、エポキシ、ポリエステル、キシレン系樹脂な
どが用いられるがこれらに限定されない。なかで
もレゾール型フエノール樹脂は、好ましいものと
して用いられる。樹脂混和物中の熱硬化性樹脂の
配合量は96〜40重量%の範囲である。 上記より得られる樹脂混和物の配合量は、金属
銅粉との配合において、15〜5重量%の範囲で用
いられ、金属銅粉と樹脂混和物との合量を100重
量部とする。 かかる場合、樹脂混和物の配合量が、5重量%
未満では、金属銅粉が十分にバインドされず、得
られる塗膜も脆くなり、導電性が低下すると共に
スクリーン印刷性が悪くなり、逆に15重量%を超
えるときは、導電性が低下すると共に半田付性も
好ましいものとならない。 本発明に使用する飽和脂肪酸又は不飽和脂肪酸
の金属塩とは、飽和脂肪酸にあつては、炭素数16
〜20のパルミチン酸、ステアリン酸、アラキン酸
の、又は不飽和脂肪酸にあつては炭素数16〜18の
ゾーマリン酸、オレイン酸、リノレン酸のカリウ
ム塩又は銅塩若しくはアルミニウム塩などが用い
られる。これらの金属塩の使用は、金属銅粉と樹
脂混和物との配合において、金属銅粉の樹脂混和
物中への微細分散を促進し、導電性の良好な塗膜
を形成するので好ましい。 飽和脂肪酸又は不飽和脂肪酸の金属塩の配合量
は、金属銅粉と樹脂混和物の合計量100重量部に
対して1〜8重量部の範囲で用いられ、好ましく
は2〜6重量部である。 前記金属塩の配合量が、1重量部未満では、金
属銅粉の微細分散性が期待できず、逆に8重量部
を超えるときは、塗膜の導電性を低下させ、塗膜
と基板との密着性の低下をまねくので好ましくな
い。 本発明に使用する金属キレート形成剤とは、モ
ノエタノールアミン、ジエタノールアミン、トリ
エタノールアミン、エチレンジアミン、トリエチ
レンジアミン、トリエチレンテトラミンなどの脂
肪族アミンから選ばれる少なくとも一種を使用す
る。 添加する金属キレート形成剤は、金属銅粉の酸
化を防止し、導電性の維持に寄与すると共に、前
記金属表面活性化樹脂と相剰作用を示して半田付
性をより向上させる。例えば、金属銅粉と熱硬化
性樹脂、それに金属表面活性化樹脂との配合で
は、塗膜上に良好な半田付をすることができない
が、金属キレート形成剤を配することにより良好
な半田付をすることができるので、その相剰作用
としての役割は大きい。 金属キレート形成剤の配合量は、金属銅粉と樹
脂混和物の合計量100重量部に対して、1〜50重
量部の範囲で用いられ、好ましくは、5〜30重量
部である。金属キレート形成剤の配合量が、5重
量部未満では、導電性が低下し、且つ半田付性も
好ましいものとならない。逆に50重量部を超える
ときは、塗料自体の粘度が下がり過ぎて印刷性に
支障をきたすので好ましくない。 本発明に係る導電塗料には、粘度調整をするた
めに、通常の有機溶剤を適宜、使用することがで
きる。例えば、ブチルカルビトール、ブチルカル
ビトールアセテート、ブチルセルソルブ、メチル
イソブチルケトン、トルエン、キシレンなどの公
知の溶剤である。 (実施例) 先づ、P―tert―ブチルフエノール樹脂とマレ
イン化ロジンとレゾール型フエノールとを10:
10:80重量%の割合に配して三軸ロールで混練り
して樹脂混和物を調整する。次いで、粒径5〜
10μmの樹技状金属銅粉、樹脂混和物、オレイン
酸カリウムおよびトリエタノールアミンを第1表
に示す割合で配合(重量部)し、溶剤として若干
のブチルカルビトールを加えて20分間、三軸ロー
ルで混練りして導電塗料を調製した。これをスク
リーン印刷法によりガラス、エポキシ樹脂基板上
に、巾0.4mm、厚さ30±5μm、長さ520mmのS形導
電回路を形成し、130〜180℃×10〜60分間加熱し
て塗膜を硬化させた。 引続いて、形成させた導電回路上に半田付を施
すため、実際の工程で使用する半田レベラマシン
に通して、該基板を有機酸系のフラツクス槽に4
秒間浸漬し、次いで250℃の溶融半田槽(Pb/Sn
=40/60)中に5秒間浸漬して引上げると同時に
2〜2.5気圧、220〜230℃の熱風を吹きつけた後、
洗浄して導電回路全面に半田付をした。 上記の過程で得た導電回路について、諸特性を
調べた結果を第1表に示す。 ここに、塗膜の導電性とは、加熱硬化された塗
膜の体積固有抵抗を測定した値である。 塗膜の密着性とは、JIS K5400(1979)の碁盤
目試験方法に準じて、塗膜上に互に直交する縦横
11本づつの平行線を1mmの間隔で引いて、1cm2
に100個のます目ができるように碁盤目状の切り
傷を付け、その上からセロハンテープで塗膜を引
きはがしたときに、絶縁基基板上に残る塗膜の碁
盤目個数を求めたものである。 半田付性とは、塗膜上に半田付された状態を低
倍率の実体顕微鏡によつて観察し、下記の基準に
よつて評価した。 〇印:表面平滑で全面に半田が付着しているも
の △印:部分的に塗膜が露出しているもの ×印:部分的にしか半田が付着していないもの 耐熱性と抵抗変化率とは、半田付された塗膜を
80℃×1000時間加熱し、初期抵抗に対する抵抗変
化率を求めたものである。 耐湿性と抵抗変化率とは、半田付塗膜を55℃×
95%RH×1000時間の湿度雰囲気中に放置し、初
期抵抗に対する抵抗変化率を求めたものである。 印刷性とは、得られた導電塗料を用いてスクリ
ーン印刷法により導電回路を形成するに際して、
その印刷の容易性を観察し、下記の基準により評
価した。 〇印:導電回路の形成が良好なもの △印:導電回路の形成が稍々困難なもの ×印:導電回路の形成が困難なもの 第1表の実施例による塗膜に半田付された半田
コート厚は平均10μmである。結果からかるよう
に、実施例1〜6は、本発明に使用する特定の配
合材料が適切に組合わされているので、塗膜の導
電性、塗膜の密着性、半田付性、印刷性などの諸
特性が良好なものとなる。特に、得られた硬化塗
膜に通常の有機酸系のフラツクス剤を用いて直接
半田付を施すことができるので、導電回路の導電
性を×10-4Ω・cm級から×10-5Ω・cm級に向上さ
せることができ、より大きな電流を導電回路に流
すことができる。 又、半田付塗膜の導電性は耐熱性、耐湿性にも
すぐれ、その抵抗変化率も小さいので、加熱なら
びに高湿度の雰囲気においても使用できることが
わかる。 次に、比較例についてみると、比較例1は、金
属銅粉が多く、樹脂混和物が少ないため、金属銅
粉が十分にバインドされず、得られた塗膜も脆く
且つスクリーン印刷性が困難で好ましくない。 比較例2は、金属銅粉が少ないため、半田付に
おいて導電回路に部分的にしか半田が付着しない
ので好ましくない。比較例3は、不飽和脂肪酸の
金属塩が添加されていないため、半田付性が若干
低下すると共に、耐熱性および耐湿性における抵
抗変化率が大きくなつて好ましくない。比較例4
は、不飽和脂肪酸の金属塩量が多いため、塗膜の
密着性が悪く、好ましくない。比較例5は、金属
キレート形成剤が添加されていないため、半田付
性が低下し、耐熱性を耐湿性における抵抗変化率
が大きくなつて好ましくない。比較例6は、導電
キレート形成剤が多いため、塗料自体の粘度が下
がり過ぎ、印刷が困難となるので好ましくない。 他の例として、本発明に係る導電塗料の塗膜厚
30±5μmに厚さ5〜10μmの半田メツキを施した
場合の面積抵抗は0.01Ω/□以下を示し、電磁し
やへいに使用した場合、米国連邦通信委員会
(FCC)のクラスB(民生用)の許容値を十分に
下回る値(30〜100MHzで100μV/m以下)が得
られた。 そこで、銅張積層板よりエツチドフオル法によ
つて形成させた導電回路上に加熱硬化型又は紫外
線硬化型の半田レジストインクを塗布して絶縁層
を設け、該絶縁基層上に本発明に係る導電塗料を
用いて、下地の導電回路とほぼ同一なパターンを
スクリーン印刷によつてレジスト上に形成し、塗
膜を加熱硬化させた後半田レベラマシンによつて
塗膜回路全面に半田コートすることにより、有効
な電磁しやへい層を形成させることができ、しか
も静電しやへい層としても有効に活用することが
できる。 (発明の効果) 以上説明した如く、本発明に係る導電塗料は、
絶縁基板上に導電回路を形成させた後、その塗膜
を加熱硬化させて塗膜上に直接半田付をすること
ができるので、導電回路の導電性をより向上でき
ると共に、従来のように、回路の塗膜に活性化処
理を施して無電解メツキをするか又は電気メツキ
を行なう必要がないので、印刷回路の形成工程が
大巾に短縮され、経済的メリツトが多大となる。
又、本発明の導電塗料は、導電回路の形成以外に
電子機器部品、回路部品の電極、スルホール接続
剤、電磁、静電しやへい層などにも使用され、産
業上の利用価値が高い。 【表】
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a conductive paint containing copper powder and having good conductivity. , relates to a conductive paint that can be soldered directly onto a circuit coating film using a flux agent after the coating film is cured by heating. (Prior art) Silver paste has a resistivity of 10 -4 Ω・cm and has good conductivity, so it has been widely used as a material for printed circuits in electronic devices, but silver powder is expensive and has good conductivity. , silver paste accounts for a large proportion of the cost, and if a DC voltage is applied to a conductive circuit formed with silver paste in a humid atmosphere, silver migration will occur and the circuit will short-circuit, so silver paste can be used instead. There is a strong demand for the emergence of inexpensive copper pastes. When a conductive paste coating made of copper powder and thermosetting resin is heated and cured, the copper is highly activated, so oxygen contained in the air and in the binder resin combines with the copper powder, causing An oxide film is formed on the surface, significantly inhibiting its conductivity, or the conductivity completely disappears over time. Therefore, various copper pastes have been disclosed in which various additives are added to prevent copper powder from oxidizing and to provide stable conductivity. However, their conductivity is often on the order of 10 -3 Ωcm, which poses a problem in the long-term stability of their conductivity. Moreover, there is a problem in that the resulting copper paste coating cannot be directly soldered. (Problems to be Solved by the Invention) Conductive circuits formed on insulating substrates using known copper pastes cannot be directly applied with soldering as described above, so it is difficult to activate the coating film of the circuit. After treatment and electroless plating, or electrolytic copper plating in a plating solution using the coating film as a cathode,
Soldering is done on the copper surface. In such a case, it cannot be put to practical use unless the bond between the coating film and the copper plating is reliable. Therefore, the development of a solderable copper paste that does not require electroless plating and/or electroplating would have significant economic benefits as it would greatly shorten the printed circuit formation process. Become.
Here, the problems that should be addressed as a copper paste are:
It has conductivity equivalent to that of silver paste, it can be used in screen printing, intaglio printing, brushing and spray painting, it has good adhesion to insulating substrates, and it can form thin wire circuits.
It has excellent solderability on the paint film, and the conductivity of the conductive circuit of the solder coat can be maintained over a long period of time. The present invention aims to solve this problem and provides a solderable conductive paint. (Means for Solving the Problems) As a result of extensive studies in order to solve the above problems, the inventors of the present invention have developed a method of adding P-tert-butylphenol resin and metal surface activating resin to metallic copper powder. When a conductive paint is prepared by adding a resin mixture containing a curable resin in advance and further distributing a metal salt of a saturated fatty acid or an unsaturated fatty acid and a metal chelate forming agent, the conductivity is improved, and extremely The present invention was completed by discovering that good soldering can be applied to the entire surface. The present invention uses a mixture of 85 to 95% by weight of metallic copper powder and a resin.
15-5% by weight (resin mixture consisting of 2-30% by weight of P-tert-butylphenol resin, 2-30% by weight of metal surface activation resin, and the balance with thermosetting resin)
1 to 8 parts by weight of a metal salt of a saturated fatty acid or an unsaturated fatty acid and 1 to 50 parts by weight of a metal chelate forming agent. Here, the metallic copper powder used in the present invention may have any shape such as flake, tree, spherical, or irregular shape, and its particle size is preferably 100 μm or less, particularly 1 to 30 μm is preferred. Particles with a particle size of less than 1 μm are easily oxidized, resulting in decreased conductivity and poor solderability of the resulting coating film. The amount of metallic copper powder to be blended with the resin mixture is used in the range of 85 to 95% by weight, preferably
It is 87-93% by weight. If the amount is less than 85% by weight, the conductivity will decrease and the solderability will deteriorate; if it exceeds 95% by weight, the metallic copper powder will not be sufficiently bound and the resulting coating will become brittle. The conductivity decreases and the screen printability also deteriorates. The resin mixture P-tert-butylphenol resin is obtained by heating and polymerizing P-tert-butylphenol and formalin in the presence of an alkaline catalyst, and the degree of polymerization used is 50 or less. It is preferable. For example, if a material with a polymerization degree exceeding 50 is used and the resulting coating film is cured by heating, the formation of a three-dimensional network structure of the thermosetting resin as a binder will be inhibited, causing a decrease in electrical conductivity. . The amount of P-tert-butylphenol resin in the resin mixture is in the range of 2 to 30% by weight. Preferably it is 5 to 10% by weight. If the amount is less than 2% by weight, the conductivity of the resulting coating film immediately after heat curing will be good, but the conductivity will decrease over time, which is not preferable.On the other hand, if it exceeds 30% by weight, This is not preferable because the heat-cured coating film becomes brittle, inhibits the formation of a three-dimensional network structure of the blended thermosetting resin, and reduces electrical conductivity. The metal surface activated resin in the resin mixture includes activated rosin, partially hydrogenated rosin, fully hydrogenated rosin,
At least one selected from modified rosins such as esterified rosin, maleated rosin, disproportionated rosin, and polymerized rosin is used. Preferred rosins are active rosins or maleated rosins. The amount of the metal surface activating resin in the resin mixture ranges from 2 to 30% by weight, preferably from 5 to 10% by weight. If the amount is less than 2% by weight, the solderability will deteriorate, and if it exceeds 30% by weight, it will lead to a decrease in conductivity and no effect of increasing the amount on solderability will be observed, which is not preferable. The thermosetting resin in the resin mixture binds the metallic copper powder and other components in the conductive paint according to the present invention, and is a polymeric substance that is liquid at room temperature and hardens by heating. Any molecular substance may be used, and examples include, but are not limited to, phenol, acrylic, epoxy, polyester, and xylene resins. Among them, resol type phenolic resins are preferably used. The amount of thermosetting resin in the resin mixture ranges from 96 to 40% by weight. The blending amount of the resin mixture obtained above is used in the range of 15 to 5% by weight when mixed with the metal copper powder, and the total amount of the metal copper powder and the resin mixture is 100 parts by weight. In such a case, the blending amount of the resin mixture is 5% by weight.
If the amount is less than 15% by weight, the metallic copper powder will not be sufficiently bound and the resulting coating film will become brittle, resulting in decreased conductivity and poor screen printability.On the other hand, if it exceeds 15% by weight, the conductivity will decrease and Solderability is also not favorable. The metal salt of saturated fatty acid or unsaturated fatty acid used in the present invention refers to a saturated fatty acid having a carbon number of 16
-20 palmitic acid, stearic acid, arachidic acid, or in the case of unsaturated fatty acids, potassium salts, copper salts, or aluminum salts of zomarinic acid, oleic acid, linolenic acid, and the like having 16 to 18 carbon atoms are used. The use of these metal salts is preferable in blending the metallic copper powder and the resin mixture because it promotes fine dispersion of the metallic copper powder into the resin mixture and forms a coating film with good conductivity. The amount of the metal salt of saturated fatty acid or unsaturated fatty acid is used in the range of 1 to 8 parts by weight, preferably 2 to 6 parts by weight, based on 100 parts by weight of the total amount of metallic copper powder and resin mixture. . If the amount of the metal salt is less than 1 part by weight, fine dispersibility of the metallic copper powder cannot be expected, and if it exceeds 8 parts by weight, it will reduce the conductivity of the coating film and cause problems between the coating film and the substrate. This is undesirable because it leads to a decrease in the adhesion of the film. The metal chelate forming agent used in the present invention is at least one selected from aliphatic amines such as monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, triethylenediamine, and triethylenetetramine. The metal chelate forming agent added prevents oxidation of the metal copper powder, contributes to maintaining electrical conductivity, and exhibits a synergistic effect with the metal surface activating resin to further improve solderability. For example, with a combination of metallic copper powder, thermosetting resin, and metal surface activation resin, it is not possible to achieve good soldering on the paint film, but by disposing a metal chelate forming agent, good soldering can be achieved. Since it is possible to do this, it plays a major role as a synergistic effect. The amount of the metal chelate forming agent used is in the range of 1 to 50 parts by weight, preferably 5 to 30 parts by weight, based on 100 parts by weight of the total amount of the metal copper powder and the resin mixture. If the amount of the metal chelate forming agent is less than 5 parts by weight, the conductivity will decrease and the solderability will not be favorable. On the other hand, when it exceeds 50 parts by weight, the viscosity of the paint itself decreases too much, which impairs printability, which is not preferable. In order to adjust the viscosity, a conventional organic solvent can be appropriately used in the conductive paint according to the present invention. For example, known solvents include butyl carbitol, butyl carbitol acetate, butyl cellosolve, methyl isobutyl ketone, toluene, xylene, and the like. (Example) First, P-tert-butylphenol resin, maleated rosin, and resol type phenol were mixed in 10:
A resin mixture is prepared by distributing the resin mixture at a ratio of 10:80% by weight and kneading it with a triaxial roll. Next, particle size 5~
10 μm dendritic metallic copper powder, resin mixture, potassium oleate, and triethanolamine were mixed in the proportions shown in Table 1 (parts by weight), and a small amount of butyl carbitol was added as a solvent, and the mixture was triaxially heated for 20 minutes. A conductive paint was prepared by kneading with a roll. An S-shaped conductive circuit with a width of 0.4 mm, a thickness of 30 ± 5 μm, and a length of 520 mm is formed on a glass or epoxy resin substrate using the screen printing method, and the film is heated at 130 to 180°C for 10 to 60 minutes to form a film. hardened. Subsequently, in order to solder the formed conductive circuit, the board is passed through a solder leveler machine used in the actual process and placed in an organic acid-based flux bath for 4 hours.
immersed in a molten solder bath (Pb/Sn) at 250°C.
= 40/60) for 5 seconds and at the same time blowing hot air at 2 to 2.5 atm and 220 to 230℃.
I cleaned it and soldered the entire conductive circuit. Table 1 shows the results of examining various characteristics of the conductive circuit obtained through the above process. Here, the electrical conductivity of a coating film is a value obtained by measuring the volume resistivity of a heat-cured coating film. The adhesion of a paint film is determined by measuring vertical and horizontal lines perpendicular to each other on the paint film according to the grid test method of JIS K5400 (1979).
When 11 parallel lines are drawn at 1 mm intervals to create 100 squares in 1 cm2 , a checkerboard pattern is made, and the coating film is peeled off using cellophane tape. , the number of coating films remaining on the insulating substrate in a grid pattern was determined. Solderability was evaluated by observing the soldered state on the paint film using a low magnification stereoscopic microscope and using the following criteria. 〇 mark: The surface is smooth and the solder is adhered to the entire surface △ mark: The coating film is partially exposed × mark: The solder is only partially attached Heat resistance and resistance change rate The soldered coating is
It was heated at 80°C for 1000 hours and the rate of change in resistance relative to the initial resistance was determined. Moisture resistance and resistance change rate refer to the solder coating film at 55℃
It was left in a humid atmosphere of 95% RH for 1000 hours, and the rate of change in resistance relative to the initial resistance was determined. Printability refers to the ability to form a conductive circuit using the obtained conductive paint by screen printing.
The ease of printing was observed and evaluated according to the following criteria. ○ mark: Good conductive circuit formation △ mark: Slightly difficult conductive circuit formation × mark: Conductive circuit formation difficult Solder soldered to the coating film according to the examples in Table 1 The average coating thickness is 10 μm. As can be seen from the results, in Examples 1 to 6, the specific compounding materials used in the present invention were appropriately combined, so the conductivity of the coating film, the adhesion of the coating film, the solderability, the printability, etc. The various properties of this material are improved. In particular, since the obtained cured coating film can be directly soldered using a normal organic acid flux agent, the conductivity of the conductive circuit can be increased from ×10 -4 Ω・cm to ×10 -5 Ω.・Can be improved to cm class, allowing larger current to flow through conductive circuits. Furthermore, the conductivity of the soldered coating film is excellent in heat resistance and moisture resistance, and the rate of change in resistance is small, so it can be used even in heated and high humidity environments. Next, looking at Comparative Examples, Comparative Example 1 has a large amount of metallic copper powder and a small amount of resin mixture, so the metallic copper powder is not sufficiently bound, and the resulting coating film is also brittle and difficult to screen print. So it's not desirable. Comparative Example 2 is not preferable because the amount of metallic copper powder is small, so that the solder only partially adheres to the conductive circuit during soldering. In Comparative Example 3, since no metal salt of unsaturated fatty acid was added, the solderability was slightly lowered and the rate of change in resistance in heat resistance and moisture resistance was increased, which is not preferable. Comparative example 4
Since the amount of metal salts of unsaturated fatty acids is large, the adhesion of the coating film is poor and is therefore undesirable. In Comparative Example 5, since no metal chelate forming agent was added, the solderability decreased and the rate of change in resistance between heat resistance and moisture resistance increased, which is not preferable. Comparative Example 6 is not preferable because it contains a large amount of conductive chelate forming agent, so the viscosity of the paint itself decreases too much, making printing difficult. As another example, the coating thickness of the conductive paint according to the present invention
When soldering 30±5μm with a thickness of 5 to 10μm, the sheet resistance is 0.01Ω/□ or less, and when used for electromagnetic protection, it meets the US Federal Communications Commission (FCC) Class B (commercial A value well below the allowable value (100 μV/m or less at 30 to 100 MHz) was obtained. Therefore, an insulating layer is provided by coating a heat-curable or ultraviolet-curable solder resist ink on a conductive circuit formed from a copper-clad laminate by the etched film method, and the conductive coating according to the present invention is applied on the insulating base layer. A pattern almost identical to the underlying conductive circuit is formed on the resist by screen printing, and the entire surface of the coating circuit is coated with solder using a solder leveler machine that heats and hardens the coating. It is possible to form a strong electromagnetic shielding layer, and it can also be effectively used as an electrostatic shielding layer. (Effect of the invention) As explained above, the conductive paint according to the present invention has
After forming a conductive circuit on an insulating substrate, the coating film can be heated and cured and soldered directly onto the coating film, which not only improves the conductivity of the conductive circuit, but also improves the conductivity of the conductive circuit. Since there is no need to activate the circuit coating and perform electroless plating or electroplating, the printed circuit formation process is greatly shortened and the economic benefits are significant.
In addition to forming conductive circuits, the conductive paint of the present invention can also be used for electronic device parts, electrodes of circuit parts, through-hole connecting agents, electromagnetic and electrostatic resistance layers, and has high industrial utility value. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 塗料を構成する成分の割合を金属銅粉85〜95
重量%と樹脂混和物15〜5重量%(P―tert―ブ
チルフエノール樹脂2〜30重量%、金属表面活性
化樹脂2〜30重量%、残部を熱硬化性樹脂とから
成る樹脂混和物)との合計100重量部に対して、
飽和脂肪酸又は不飽和脂肪酸の金属塩1〜8重量
部と金属キレート形成剤1〜50重量部とを配合し
て成ることを特徴とする半田付可能な導電塗料。
1. The ratio of the components that make up the paint is 85 to 95% of the metallic copper powder.
% by weight and a resin mixture of 15-5% by weight (resin mixture consisting of 2-30% by weight of P-tert-butylphenol resin, 2-30% by weight of metal surface activated resin, and the balance of thermosetting resin). For a total of 100 parts by weight of
1. A solderable electrically conductive paint comprising 1 to 8 parts by weight of a metal salt of a saturated or unsaturated fatty acid and 1 to 50 parts by weight of a metal chelate forming agent.
JP61075302A 1986-03-31 1986-03-31 Electrically conductive coating compound to be soldered Granted JPS62230869A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61075302A JPS62230869A (en) 1986-03-31 1986-03-31 Electrically conductive coating compound to be soldered
DE8787104248T DE3782522T2 (en) 1986-03-31 1987-03-23 CONDUCTIVE COPPER PASTE COMPOSITION.
EP87104248A EP0239901B1 (en) 1986-03-31 1987-03-23 Conductive copper paste composition
US07/029,830 US4789411A (en) 1986-03-31 1987-03-24 Conductive copper paste composition
CA000532964A CA1287557C (en) 1986-03-31 1987-03-25 Conductive copper paste composition
AU70764/87A AU608215B2 (en) 1986-03-31 1987-03-30 Conductive copper paste composition
KR1019870003053A KR910001805B1 (en) 1986-03-31 1987-03-31 Conductive copper paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61075302A JPS62230869A (en) 1986-03-31 1986-03-31 Electrically conductive coating compound to be soldered

Publications (2)

Publication Number Publication Date
JPS62230869A JPS62230869A (en) 1987-10-09
JPH0248184B2 true JPH0248184B2 (en) 1990-10-24

Family

ID=13572319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61075302A Granted JPS62230869A (en) 1986-03-31 1986-03-31 Electrically conductive coating compound to be soldered

Country Status (1)

Country Link
JP (1) JPS62230869A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195611A (en) * 1988-01-30 1989-08-07 Tatsuta Electric Wire & Cable Co Ltd Flat cable
JPH01253115A (en) * 1988-03-31 1989-10-09 Tatsuta Electric Wire & Cable Co Ltd Tape-shaped electric wire
JPH01253116A (en) * 1988-03-31 1989-10-09 Tatsuta Electric Wire & Cable Co Ltd Tape-shaped electric wire
US9190188B2 (en) * 2013-06-13 2015-11-17 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film copper conductor compositions
US9637648B2 (en) 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a solderable polymer thick film copper conductor composition
US9637647B2 (en) 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a polymer thick film copper conductor composition
CN110491543B (en) * 2019-07-30 2021-06-08 北京氦舶科技有限责任公司 Conductive silver paste for touch screen and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897892A (en) * 1981-12-07 1983-06-10 三井東圧化学株式会社 Method of forming conductive circuit
JPS58160372A (en) * 1982-03-17 1983-09-22 Toshiba Chem Corp Conductive paste
JPS6058268A (en) * 1983-09-08 1985-04-04 Tsudakoma Ind Co Ltd Motor controlling method of roller contact type liquid agent applying apparatus
JPS6131454A (en) * 1984-07-23 1986-02-13 Tatsuta Electric Wire & Cable Co Ltd Electrically-conductive copper paste composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897892A (en) * 1981-12-07 1983-06-10 三井東圧化学株式会社 Method of forming conductive circuit
JPS58160372A (en) * 1982-03-17 1983-09-22 Toshiba Chem Corp Conductive paste
JPS6058268A (en) * 1983-09-08 1985-04-04 Tsudakoma Ind Co Ltd Motor controlling method of roller contact type liquid agent applying apparatus
JPS6131454A (en) * 1984-07-23 1986-02-13 Tatsuta Electric Wire & Cable Co Ltd Electrically-conductive copper paste composition

Also Published As

Publication number Publication date
JPS62230869A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
EP0239901B1 (en) Conductive copper paste composition
JP4935592B2 (en) Thermosetting conductive paste
EP0169060A2 (en) Solderable conductive compositions, their use as coatings on substrates, and compositions useful in forming them
JP2619289B2 (en) Copper conductive composition
JP2514516B2 (en) Solderable conductive paste
KR20140038413A (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JPH0216172A (en) Solderable conductive paint
JP2002265920A (en) Electroconductive adhesive and circuit using the same
JPH0248184B2 (en)
JPH0377202A (en) Conductive composite
JPH0367402A (en) Conducting composition material
JPH0248186B2 (en)
JPS6383179A (en) Solderable conductive coating material
JPH0248185B2 (en)
JPH0248187B2 (en)
JPH0248183B2 (en)
JPH0662900B2 (en) Conductive paint
JPH064791B2 (en) Conductive paint
JP2628734B2 (en) Conductive paste
JP2963518B2 (en) Conductive paste composition
JP2847563B2 (en) Electron beam-curable conductive paste composition
JPH0368553B2 (en)
JPH0415270A (en) Electrically conductive paste
JP3083146B2 (en) Conductive paste composition
JPH036254A (en) Solderable conductive coating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees