JP3368179B2 - Preparation of electrode catalyst powder - Google Patents

Preparation of electrode catalyst powder

Info

Publication number
JP3368179B2
JP3368179B2 JP20797397A JP20797397A JP3368179B2 JP 3368179 B2 JP3368179 B2 JP 3368179B2 JP 20797397 A JP20797397 A JP 20797397A JP 20797397 A JP20797397 A JP 20797397A JP 3368179 B2 JP3368179 B2 JP 3368179B2
Authority
JP
Japan
Prior art keywords
platinum
aqueous solution
catalyst powder
colloidal particles
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20797397A
Other languages
Japanese (ja)
Other versions
JPH1147595A (en
Inventor
栄一 安本
久朗 行天
一仁 羽藤
順二 新倉
孝治 蒲生
信久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20797397A priority Critical patent/JP3368179B2/en
Priority to EP98306050A priority patent/EP0898318A2/en
Priority to CA002241505A priority patent/CA2241505A1/en
Publication of JPH1147595A publication Critical patent/JPH1147595A/en
Application granted granted Critical
Publication of JP3368179B2 publication Critical patent/JP3368179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リン酸型燃料電池
や高分子電解質型燃料電池等に用いられる電極触媒粉末
の作製法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an electrode catalyst powder used in a phosphoric acid type fuel cell, a polymer electrolyte type fuel cell and the like.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池の電極触媒に
は、カーボン粒子基体上に非常に微細な白金粒子または
白金粒子とルテニウム粒子を担持させたものが用いられ
る。このときの白金粒子の径が大きいと、この電極触媒
から作製した電池は、十分な性能を発揮することができ
ない。したがって、微細な白金粒子を作製し、カーボン
基体上に担持することが、非常に重要な技術となる。従
来、このような電極触媒を製造する方法としては、酸化
可能な配位子を有する白金錯化合物の配位子を白金錯化
合物の水溶液中で、過酸化水素のような白金と錯化を起
こさない酸化剤により酸化し、酸化生成物のコロイド粒
子を生成したのち、前記コロイド粒子を前記水溶液中に
懸濁された導電性カーボン基体上に沈積する方法がある
(特公昭61−1869号公報)。
2. Description of the Related Art As an electrode catalyst for a polymer electrolyte fuel cell, a carbon particle substrate on which very fine platinum particles or platinum particles and ruthenium particles are supported is used. If the diameter of the platinum particles at this time is large, the battery produced from this electrode catalyst cannot exhibit sufficient performance. Therefore, it is a very important technique to prepare fine platinum particles and support them on a carbon substrate. Conventionally, a method for producing such an electrode catalyst has been to complex a ligand of a platinum complex compound having an oxidizable ligand with platinum such as hydrogen peroxide in an aqueous solution of the platinum complex compound. There is a method in which colloidal particles of an oxidation product are generated by oxidizing with a non-oxidizing agent and then the colloidal particles are deposited on a conductive carbon substrate suspended in the aqueous solution (Japanese Patent Publication No. 61-1869). .

【0003】[0003]

【発明が解決しようとする課題】しかし、上記したよう
な方法では、水溶液の酸性が高く、また塩素が存在する
と、所望のコロイド粒子である白金錯化合物の配位子が
酸化されたコロイド粒子が形成されないので、水溶液中
の白金濃度を低く保ち、pHを厳密に管理する必要があ
った。ところが、水溶液中の白金濃度が低いと、この水
溶液から得られる白金担時カーボン電極触媒の量は非常
に少なくなるので、電極触媒を効率よく生産することが
できない。そのため、触媒を大量に生産するには、大型
の装置を必要とした。本発明は、非常に微細な白金粒子
を担持する電極触媒粉末を高効率にかつ大量に作製する
方法を提供することを目的とする。
However, in the above-described method, when the acidity of the aqueous solution is high and chlorine is present, colloidal particles in which the ligand of the platinum complex compound, which is the desired colloidal particle, is oxidized are formed. Since it was not formed, it was necessary to keep the platinum concentration in the aqueous solution low and strictly control the pH. However, when the platinum concentration in the aqueous solution is low, the amount of the platinum-supporting carbon electrode catalyst obtained from this aqueous solution becomes very small, so that the electrode catalyst cannot be efficiently produced. Therefore, a large-scale device was required to mass-produce the catalyst. It is an object of the present invention to provide a method for producing an electrode catalyst powder carrying very fine platinum particles with high efficiency and in a large amount.

【0004】[0004]

【課題を解決するための手段】本発明による電極触媒粉
末の作製法は、塩化白金酸水溶液に亜硫酸水素ナトリウ
ムを溶解させて得られる白金錯化合物水溶液に酸化剤を
添加して、酸化生成物のコロイド粒子を生成する工程、
過酸化水素水溶液を添加した後に前記コロイド粒子分散
液のpHを6以上に調製する工程、および前記コロイド
粒子を導電性カーボン基体上に沈積させる工程を有す
る。また、塩化白金酸水溶液に亜硫酸水素ナトリウムを
溶解させて得られる白金錯化合物水溶液に酸化剤を添加
して、酸化生成物のコロイド粒子を生成する工程、過酸
化水素水溶液を添加した後に前記コロイド粒子分散液の
pHを6以上に調製する工程、前記コロイド粒子分散液
に塩化ルテニウム水溶液を添加し、ルテニウムのコロイ
ド粒子を生成する工程、および前記両コロイド粒子を導
電性カーボン基体上に沈積する工程を有する。
Method of producing electrocatalyst powders according to the present invention SUMMARY OF THE INVENTION may, bisulfite sodium in an aqueous solution of chloroplatinic acid
A step of adding an oxidizing agent to an aqueous solution of a platinum complex compound obtained by dissolving the aluminum oxide to generate colloidal particles of an oxidation product,
The method includes the steps of adjusting the pH of the colloidal particle dispersion liquid to 6 or more after adding the aqueous hydrogen peroxide solution , and depositing the colloidal particles on the conductive carbon substrate. Also, add sodium bisulfite to the chloroplatinic acid aqueous solution.
A step of adding colloidal particles of an oxidation product by adding an oxidizing agent to an aqueous solution of a platinum complex compound obtained by dissolution , peracid
A step of adjusting the pH of the colloidal particle dispersion liquid to 6 or more after adding a hydrogen fluoride aqueous solution, a step of adding a ruthenium chloride aqueous solution to the colloidal particle dispersion liquid to form ruthenium colloidal particles, and There is a step of depositing on a conductive carbon substrate.

【0005】[0005]

【発明の実施の形態】本発明によって作製される電極触
媒は2種類あり、1つは導電性カーボン基体上に白金粒
子を担持させたもの、もうひとつは導電性カーボン基体
上に白金粒子とルテニウム粒子の両方を担持させたもの
である。いずれの電極触媒を作製する工程においても、
導電性カーボン基体上に担持される白金粒子を微細にす
るために、コロイド粒子分散液のpHを6以上に調製
し、この条件下で、導電性カーボン基体にコロイド粒子
を沈着させることが重要である。そのため、コロイド粒
子分散液のpHを6以上に調製した後、導電性カーボン
基体を添加することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION There are two kinds of electrode catalysts produced by the present invention, one is one in which platinum particles are supported on a conductive carbon substrate, and the other is platinum particles and ruthenium on a conductive carbon substrate. Both particles are supported. In any step of producing the electrode catalyst,
In order to make the platinum particles supported on the conductive carbon substrate fine, it is important to adjust the pH of the colloidal particle dispersion liquid to 6 or more and deposit the colloidal particles on the conductive carbon substrate under these conditions. is there. Therefore, it is preferable to add the conductive carbon substrate after adjusting the pH of the colloidal particle dispersion liquid to 6 or more.

【0006】分散液のpHが低い場合、分散液中の白金
濃度が高く、また塩素が存在すると、白金錯化合物の配
位子が酸化されたコロイド粒子が形成される代わりに、
2PtCl6が形成される。また、白金錯化合物を酸化
して得られるコロイド粒子の分散液中での表面電位が中
性に近くなるため、互いに反発する力が弱くなり、凝集
して2次粒子を形成する。このコロイド粒子の表面電位
は、分散液のpHと比例するので、分散液のpHを高く
すれば、表面電位が高くなり、コロイド粒子間の反発力
を高めることができる。
When the pH of the dispersion is low, the platinum concentration in the dispersion is high, and in the presence of chlorine, colloidal particles in which the ligand of the platinum complex compound is oxidized are formed,
H 2 PtCl 6 is formed. In addition, since the surface potential of the colloidal particles obtained by oxidizing the platinum complex compound in the dispersion is close to neutral, the repulsive forces are weakened and the secondary particles are aggregated. Since the surface potential of the colloidal particles is proportional to the pH of the dispersion liquid, the higher the pH of the dispersion liquid, the higher the surface potential and the higher the repulsive force between the colloidal particles.

【0007】特に、pHを6以上にすると、コロイド粒
子が凝集することができなくなるので、微細な白金粒子
を担持した電極触媒を得ることができる。分散液のpH
の上限としては、13程度までは可能であるが、実用上
は、pHを6〜10の範囲に調整することが望ましい。
このpH範囲内であれば、白金水溶液中の白金濃度を高
くしても良好な電極触媒を作製できる。白金錯化合物を
酸化する酸化剤としては、白金と強い錯化合配位子を形
成できる基を導入しない酸化剤であればよく、過酸化水
素、過マンガン酸カリウム、または過硫酸塩などが用い
られる。導電性カーボン基体には、表面積の大きな導電
性カーボンであればよく、たとえばアセチレンブラック
などが好適に用いられる。
Particularly, when the pH is 6 or more, the colloidal particles cannot be aggregated, so that the electrode catalyst carrying fine platinum particles can be obtained. PH of dispersion
It is possible to set the upper limit to about 13, but in practice it is desirable to adjust the pH within the range of 6 to 10.
Within this pH range, a good electrode catalyst can be produced even if the platinum concentration in the platinum aqueous solution is increased. As the oxidizing agent for oxidizing the platinum complex compound, any oxidizing agent which does not introduce a group capable of forming a strong complexing ligand with platinum may be used, and hydrogen peroxide, potassium permanganate, or persulfate is used. . The conductive carbon substrate may be any conductive carbon having a large surface area, and for example, acetylene black is preferably used.

【0008】[0008]

【実施例】以下に、具体的な実施例を挙げて本発明をよ
り詳細に説明する。 《実施例1》白金濃度が5g/lの塩化白金酸水溶液
0.4lに、亜硫酸水素ナトリウムを28g溶解させて
白金錯化合物の水溶液Aを作製した。このときのpHは
約2であった。この水溶液Aを水で希釈して1.5lに
した後、31%過酸化水素水溶液を0.2l滴下混合し
て分散液Bを作製した。続いて、水酸化ナトリウム水溶
液を用いて、分散液BのpHを7に調整した。次に、D
ENKAアセチレンブラックの名称で販売されているカ
ーボン粉末5gを水0.3lに分散させて分散液Cを調
製した。つづいて、pH調製をした分散液Bに分散液C
を混合し、分散液Dを調製した。この分散液Dを希硫酸
を用いてpHを5に調製した後、攪拌しながら3時間加
熱沸騰させた。そして、この加熱処理した分散液Dを濾
過し、得られた粉末を洗浄した後、100℃で24時間
乾燥させた。得られた白金担持カーボン触媒粉末の白
金担持量は26wt%であった。白金触媒の粒径をCO
吸着法により測定したところ10〜20オングストロー
ムであった。
EXAMPLES The present invention will be described in more detail below with reference to specific examples. Example 1 28 g of sodium hydrogen sulfite was dissolved in 0.4 l of a chloroplatinic acid aqueous solution having a platinum concentration of 5 g / l to prepare an aqueous solution A of a platinum complex compound. The pH at this time was about 2. The aqueous solution A was diluted with water to 1.5 l, and then 0.2 l of a 31% aqueous hydrogen peroxide solution was dropped and mixed to prepare a dispersion liquid B. Then, the pH of the dispersion liquid B was adjusted to 7 using the sodium hydroxide aqueous solution. Then D
Dispersion C was prepared by dispersing 5 g of carbon powder sold under the name of ENKA acetylene black in 0.3 l of water. Then, to the dispersion liquid B whose pH has been adjusted, the dispersion liquid C
Were mixed to prepare a dispersion liquid D. This dispersion D was adjusted to pH 5 with diluted sulfuric acid, and then heated and boiled for 3 hours while stirring. Then, this heat-treated dispersion liquid D was filtered, and the obtained powder was washed and then dried at 100 ° C. for 24 hours. The platinum supported amount of the obtained platinum-supported carbon catalyst powder was 26 wt%. Change the particle size of the platinum catalyst to CO
It was 10 to 20 Å when measured by an adsorption method.

【0009】また、分散液BのpHを5にする以外は、
同様にして白金担持カーボン触媒粉末を作製した。な
お、分散液BのpHを5に調製すると分散液は濁った。
得られた白金担持カーボン触媒粉末の白金担持量は1
8wt%であった。白金触媒の粒径は、80〜100オ
ングストロームであった。次に、得られた白金担持カー
ボン触媒粉末またはを用い、以下のようにして高分
子電解質型燃料電池の単セルを構成し、電池性能を調べ
た。白金担持カーボン触媒粉末を有機溶媒に分散さ
せ、この分散液を5cm2のカーボンペーパーに塗布し
て電極を作製した。電極面積1cm2あたりの触媒粉末
の量は、0.5mgであった。
In addition, except that the pH of the dispersion B is set to 5,
Similarly, a platinum-supporting carbon catalyst powder was produced. When the pH of the dispersion B was adjusted to 5, the dispersion became cloudy.
The amount of platinum supported on the obtained platinum-supported carbon catalyst powder was 1
It was 8 wt%. The platinum catalyst had a particle size of 80-100 Angstroms. Next, using the obtained platinum-supported carbon catalyst powder or, a single cell of a polymer electrolyte fuel cell was constructed as follows, and the cell performance was examined. Platinum-supporting carbon catalyst powder was dispersed in an organic solvent, and this dispersion was applied on 5 cm 2 of carbon paper to prepare an electrode. The amount of catalyst powder per 1 cm 2 of electrode area was 0.5 mg.

【0010】この電極2つを、デュポン社からナフィオ
ンの名称で販売されている高分子電解質膜を介して張り
合わせ、電極−電解質接合体(単セル)を形成した。こ
の単セルの一方の電極に水素、他方の電極に空気をそれ
ぞれ供給し、電流−電圧特性を調べた。その結果を図1
に示す。また、白金担持カーボン触媒粉末を用い、同
様にして高分子電解質型燃料電池の単セルを構成し、電
池性能を調べた。その結果を図1に示す。図1より、触
媒粉末を用いて作製したセルの方が、触媒粉末を用
いたセルよりも電池性能が高くなることがわかる。
The two electrodes were bonded together via a polymer electrolyte membrane sold under the name of Nafion by DuPont to form an electrode-electrolyte assembly (single cell). Hydrogen was supplied to one electrode of this single cell and air was supplied to the other electrode, and the current-voltage characteristics were examined. The result is shown in Figure 1.
Shown in. Further, using the platinum-supporting carbon catalyst powder, a single cell of a polymer electrolyte fuel cell was similarly constructed, and the cell performance was examined. The result is shown in FIG. From FIG. 1, it can be seen that the cell manufactured using the catalyst powder has higher battery performance than the cell using the catalyst powder.

【0011】《実施例2》実施例1における分散液Bの
pHを3〜13に変化させた他は、実施例1と同様にし
て白金担持カーボン触媒粉末を作製し、その粒径をCO
吸着法により測定した。また、得られた白金担持カーボ
ン触媒粉末を用いて、実施例1と同様にして高分子電解
質型燃料電池の単セルを構成し、電池性能を調べた。
0.3A/cm2時における電池電圧を表1に示す。
Example 2 Platinum-supporting carbon catalyst powder was prepared in the same manner as in Example 1 except that the pH of the dispersion B in Example 1 was changed to 3 to 13, and the particle size was adjusted to CO 2.
It was measured by an adsorption method. Further, using the obtained platinum-supported carbon catalyst powder, a single cell of a polymer electrolyte fuel cell was constructed in the same manner as in Example 1, and the cell performance was examined.
Table 1 shows the battery voltage at 0.3 A / cm 2 .

【0012】[0012]

【表1】 [Table 1]

【0013】表1より、分散液BのpHを6以上に調製
した場合は、得られる白金粒子径は小さく、またこの白
金粒子を担持する触媒粉末を用いて作製した電池の性能
は高かった。
From Table 1, when the pH of the dispersion B was adjusted to 6 or more, the obtained platinum particle size was small, and the performance of the battery prepared by using the catalyst powder carrying the platinum particles was high.

【0014】《実施例3》白金濃度が25g/lの塩化
白金酸水溶液0.4lに、亜硫酸水素ナトリウムを14
0g溶解させて白金錯化合物の水溶液Eを作製した。こ
のときのpHは約1.5であった。この水溶液Eを水で
希釈して1.5lにした後、31%過酸化水素水溶液を
1l滴下混合して分散液Fを作製した。続いて、水酸化
ナトリウム水溶液を用いて、分散液FのpHを7.5に
調整した。次に、実施例1で用いたのと同じカーボン粉
末25gを水0.3lに分散させて分散液Gを調製し
た。つづいて、pH調製をした分散液Fに分散液Gを混
合し、分散液Hを調製した。この分散液Hを希硫酸を用
いてpHを5に調製した後、攪拌しながら3時間加熱沸
騰させた。そして、この加熱処理した分散液Hを濾過
し、得られた粉末を洗浄した後、100℃で24時間乾
燥させた。
Example 3 To 0.4 l of a chloroplatinic acid aqueous solution having a platinum concentration of 25 g / l, 14 parts of sodium bisulfite was added.
An aqueous solution E of a platinum complex compound was prepared by dissolving 0 g. The pH at this time was about 1.5. The aqueous solution E was diluted with water to 1.5 l, and 1 l of a 31% aqueous hydrogen peroxide solution was dropped and mixed to prepare a dispersion liquid F. Then, the pH of the dispersion liquid F was adjusted to 7.5 using the sodium hydroxide aqueous solution. Next, 25 g of the same carbon powder as that used in Example 1 was dispersed in 0.3 l of water to prepare a dispersion liquid G. Subsequently, the dispersion liquid G was mixed with the pH-adjusted dispersion liquid F to prepare a dispersion liquid H. The dispersion H was adjusted to pH 5 with dilute sulfuric acid and then heated and boiled for 3 hours while stirring. Then, the heat-treated dispersion liquid H was filtered, the obtained powder was washed, and then dried at 100 ° C. for 24 hours.

【0015】得られた白金担持カーボン触媒粉末の白
金担持量は26wt%であった。白金触媒の粒径は、C
O吸着法により測定したところ15〜25オングストロ
ームであった。また、分散液FのpHを5にする以外
は、同様にして白金担持カーボン触媒粉末を作製し
た。なお、分散液FのpHを5に調製すると分散液は濁
った。得られた白金担持カーボン触媒粉末の白金担持
量は18wt%であった。白金触媒の粒径は、100〜
120オングストロームであった。次に、得られた白金
担持カーボン触媒粉末またはを用い、実施例1と同
様にして高分子電解質型燃料電池の単セルを構成し、電
池性能を調べた。その結果、触媒粉末を用いて作製し
た電池の電圧は、電流密度が0.3A/cm2の時で、
0.74Vを示した。これに対し、触媒粉末を用いて
作製した電池の電圧は、電流密度が0.3A/cm2
時で0.48Vであり、触媒粉末を用いて作製した電
池の方が、触媒粉末を用いて作製した電池よりも電池
性能が高くなった。
The amount of platinum supported on the obtained platinum-supported carbon catalyst powder was 26 wt%. The particle size of the platinum catalyst is C
It was 15 to 25 Å when measured by the O adsorption method. Further, a platinum-supporting carbon catalyst powder was prepared in the same manner except that the pH of the dispersion liquid F was adjusted to 5. When the pH of the dispersion F was adjusted to 5, the dispersion became cloudy. The platinum supported amount of the obtained platinum-supported carbon catalyst powder was 18 wt%. The particle size of the platinum catalyst is 100-
It was 120 angstroms. Next, using the obtained platinum-supported carbon catalyst powder or, a single cell of a polymer electrolyte fuel cell was constructed in the same manner as in Example 1, and the cell performance was examined. As a result, the voltage of the battery produced using the catalyst powder was as follows when the current density was 0.3 A / cm 2 .
It showed 0.74V. On the other hand, the voltage of the battery manufactured using the catalyst powder is 0.48 V when the current density is 0.3 A / cm 2 , and the battery manufactured using the catalyst powder uses the catalyst powder. The battery performance was higher than that of the battery prepared by.

【0016】《実施例4》白金濃度が2.5g/lの塩
化白金酸水溶液0.4lに、亜硫酸水素ナトリウムを1
4g溶解させて白金錯化合物の水溶液Iを作製した。こ
のときのpHは約2であった。この水溶液Iを水で希釈
して1lにした後、31%過酸化水素水溶液を0.1l
滴下混合して分散液Jを作製した。続いて、水酸化ナト
リウム水溶液を用いて、分散液JのpHを7に調整した
後、10g/lの塩化ルテニウムを0.08lを滴下混
合し分散液Kを作製した。さらに、実施例1で用いたの
と同じカーボン粉末3gを水0.3lに分散させて分散
液Lを調製した。分散液Kに分散液Lを混合し、分散液
Mを調製した。この分散液Mを硫酸を用いてpHを5に
調製した後、攪拌しながら3時間加熱沸騰させた。そし
て、この加熱処理した分散液Mを濾過し、得られた粉末
を洗浄した後、100℃で24時間乾燥させた。
Example 4 To 0.4 l of a chloroplatinic acid aqueous solution having a platinum concentration of 2.5 g / l, 1 part of sodium bisulfite was added.
An aqueous solution I of a platinum complex compound was prepared by dissolving 4 g. The pH at this time was about 2. This aqueous solution I was diluted with water to 1 l, and then 0.1% of 31% hydrogen peroxide aqueous solution was added.
Dispersion J was prepared by dropwise mixing. Subsequently, the pH of the dispersion liquid J was adjusted to 7 using an aqueous sodium hydroxide solution, and then 0.08 l of 10 g / l ruthenium chloride was dropped and mixed to prepare a dispersion liquid K. Further, 3 g of the same carbon powder used in Example 1 was dispersed in 0.3 l of water to prepare a dispersion L. Dispersion L was mixed with Dispersion K to prepare Dispersion M. The dispersion M was adjusted to pH 5 with sulfuric acid and then heated and boiled for 3 hours while stirring. Then, the heat-treated dispersion liquid M was filtered, the obtained powder was washed, and then dried at 100 ° C. for 24 hours.

【0017】得られた白金ルテニウム担持カーボン触媒
粉末の白金ルテニウム担持量は41wt%であった。
さらに、分散液JのpHを5にする以外は、同様にして
白金ルテニウム担持カーボン触媒粉末を作製した。得ら
れた白金ルテニウム担持カーボン触媒粉末の白金担持
量は34wt%であった。次に、得られた白金ルテニウ
ム担持カーボン触媒粉末またはを用い、実施例1と
同様にして高分子電解質型燃料電池の単セルを構成し、
電池性能を調べた。ただし、燃料極ガスは、水素ガスに
一酸化炭素を20ppm混合したガスを用いた。その結
果を図2に示す。図2により、触媒粉末を用いて作製
した電池の方が、触媒粉末を用いて作製した電池より
も電池性能が高くなることがわかった。
The amount of platinum ruthenium supported on the obtained platinum ruthenium supported carbon catalyst powder was 41 wt%.
Further, platinum ruthenium-supported carbon catalyst powder was produced in the same manner except that the pH of the dispersion liquid J was adjusted to 5. The platinum carrying amount of the obtained platinum ruthenium carrying carbon catalyst powder was 34 wt%. Next, using the obtained platinum ruthenium-supported carbon catalyst powder or, a single cell of a polymer electrolyte fuel cell was constructed in the same manner as in Example 1,
The battery performance was examined. However, as the fuel electrode gas, a gas in which 20 ppm of carbon monoxide was mixed with hydrogen gas was used. The result is shown in FIG. From FIG. 2, it was found that the battery manufactured using the catalyst powder has higher battery performance than the battery manufactured using the catalyst powder.

【0018】[0018]

【発明の効果】以上より、本発明によれば、微細な白金
粒子を担持する電極触媒粉末を高効率に作製することが
できる。特に、高濃度の白金水溶液を用いることが可能
となり、電極触媒粉末を大量に作製することができる。
As described above, according to the present invention, an electrode catalyst powder carrying fine platinum particles can be produced with high efficiency. In particular, it becomes possible to use a high-concentration platinum aqueous solution, and a large amount of electrode catalyst powder can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で得た白金担持カーボン触媒
粉末を電極に用いて構成した高分子電解質型燃料電池単
セルの電流−電圧特性図である。
FIG. 1 is a current-voltage characteristic diagram of a polymer electrolyte fuel cell single cell configured by using a platinum-supported carbon catalyst powder obtained in one example of the present invention as an electrode.

【図2】本発明の他の実施例で得た白金ルテニウム担持
カーボン触媒粉末を電極に用いて構成した高分子電解質
型燃料電池単セルの電流−電圧特性図である。
FIG. 2 is a current-voltage characteristic diagram of a polymer electrolyte fuel cell single cell configured by using a platinum ruthenium-supporting carbon catalyst powder obtained in another example of the present invention as an electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新倉 順二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 伊藤 信久 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭54−92588(JP,A) 特開 平2−51865(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 H01M 4/86 - 4/98 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junji Arakura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koji Gamo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. Company (72) Inventor Nobuhisa Ito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP 54-92588 (JP, A) JP 2-51865 (JP, A) ) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 H01M 4/86-4/98

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化白金酸水溶液に亜硫酸水素ナトリウ
ムを溶解させて得られる白金錯化合物水溶液に酸化剤を
添加して、酸化生成物のコロイド粒子を生成する工程、
過酸化水素水溶液を添加した後に前記コロイド粒子分散
液のpHを6以上に調製する工程、および前記コロイド
粒子を導電性カーボン基体上に沈積させる工程を有する
ことを特徴とする電極触媒粉末の作製法。
1. A sodium bisulfite solution in a chloroplatinic acid aqueous solution.
A step of adding an oxidizing agent to an aqueous solution of a platinum complex compound obtained by dissolving the aluminum oxide to generate colloidal particles of an oxidation product,
A method for producing an electrode catalyst powder, comprising: a step of adjusting the pH of the colloidal particle dispersion liquid to 6 or more after adding an aqueous hydrogen peroxide solution ; and a step of depositing the colloidal particles on a conductive carbon substrate. .
【請求項2】 塩化白金酸水溶液に亜硫酸水素ナトリウ
ムを溶解させて得られる白金錯化合物水溶液に酸化剤を
添加して、酸化生成物のコロイド粒子を生成する工程、
過酸化水素水溶液を添加した後に前記コロイド粒子分散
液のpHを6以上に調製する工程、前記コロイド粒子
散液に塩化ルテニウム水溶液を添加し、ルテニウムのコ
ロイド粒子を生成する工程、および前記両コロイド粒子
を導電性カーボン基体上に沈積する工程を有することを
特徴とする電極触媒粉末の作製法。
2. A sodium bisulfite solution in a chloroplatinic acid aqueous solution.
A step of adding an oxidizing agent to an aqueous solution of a platinum complex compound obtained by dissolving the aluminum oxide to generate colloidal particles of an oxidation product,
Step preparing the pH of the colloidal particle dispersion after addition of aqueous hydrogen peroxide solution in 6 above, was added aqueous solution of ruthenium chloride on the colloidal particles was <br/> dispersion liquid, to produce colloidal particles of ruthenium, And a step of depositing both of the colloidal particles on a conductive carbon substrate, which is a method for producing an electrode catalyst powder.
JP20797397A 1997-08-01 1997-08-01 Preparation of electrode catalyst powder Expired - Fee Related JP3368179B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20797397A JP3368179B2 (en) 1997-08-01 1997-08-01 Preparation of electrode catalyst powder
EP98306050A EP0898318A2 (en) 1997-08-01 1998-07-29 Method for producing electrode catalyst powder
CA002241505A CA2241505A1 (en) 1997-08-01 1998-07-30 Method for producing electrode catalyst powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20797397A JP3368179B2 (en) 1997-08-01 1997-08-01 Preparation of electrode catalyst powder

Publications (2)

Publication Number Publication Date
JPH1147595A JPH1147595A (en) 1999-02-23
JP3368179B2 true JP3368179B2 (en) 2003-01-20

Family

ID=16548580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20797397A Expired - Fee Related JP3368179B2 (en) 1997-08-01 1997-08-01 Preparation of electrode catalyst powder

Country Status (3)

Country Link
EP (1) EP0898318A2 (en)
JP (1) JP3368179B2 (en)
CA (1) CA2241505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121781A1 (en) 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670301B2 (en) * 2001-03-19 2003-12-30 Brookhaven Science Associates Llc Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
DE10211701A1 (en) * 2002-03-16 2003-09-25 Studiengesellschaft Kohle Mbh Production of catalyst, e.g. for hydrogenation, oxidation or fuel cell electrocatalyst, involves hydrolysis and condensation of sub-group metal salt(s) in basic aqueous solution and in situ immobilization of oxide nanoparticles on support
US20040101718A1 (en) * 2002-11-26 2004-05-27 Lixin Cao Metal alloy for electrochemical oxidation reactions and method of production thereof
JP4463522B2 (en) 2003-10-16 2010-05-19 日揮触媒化成株式会社 Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
ZA200605826B (en) * 2004-01-28 2009-06-24 Industrie De Nora Spa Synthesis of noble metal sulphide catalysts in a sulphide ion-free aqueous environment
US6967185B2 (en) * 2004-01-28 2005-11-22 De Nora Elettrodi S.P.A. Synthesis of noble metal, sulphide catalysts in a sulfide ion-free aqueous environment
DE102004015633A1 (en) * 2004-03-31 2005-10-20 Studiengesellschaft Kohle Mbh Process for the preparation of coatings of iridium oxides
US7871955B2 (en) * 2004-04-09 2011-01-18 Basf Fuel Cell Gmbh Platinum catalysts from in situ formed platinum dioxide
GB0413771D0 (en) 2004-06-21 2004-07-21 Johnson Matthey Plc Metal oxide sols
CN101512676B (en) * 2006-07-04 2011-07-06 住友化学株式会社 Polymer electrolyte emulsion and use thereof
FR2918214B1 (en) * 2007-06-26 2009-10-30 Commissariat Energie Atomique DISPERSION OF COMPOSITE MATERIALS, ESPECIALLY FOR FUEL CELLS
IT1391499B1 (en) * 2008-09-01 2011-12-30 Acta Spa CATALYSTS BASED ON HIGH PERFORMANCE NOBLE METALS ALLOYS FOR AMMONIA ELECTION
CN111224112A (en) * 2020-01-10 2020-06-02 中自环保科技股份有限公司 Preparation method of electrocatalyst for hydrogen fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121781A1 (en) 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
CA2241505A1 (en) 1999-02-01
EP0898318A2 (en) 1999-02-24
JPH1147595A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP4197683B2 (en) Catalyst for fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell
JP3368179B2 (en) Preparation of electrode catalyst powder
JP3651799B2 (en) Catalyst material for fuel cell, method for producing catalyst material for fuel cell, and fuel cell
JP4230920B2 (en) Method for producing supported nanoparticle catalyst
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP5121290B2 (en) Catalyst for polymer electrolyte fuel cell electrode
JP4590937B2 (en) Electrode catalyst and method for producing the same
JP5580990B2 (en) Platinum and platinum-based alloy nanotubes used as electrocatalysts for fuel cells
JPWO2009060582A1 (en) Method for producing fuel cell electrode material, fuel cell electrode material, and fuel cell using the fuel cell electrode material
DE112007002953T5 (en) Nanowire supported catalysts for fuel cell electrodes
JP2003346814A (en) Catalyst carrier particle for fuel cell, compound electrolyte using the particles, catalyst electrode, fuel cell and method for manufacturing these articles
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2013176717A (en) Metal oxide catalyst and method of manufacturing the same, and fuel cell using the same
JP2006127979A (en) Fuel cell and electrode catalyst therefor
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
KR101392196B1 (en) Bimetallic nanowire-based oxygen-reduction electrocatalyst, and preparing method of the same
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
KR102108646B1 (en) Pt complex catalyst electrode with triple catalyst layers for direct methanol fuel cell and preparation method thereof
CN104810529B (en) Nano metal material that a kind of surface cyaniding is modified and preparation method thereof
JP3512802B2 (en) Electrocatalyst material containing platinum alloy or conductive carrier
JP2006269368A (en) Electrode for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees