JPH0243837B2 - - Google Patents

Info

Publication number
JPH0243837B2
JPH0243837B2 JP60144380A JP14438085A JPH0243837B2 JP H0243837 B2 JPH0243837 B2 JP H0243837B2 JP 60144380 A JP60144380 A JP 60144380A JP 14438085 A JP14438085 A JP 14438085A JP H0243837 B2 JPH0243837 B2 JP H0243837B2
Authority
JP
Japan
Prior art keywords
electrode
polyvinyl chloride
polypyrrole
film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60144380A
Other languages
Japanese (ja)
Other versions
JPS624898A (en
Inventor
Fumio Mizutani
Seiichiro Iijima
Giichi Tanabe
Keishiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60144380A priority Critical patent/JPS624898A/en
Publication of JPS624898A publication Critical patent/JPS624898A/en
Publication of JPH0243837B2 publication Critical patent/JPH0243837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な電極触媒及びその製造方法に
関するものである。本発明の産業上の利用分野と
しては、有機合成化学工業、電池、燃料電池等の
エネルギー関連産業等に好適である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel electrocatalyst and a method for producing the same. The present invention is suitable for industrial application fields such as organic synthetic chemical industry, energy-related industries such as batteries and fuel cells.

従来の技術 従来から、触媒機能を有する粒子を高分子膜中
に分散・担持して成る高分子膜被覆電極について
は研究がなされている(例えばK.Doblhofer and
W.Duerr J.Electrochem.Soc.,127巻,1041ペー
ジ,1980年)。しかしながら利用する高分子膜が
汎用の絶縁性のものであるので、触媒反応に伴う
電子の移動速度が小さく、従つて触媒反応速度を
大きくし難かつた。この欠点は、高分子膜に導電
性を賦与することにより解決できるが、知られて
いる導電性高分子材料のほとんどは溶媒に不溶で
あり、また加熱溶融も不可能なところから成膜が
困難であつた。さらに、これら導電性高分子材料
中への粒子の混入、保持を始めとして、非イオン
性の目的成分の材料中への導入は極めて困難が伴
つた。
Conventional technology Research has been conducted on polymer membrane-coated electrodes in which particles with catalytic functions are dispersed and supported in a polymer membrane (for example, K. Doblhofer and
W. Duerr J. Electrochem. Soc., vol. 127, p. 1041, 1980). However, since the polymer membrane used is a general-purpose insulating one, the speed of electron movement accompanying the catalytic reaction is low, making it difficult to increase the catalytic reaction rate. This drawback can be overcome by imparting conductivity to the polymer film, but most of the known conductive polymer materials are insoluble in solvents and cannot be melted by heating, making film formation difficult. It was hot. Furthermore, it is extremely difficult to mix and retain particles into these conductive polymer materials and to introduce nonionic target components into the materials.

一方、近年の導電性高分子材料の進歩、特に電
解重合による導電性高分子膜の形成とその電極材
料への応用技術の向上と共に、電解重合により形
成された導電性高分子膜中へ触媒機能を有する分
子を導入する方法が開発されてきた(例えば、
R.A.Bullら,J.Electrochem.Soc.,131巻,687ペ
ージ(1984):M.V.Rosenthalら,J.Cheun.Soc.,
Chem.Commun.,1985巻,342ページ)。しかし
ながら、これらの方法は静電力あるいは化学結合
により目的分子を導入するものであり、粒子を分
散・担持しうる方法ではない。
On the other hand, recent advances in conductive polymer materials, especially improvements in the formation of conductive polymer membranes by electrolytic polymerization and their application to electrode materials, have led to the development of catalytic functions in conductive polymer membranes formed by electrolytic polymerization. Methods have been developed to introduce molecules with
RABull et al., J. Electrochem. Soc., vol. 131, p. 687 (1984): MV Rosenthal et al., J. Cheun. Soc.,
Chem.Commun., vol. 1985, p. 342). However, these methods introduce target molecules by electrostatic force or chemical bonding, and are not methods that can disperse and support particles.

また、最近ポリ塩化ビニルなど熱可塑性の汎用
高分子膜を表面に形成して成る電極を作用極とし
てピロールを含有する電解質溶液中に挿入して陽
分極とする電解重合生成物である導電性高分子ポ
リピロールが上記の汎用高分子膜内部にネツトワ
ークを形成して、被覆高分子が導電体化するとの
知見が得られているが(O.Niwa and T.
Teraoka,J.Chem.Soc.,Chem.Commun.,1984
巻,817ページ)、この知見は汎用高分子の導電体
化のみにとどまつている。
In addition, recently, electroconductive polymers, which are electrolytic polymerization products that are polarized by inserting an electrode formed with a general-purpose thermoplastic polymer film such as polyvinyl chloride on the surface as a working electrode into an electrolyte solution containing pyrrole, have been developed. It has been found that the polypyrrole molecule forms a network inside the above-mentioned general-purpose polymer membrane, and the coating polymer becomes a conductor (O.Niwa and T.
Teraoka, J.Chem.Soc., Chem.Commun., 1984
(Volume, page 817), this knowledge is limited to making general-purpose polymers conductive.

発明が解決しようとする問題点 本発明者らは、粒子の触媒機能を十分に発揮で
きる電極触媒およびその簡便な製造方法とを開発
するために鋭意研究を重ねた結果、上記粒子を担
持する担体としての導電性のポリピロールとポリ
塩化ビニルとの混合物を利用して成る電極触媒、
及び上記粒子を担持したポリ塩化ビニル膜被覆電
極を先ず作製し、次いでこの電極上でピロールの
電解重合を行つて担体を導電性のポリピロール−
ポリ塩化ビニル混合物に変える方法が、それぞ
れ、目的にかなうことを見いだし、本発明をなす
に至つた。
Problems to be Solved by the Invention The present inventors have conducted intensive research to develop an electrode catalyst that can fully exhibit the catalytic function of particles, and a simple manufacturing method thereof. An electrocatalyst made of a mixture of conductive polypyrrole and polyvinyl chloride,
A polyvinyl chloride film-covered electrode supporting the above particles is first prepared, and then pyrrole is electrolytically polymerized on this electrode to transform the carrier into conductive polypyrrole.
It has been found that different methods of converting to polyvinyl chloride mixtures are suitable for the purpose, leading to the present invention.

問題点を解決するための手段 すなわち、本発明は、基板電極上に形成したポ
リピロールとポリ塩化ビニルとの混合物から成る
導電性担体膜と、この膜中に担持された電解酸化
あるいは還元の触媒機能を有する固体粒子とから
構成されることを特徴とする電極触媒、及び上記
電極触媒を製造する方法として、基板電極上に上
記固体粒子を分散・担持させたポリ塩化ビニル膜
を形成し、次いでこの粒子分散ポリ塩化ビニル膜
で被覆された基板電極を作用極としてピロールと
電解質とを含むアセトニトリル溶液中でピロール
の電解酸化重合を行つて、担体高分子膜を導電体
であるポリピロールとポリ塩化ビニルとの混合物
に変えることを特徴とする方法とを提供するもの
である。
Means for Solving the Problems That is, the present invention provides a conductive carrier film made of a mixture of polypyrrole and polyvinyl chloride formed on a substrate electrode, and a catalyst function for electrolytic oxidation or reduction supported in this film. An electrode catalyst characterized in that it is composed of solid particles having Electrolytic oxidative polymerization of pyrrole is performed in an acetonitrile solution containing pyrrole and an electrolyte using a substrate electrode coated with a particle-dispersed polyvinyl chloride film as a working electrode, thereby converting the carrier polymer film into polypyrrole and polyvinyl chloride, which are conductors. The present invention provides a method of converting the mixture into a mixture of

本発明において分散、担持されるべき触媒粒子
は、後述のピロールの電解酸化重合の過程におい
て、電気化学的な分解や、電解質溶液中への溶解
を起こさぬものであれば、金属、無機物、有機物
粒子あるいはこれらの混合粒子のいずれであつて
も良く、これらが適宜利用される。例えば、金属
粒子では白金、金、パラジウム等の粒子は上記の
条件を満足し、酸化還元触媒として好都合に利用
できる。また、無機物粒子では、例えばTiO2
粒子等は光触媒機能電極等に好都合に用いられ
る。さらに、有機物粒子では、例えば、フタロシ
アニン、ポリフイリン等の粒子は、酸化還元触
媒、光触媒機能電極の構成等に好都合に用いられ
る。
The catalyst particles to be dispersed and supported in the present invention are metals, inorganic substances, and organic substances as long as they do not cause electrochemical decomposition or dissolution in the electrolyte solution during the electrolytic oxidation polymerization process of pyrrole described below. The particles may be either particles or mixed particles thereof, and these may be used as appropriate. For example, among metal particles, particles of platinum, gold, palladium, etc. satisfy the above conditions and can be conveniently used as a redox catalyst. Furthermore, among inorganic particles, for example, TiO 2 particles are conveniently used for photocatalytic functional electrodes and the like. Further, among organic particles, for example, particles of phthalocyanine, polyphylline, etc. are conveniently used in the construction of redox catalysts, photocatalytic functional electrodes, and the like.

本発明において、用いられる基板電極として
は、後述のピロールの電解酸化重合時に溶解、不
働態化等を起こさぬ電極である必要があり、この
条件にかなうものとして白金、金などの貴金属か
ら成る電極、酸化スズ、酸化インジウム等の金属
酸化物から成る電極、及びグラフアイト、カーボ
ン等の電極が挙げられる。
In the present invention, the substrate electrode used must be an electrode that does not dissolve or passivate during electrolytic oxidative polymerization of pyrrole, which will be described later. Examples include electrodes made of metal oxides such as tin oxide and indium oxide, and electrodes made of graphite and carbon.

本発明においては、上記基板電極上に上記粒子
を分散・担持させたポリ塩化ビニル膜をピロール
の電解酸化重合に先立つて形成する訳であるが、
この膜の形成方法としては、ポリ塩化ビニルを適
当な溶剤、例えばテトラヒドロフラン中に溶解し
た状態で粒子と混合し、この混合物を基板電極上
に展開して溶媒を蒸発・除去させる方法、あるい
はポリ塩化ビニルを加熱して融液の状態として粒
子を混合し、混合物を塗布した後、冷却、硬化さ
せる等の方法が、適宜採用される。次いで、ピロ
ールの電解重合であるが、上記粒子分散ポリ塩化
ビニル膜被覆電極を作用極として、ピロールと電
解質とを含むアセトニトリル溶液中で陽分極し
て、ピロールの電解酸化重合によりポリピロール
−ポリ塩化ビニル混合物からなる担体を得る。電
解質としては、過塩素酸リチウム、過塩素酸テト
ラエチルアンモニウム、過塩酸素テトラ−n−ブ
チルアンモニウム、テトラエチルアンモニウムフ
ルオロボレート、テトラ−n−ブチルアンモニウ
ムフルオロボレート等の汎用されるものが利用で
き、例えば、0.05−1Mピロール、0.1−0.5M過塩
素酸リチウムを含むアセトニトリル溶液が、電解
酸化重合にきわめて好都合に利用される。電解酸
化重合に当たつては、定電流法、定電位法等の汎
用の電解方法が採用され、対極としては汎用され
る貴金属電極等が利用でき、参照極としては、
銀、銀−過塩素酸銀、銀−塩化銀電極等の汎用さ
れるものが利用できる。定電流法、定電位法のい
ずれの方法による場合も、電流密度は、作用極1
cm2当たり10μA−1A程度の範囲で電解を行い、ポ
リピロールの生成量は通電量を適宜制御し、先に
被覆したポリ塩化ビニル膜の重量との比が0.2〜
5程度の範囲であることが望ましい。
In the present invention, a polyvinyl chloride film in which the particles are dispersed and supported on the substrate electrode is formed prior to electrolytic oxidative polymerization of pyrrole.
This film can be formed by mixing polyvinyl chloride dissolved in a suitable solvent, such as tetrahydrofuran, with particles, spreading this mixture on a substrate electrode, and evaporating and removing the solvent; A method may be employed as appropriate, such as heating vinyl to form a melt, mixing particles therein, applying the mixture, and then cooling and curing the mixture. Next, in the electrolytic polymerization of pyrrole, using the particle-dispersed polyvinyl chloride film-covered electrode as a working electrode, the electrode is anodically polarized in an acetonitrile solution containing pyrrole and an electrolyte, and polypyrrole-polyvinyl chloride is formed by electrolytic oxidative polymerization of pyrrole. A carrier consisting of a mixture is obtained. As the electrolyte, commonly used electrolytes such as lithium perchlorate, tetraethylammonium perchlorate, tetra-n-butylammonium oxygen perchlorate, tetraethylammonium fluoroborate, and tetra-n-butylammonium fluoroborate can be used, for example, An acetonitrile solution containing 0.05-1M pyrrole, 0.1-0.5M lithium perchlorate is very conveniently utilized for electrolytic oxidative polymerization. For electrolytic oxidation polymerization, general-purpose electrolytic methods such as constant current method and constant potential method are adopted, and a commonly used noble metal electrode can be used as a counter electrode, and as a reference electrode,
Commonly used electrodes such as silver, silver-silver perchlorate, and silver-silver chloride electrodes can be used. In both the constant current method and the constant potential method, the current density is
Electrolysis is carried out in the range of about 10 μA - 1 A per cm 2 , and the amount of polypyrrole produced is controlled appropriately by the amount of current applied, and the ratio to the weight of the polyvinyl chloride film coated previously is 0.2 to 1.
A range of about 5 is desirable.

次に実施例により本発明をさらに具体的に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 白金黒分散型ポリ塩化ビニル−ポリピロール電
極の調製と水素イオンの還元及び水素の酸化反
応 白金黒(半井化学)20mgをポリ塩化ビニル(東
京化成)1mgと共にテトラヒドロフラン1ml中に
加え、充分かくはんしてポリ塩化ビニルを溶解せ
しめた後、この混合液10μを採り、面積0.2cm2
グラツシーカーボン上に展開し、風乾して電極
を得た。別途に、ポリ塩化ビニル1mgをテトラヒ
ドロフラン1mlに溶解させた溶液10μを面積0.2
cm2のグラツシーカーボン上に展開し、風乾して電
極を得た。次いで、電極を0.3M過塩素酸リ
チウム及び0.2Mピロールを含むアセトニトリル
中に挿入し、対極として面積3cm2の白金を挿入
し、アルゴンふん囲気中、室温下で、60μAの定
電流規制下、電極を陽極として12分間電解して
白金黒−ポリ塩化ビニル−ポリピロール膜電極を
得た。別途に、電極を陽極として上記と同様の
操作によりポリ塩化ビニル−ポリピロール膜電極
を得た。
Example 1 Preparation of platinum black dispersed polyvinyl chloride-polypyrrole electrode and hydrogen ion reduction and hydrogen oxidation reaction 20 mg of platinum black (Hani Kagaku) and 1 mg of polyvinyl chloride (Tokyo Kasei) were added to 1 ml of tetrahydrofuran, and stirred thoroughly. After dissolving the polyvinyl chloride, 10 μm of this mixed solution was taken, spread on glassy carbon with an area of 0.2 cm 2 , and air-dried to obtain an electrode. Separately, add 10μ of a solution of 1mg of polyvinyl chloride dissolved in 1ml of tetrahydrofuran to an area of 0.2
It was spread on a cm 2 glassy carbon and air-dried to obtain an electrode. Next, the electrode was inserted into acetonitrile containing 0.3M lithium perchlorate and 0.2M pyrrole, and platinum with an area of 3 cm 2 was inserted as a counter electrode, and the electrode was heated under a constant current regulation of 60 μA at room temperature in an argon atmosphere. was used as an anode for 12 minutes to obtain a platinum black-polyvinyl chloride-polypyrrole membrane electrode. Separately, a polyvinyl chloride-polypyrrole membrane electrode was obtained by the same operation as above using the electrode as an anode.

得られた白金黒−ポリ塩化ビニル−ポリピロー
ル膜電極あるいはポリ塩化ビニル−ポリピロール
電極を作用極とし、銀−塩化銀電極を参照極、白
金ワイヤを対極として、0.1M過塩素酸水溶液中、
アルゴンあるいは水素ふん囲気下で電流−電圧特
性を調べた。
The obtained platinum black-polyvinyl chloride-polypyrrole membrane electrode or polyvinyl chloride-polypyrrole electrode was used as a working electrode, the silver-silver chloride electrode was used as a reference electrode, and the platinum wire was used as a counter electrode in a 0.1M perchloric acid aqueous solution.
Current-voltage characteristics were investigated under an argon or hydrogen atmosphere.

第1図は、上記電流−電圧特性を示すグラフで
あつて、図中曲線1及び2は、白金黒−ポリ塩化
ビニル−ポリピロール電極を作用極として、それ
ぞれアルゴン及び水素ふん囲気下で測定した電流
−電圧曲線を示し、図中曲線3及び4は、ポリ塩
化ビニル−ポリピロール電極を作用極として、そ
れぞれアルゴン及水素ふん囲気下で測定した電流
−電圧曲線を示している。いずれも電位を
50mV/秒の速度でくり返し掃引した時の結果で
ある。図中の曲線1あるいは2と3あるいは4と
を比較すると明らかな通り、全ての電位域での電
流値は、白金黒を有する電極の方が極めて大き
く、また、電極からのプロトン還元による水素発
生が、−0.3V近傍から認められた。一方、白金黒
を有しない電極では−0.4Vでも水素発生は観測
されず、白金黒の導入によりプロトン還元の活性
が著しく高まつたことが明示される。また曲線3
及び4を比較すると全て一致しているが、曲線1
及び2を比較すると、+0.15V近傍での酸化電流
値は2の方が大きいことがわかる。この酸化電流
は、水素の酸化によるプロトン生成に基づくもの
であり、水素ふん囲気でこの電流値が大きくなつ
たことは、白金黒を有する電極では、これを有し
ない電極と異なり、水素の酸化の活性をも示すこ
とを表わしている。すなわち、白金黒−ポリ塩化
ビニル−ポリピロール電極はプロトン/水素系の
酸化還元触媒として有用なことがわかる。
FIG. 1 is a graph showing the above-mentioned current-voltage characteristics, in which curves 1 and 2 are currents measured under argon and hydrogen atmospheres, respectively, using a platinum black-polyvinyl chloride-polypyrrole electrode as the working electrode. - Voltage curves are shown, and curves 3 and 4 in the figure show current-voltage curves measured under an argon and hydrogen atmosphere, respectively, using a polyvinyl chloride-polypyrrole electrode as a working electrode. In both cases, the potential
This is the result when repeated sweeps were performed at a rate of 50 mV/sec. As is clear from comparing curves 1 or 2 with curves 3 or 4 in the figure, the current value in all potential ranges is extremely large for the electrode with platinum black, and hydrogen is generated by proton reduction from the electrode. was observed from around -0.3V. On the other hand, with the electrode without platinum black, no hydrogen generation was observed even at −0.4 V, clearly indicating that the proton reduction activity was significantly increased by the introduction of platinum black. Also curve 3
Comparing curves 1 and 4, they all agree, but curve 1
Comparing 2 and 2, it can be seen that 2 has a larger oxidation current value near +0.15V. This oxidation current is based on the production of protons due to hydrogen oxidation, and the fact that this current value increases in a hydrogen atmosphere is due to the fact that the electrode with platinum black is different from the electrode without platinum black due to the oxidation of hydrogen. This indicates that it also shows activity. That is, it can be seen that the platinum black-polyvinyl chloride-polypyrrole electrode is useful as a proton/hydrogen-based redox catalyst.

実施例 2 コバルトフタロシアニン分散型ポリ塩化ビニル
−ポリピロール電極の調製と過酸化水素の酸化
還元反応 コバルトフタロシアニン(コダツク)50mgをア
セトン1.5ml中に分散し、ボールミル(スペツク
ス5100型)で1時間振とうして、コバルトフタロ
シアニンを微粉末化した後、アセトンを蒸発させ
た。このようにして得られたコバルトフタロシア
ニン微粉末4mgをポリ塩化ビニル(東京化成)1
mgと共にテトラヒドロフラン1ml中に加えて、充
分かくはんしてポリ塩化ビニルを溶解せしめた
後、この混合液10μを採り、面積0.2cm2のグラツ
シーカーボン上に展開し、風乾した。このように
して得られたコバルトフタロシアニン含有膜被覆
電極を作用極として実施例1と同様の手法でコバ
ルトフタロシアニン−ポリ塩化ビニル−ポリピロ
ール膜電極を作製した。
Example 2 Preparation of cobalt phthalocyanine-dispersed polyvinyl chloride-polypyrrole electrode and redox reaction of hydrogen peroxide 50 mg of cobalt phthalocyanine (Kodak) was dispersed in 1.5 ml of acetone and shaken for 1 hour in a ball mill (Specks 5100 model). After pulverizing the cobalt phthalocyanine, the acetone was evaporated. 4 mg of cobalt phthalocyanine fine powder thus obtained was added to polyvinyl chloride (Tokyo Kasei) 1
After adding 1 ml of tetrahydrofuran together with 1 ml of tetrahydrofuran and thoroughly stirring to dissolve the polyvinyl chloride, 10 µ of this mixture was taken, spread on glassy carbon having an area of 0.2 cm 2 , and air-dried. A cobalt phthalocyanine-polyvinyl chloride-polypyrrole membrane electrode was prepared in the same manner as in Example 1 using the thus obtained cobalt phthalocyanine-containing membrane-coated electrode as a working electrode.

得られたコバルトフタロシアニン−ポリ塩化ビ
ニル−ポリピロール膜電極あるいは実施例1で作
製したポリ塩化ビニル−ポリピロール電極を作用
極として、銀−塩化銀電極を参照極、白金ワイヤ
を対極とし、0.1M過塩素酸水溶液中、アルゴン
ふん囲気化で電流−電圧特性を調べた。
The obtained cobalt phthalocyanine-polyvinyl chloride-polypyrrole membrane electrode or the polyvinyl chloride-polypyrrole electrode prepared in Example 1 was used as the working electrode, the silver-silver chloride electrode was used as the reference electrode, the platinum wire was used as the counter electrode, and 0.1M perchlorine was used. Current-voltage characteristics were investigated in an acid aqueous solution under argon atmosphere.

第2図は、上記電流−電圧特性を示すグラフで
あつて、図中曲線1及び2はコバルトフタロシア
ニン−ポリ塩化ビニル−ポリピロール電極を作用
極として、それぞれ0及び8mMの過酸化水素を
添加した溶液中での電流−電圧曲線を示し、図中
曲線3及び4はポリ塩化ビニル−ポリピロール膜
電極を作用極として、それぞれ0及び8mMの過
酸化水素を添加した溶液中での電流−電圧曲線を
示している。いずれも電位を50mV/秒の速度で
くり返し掃引して測定した時の結果である。図中
の曲線3と4とを比較すると、ほとんど変化はな
く、ポリ塩化ビニル−ポリピロール膜電極は過酸
化水素の酸化還元にほとんど触媒作用を示さない
ことがわかる。これに対し、図中の曲線2は曲線
1に比べて+0.2Vより卑な電位域では還元電流
が、また、+0.6Vより貴な電位域では酸化電流
が、それぞれ大きくなつており、それぞれ過酸化
水素の還元および酸化反応を促進させる触媒作用
を有していることがわかる。
FIG. 2 is a graph showing the above-mentioned current-voltage characteristics, in which curves 1 and 2 are solutions obtained by adding 0 and 8 mM hydrogen peroxide, respectively, using a cobalt phthalocyanine-polyvinyl chloride-polypyrrole electrode as a working electrode. Curves 3 and 4 in the figure show current-voltage curves in a solution containing 0 and 8 mM hydrogen peroxide, respectively, using a polyvinyl chloride-polypyrrole membrane electrode as a working electrode. ing. Both results were measured by repeatedly sweeping the potential at a rate of 50 mV/sec. Comparing curves 3 and 4 in the figure, there is almost no change, indicating that the polyvinyl chloride-polypyrrole membrane electrode exhibits almost no catalytic effect on the redox of hydrogen peroxide. On the other hand, in curve 2 in the figure, compared to curve 1, the reduction current is larger in the potential range less noble than +0.2V, and the oxidation current is larger in the potential range nobler than +0.6V. It can be seen that it has a catalytic effect that promotes the reduction and oxidation reactions of hydrogen peroxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により製造された白金黒
を含有するポリ塩化ビニル−ポリピロール膜電極
および公知の方法により製造されたポリ塩化ビニ
ル−ポリピロール膜電極のプロトン/水素系の酸
化還元の触媒活性の差異を示すグラフ、第2図
は、本発明の方法により製造されたコバルトフタ
ロシアニン微粒子を含有するポリ塩化ビニル−ポ
リピロール膜電極および公知の方法により製造さ
れたポリ塩化ビニル−ポリピロール膜電極の過酸
化水素の酸化還元の触媒活性の差異を示すグラフ
である。第1図中の符号1〜4は、それぞれ白金
黒−ポリ塩化ビニル−ポリピロール膜電極でのア
ルゴンふん囲気中、白金黒−ポリ塩化ビニル−ポ
リピロール膜電極での水素ふん囲気中、ポリ塩化
ビニル−ポリピロール膜電極でのアルゴンふん囲
気中、及びポリ塩化ビニル−ポリピロール膜電極
での水素ふん囲気中での電流−電圧特性を示して
いる。第2図中の符号1〜4はそれぞれコバルト
フタロシアニン−ポリ塩化ビニル−ポリピロール
膜電極での過酸化水素濃度0の場合、コバルトフ
タロシアニン−ポリ塩化ビニル−ポリピロール膜
電極での過酸化水素8mMの場合、ポリ塩化ビニ
ル−ポリピロール膜電極での過酸化水素濃度0の
場合、およびポリ塩化ビニル−ポリピロール膜電
極での過酸化水素8mMの場合の電流−電圧特性
を示している。
Figure 1 shows the proton/hydrogen-based redox catalytic activity of a polyvinyl chloride-polypyrrole membrane electrode containing platinum black produced by the method of the present invention and a polyvinyl chloride-polypyrrole membrane electrode produced by a known method. FIG. 2 is a graph showing the difference in peroxidation of a polyvinyl chloride-polypyrrole membrane electrode containing cobalt phthalocyanine fine particles produced by the method of the present invention and a polyvinyl chloride-polypyrrole membrane electrode produced by a known method. 2 is a graph showing differences in catalytic activity for hydrogen redox. Reference numerals 1 to 4 in FIG. 1 refer to platinum black-polyvinyl chloride-polypyrrole membrane electrodes in an argon atmosphere, platinum black-polyvinyl chloride-polypyrrole membrane electrodes in a hydrogen atmosphere, and polyvinyl chloride-polypyrrole membrane electrodes in a hydrogen atmosphere, respectively. The current-voltage characteristics are shown for a polypyrrole membrane electrode in an argon atmosphere and for a polyvinyl chloride-polypyrrole membrane electrode in a hydrogen atmosphere. Reference numerals 1 to 4 in FIG. 2 indicate the case where the hydrogen peroxide concentration is 0 at the cobalt phthalocyanine-polyvinyl chloride-polypyrrole membrane electrode, and the case where the hydrogen peroxide concentration is 8 mM at the cobalt phthalocyanine-polyvinyl chloride-polypyrrole membrane electrode, respectively. The current-voltage characteristics are shown when the hydrogen peroxide concentration is 0 at the polyvinyl chloride-polypyrrole membrane electrode, and when the hydrogen peroxide concentration is 8 mM at the polyvinyl chloride-polypyrrole membrane electrode.

Claims (1)

【特許請求の範囲】 1 基板電極上に形成したポリピロールとポリ塩
化ビニルとの混合物から成る導電性担体膜と、こ
の膜中に担持された電解酸化あるいは還元の触媒
機能を有する固体粒子とから構成されることを特
徴とする電極触媒。 2 基板電極上に上記固体粒子を分散・担持させ
たポリ塩化ビニル膜を形成し、次いでこの粒子分
散ポリ塩化ビニル膜で被覆された基板電極を作用
極としてピロールと電解質とを含むアセトニトリ
ル溶液中でピロールの電解酸化重合を行つて、担
体高分子膜を導電体であるポリピロールとポリ塩
化ビニルとの混合物に変えることを特徴とする電
極触媒の製造方法。
[Claims] 1. Consisting of a conductive carrier film made of a mixture of polypyrrole and polyvinyl chloride formed on a substrate electrode, and solid particles having a catalytic function for electrolytic oxidation or reduction supported in this film. An electrode catalyst characterized by: 2. A polyvinyl chloride film in which the solid particles are dispersed and supported is formed on a substrate electrode, and then the substrate electrode covered with the particle-dispersed polyvinyl chloride film is used as a working electrode in an acetonitrile solution containing pyrrole and an electrolyte. A method for producing an electrode catalyst, which comprises performing electrolytic oxidative polymerization of pyrrole to convert a carrier polymer membrane into a mixture of polypyrrole and polyvinyl chloride, which are conductors.
JP60144380A 1985-07-01 1985-07-01 Production of electrically conductive polymer film containing particle Granted JPS624898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60144380A JPS624898A (en) 1985-07-01 1985-07-01 Production of electrically conductive polymer film containing particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144380A JPS624898A (en) 1985-07-01 1985-07-01 Production of electrically conductive polymer film containing particle

Publications (2)

Publication Number Publication Date
JPS624898A JPS624898A (en) 1987-01-10
JPH0243837B2 true JPH0243837B2 (en) 1990-10-01

Family

ID=15360781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144380A Granted JPS624898A (en) 1985-07-01 1985-07-01 Production of electrically conductive polymer film containing particle

Country Status (1)

Country Link
JP (1) JPS624898A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660438B2 (en) * 1986-03-14 1994-08-10 昭和電工株式会社 Method for producing composite having surface conductivity
JPH0766816B2 (en) * 1989-01-13 1995-07-19 東洋インキ製造株式会社 Method for manufacturing gas diffusion type composite electrode
JP3799300B2 (en) 2002-06-05 2006-07-19 キヤノン株式会社 Stepping motor drive device
JP4591029B2 (en) * 2004-10-12 2010-12-01 コニカミノルタホールディングス株式会社 Method for producing electrode catalyst for fuel cell
JP2006310002A (en) * 2005-04-27 2006-11-09 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105532A (en) * 1983-11-15 1985-06-11 日本電信電話株式会社 Conductive high molecular film and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105532A (en) * 1983-11-15 1985-06-11 日本電信電話株式会社 Conductive high molecular film and manufacture thereof

Also Published As

Publication number Publication date
JPS624898A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
Fan et al. Polymer Films on Electrodes: XIX. Electrochemical Behavior at Polypyrrole‐Nafion and Polypyrrole‐Clay Thin Films on Glassy Carbon Electrodes
Kötz et al. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO 2 anodes
Yassar et al. Preparation and electroactivity of poly (thiophene) electrodes modified by electrodeposition of palladium particles
Cassidy et al. Electrochemistry at very high potentials: the use of ultramicroelectrodes in the anodic oxidation of short-chain alkanes
Yang et al. Particle size effects for oxygen reduction on dispersed silver+ carbon electrodes in alkaline solution
Wang et al. Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis
US5171644A (en) Electrochemical cell electrode
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
US5314760A (en) Electrochemical cell electrode
KR20190078276A (en) Reduced graphene, reduced graphene oxide-funtional material complex and production methods thereof
Alonso-Vante et al. Electrocatalysis of O2 reduction at polyaniline+ molybdenum-doped ruthenium selenide composite electrodes
Gong et al. Electrochemical reduction of oxygen on anthraquinone/carbon nanotubes nanohybrid modified glassy carbon electrode in neutral medium
DeWulf et al. Application of Nafion/platinum electrodes (solid polymer electrolyte structures) to voltammetric investigations of highly resistive solutions
JP3368179B2 (en) Preparation of electrode catalyst powder
Eisazadeh et al. Electrochemical production of polypyrrole colloids
Pakuła et al. Electrochemical behaviour of modified activated carbons in aqueous and nonaqueous solutions
JPH0243837B2 (en)
Kozawa et al. Electrode materials and catalysts for oxygen reduction in isotonic saline solution
Wang et al. Metal-dispersed porous carbon films as electrocatalytic sensors
US7858267B2 (en) Fuel cell electrode, fuel cell, and manufacturing methods thereof
Raoof et al. Nickel particles dispersed into poly (o-anisidine) and poly (o-anisidine)/multi-walled carbon nanotube modified glassy carbon electrodes for electrocatalytic oxidation of methanol
KR101483468B1 (en) Electrocatalyst for oxygen reduction including silver/silver halogenide composite, fuel cell including the same, and preparing method of the same
DE10038862C2 (en) Process for coating a membrane electrode assembly with a catalyst and device therefor
Cosnier et al. A poly [tris (N-(bipyridylylbutyl) pyrrole) ruthenium (II)]-RuO2 catalytic modified electrode for organic oxidations
Archer et al. Photogalvanic cells: Part XII. The dark electrochemistry of the iron-thionine system at platinum

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term