JPH0239444B2 - - Google Patents

Info

Publication number
JPH0239444B2
JPH0239444B2 JP56115248A JP11524881A JPH0239444B2 JP H0239444 B2 JPH0239444 B2 JP H0239444B2 JP 56115248 A JP56115248 A JP 56115248A JP 11524881 A JP11524881 A JP 11524881A JP H0239444 B2 JPH0239444 B2 JP H0239444B2
Authority
JP
Japan
Prior art keywords
caustic soda
aqueous solution
chlorine
reactor
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56115248A
Other languages
Japanese (ja)
Other versions
JPS5820703A (en
Inventor
Yoshinosuke Myaji
Shigenobu Kawamura
Tetsushi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11524881A priority Critical patent/JPS5820703A/en
Publication of JPS5820703A publication Critical patent/JPS5820703A/en
Publication of JPH0239444B2 publication Critical patent/JPH0239444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は苛性ソーダを含む水溶液と塩素とを気
−液接触により反応せしめ次亜塩素酸ソーダ水溶
液を製造する方法及びそれに用いる装置に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aqueous sodium hypochlorite solution by reacting an aqueous solution containing caustic soda with chlorine through gas-liquid contact, and an apparatus used therefor.

詳しくは高濃度の次亜塩素酸ソーダを効率よく
製造することを主な目的とする。
Specifically, the main purpose is to efficiently produce high-concentration sodium hypochlorite.

次亜塩素酸ソーダ水溶液は、一般に苛性ソーダ
水溶液と塩素とを反応させて製造することは知ら
れている。この塩素化反応においては、次亜塩素
酸ソーダの他に食塩を副生する。また反応条件に
よつては過塩素化物を生ずるおそれもある。
It is known that a sodium hypochlorite aqueous solution is generally produced by reacting a caustic soda aqueous solution with chlorine. In this chlorination reaction, salt is produced as a by-product in addition to sodium hypochlorite. Furthermore, depending on the reaction conditions, there is a possibility that perchlorinated products may be produced.

一般に、高濃度の苛性ソーダ水溶液を用いる場
合は得られる反応生成物水溶液中の次亜塩素酸ソ
ーダの濃度を高くすることができること及び副生
する食塩の一部を沈澱として除くことが可能とな
るため、高次亜塩素酸ソーダ濃度と低食塩分の優
れた製品を得ることができるが、一般に苛性ソー
ダの濃度が高い程溶液粘度が高くなり、これに接
触させる塩素ガスの拡散が悪くなる。このため十
分な撹拌が行われ難く、過塩素化物の副生を増大
するという欠点がある。
In general, when a highly concentrated caustic soda aqueous solution is used, it is possible to increase the concentration of sodium hypochlorite in the resulting reaction product aqueous solution, and it is also possible to remove a part of the by-product common salt as a precipitate. Although it is possible to obtain an excellent product with a high sodium hypochlorite concentration and low salt content, generally the higher the concentration of caustic soda, the higher the solution viscosity and the worse the diffusion of chlorine gas brought into contact with it. For this reason, it is difficult to perform sufficient stirring, resulting in an increase in by-products of perchloride.

従来一般に低濃度の苛性ソーダ水溶液に塩素を
吹き込む方法により低濃度次亜塩素酸ソーダを得
ていた。この場合、副生食塩の分離は不可能であ
り、大量に食塩を含む稀薄な水溶液として市販さ
れるため、食塩による不都合ばかりでなく、輸送
費も増大する。
Conventionally, low-concentration sodium hypochlorite has generally been obtained by blowing chlorine into a low-concentration caustic soda aqueous solution. In this case, it is impossible to separate the by-product salt, and it is commercially available as a dilute aqueous solution containing a large amount of salt, which not only causes inconveniences due to the salt but also increases transportation costs.

そこで高濃度の次亜塩素酸ソーダの製法として
例えば、塩素化率80%以上の苛性ソーダ水溶液に
強力な撹拌を行いつつ、50%程度の高濃度苛性ソ
ーダ及び塩素を連続的に供給反応させる。その間
常に塩素化率を80%以上に保つ方法が提案されて
いる。
Therefore, as a method for producing high-concentration sodium hypochlorite, for example, a caustic soda aqueous solution with a chlorination rate of 80% or more is strongly stirred, and high-concentration caustic soda and chlorine of about 50% are continuously supplied and reacted. A method has been proposed in which the chlorination rate is constantly maintained at 80% or higher during this period.

また別の方法として、あらかじめ低濃度の苛性
ソーダ水溶液と塩素とを食塩の結晶が析出するに
至る有効塩素濃度の近傍まで反応させた後、これ
に苛性ソーダと塩素とを遂次又は連続的に供給し
その間苛性ソーダの濃度を5重量%以下に維持す
ることにより塩素酸の副生を防ぎつつ、副生食塩
の形状を分離に好適となるよう調製する方法等が
提案されている。
Another method is to first react a low-concentration caustic soda aqueous solution with chlorine to a concentration close to the effective chlorine concentration at which salt crystals precipitate, and then supply caustic soda and chlorine sequentially or continuously. A method has been proposed in which the concentration of caustic soda is maintained at 5% by weight or less to prevent the by-product of chloric acid, and the shape of the by-product common salt is adjusted to be suitable for separation.

本発明者の経験によると上述の方法又はこれら
に類似する方法にあつては、いずれも反応槽内で
の撹拌及び塩素の吹き込み状況が重大な因子とな
り、制御が難かしく、次亜塩素酸ソーダの分解や
過塩素化物の副生を余義なくされることがしばし
ばあつた。
According to the experience of the present inventors, in the above-mentioned methods or similar methods, the stirring and chlorine blowing conditions in the reaction tank are important factors, which are difficult to control, and the sodium hypochlorite This often resulted in the decomposition of chlorinated substances and the production of perchlorinated substances as by-products.

本発明は極めて容易に制御し得る方法で高濃度
次亜塩素酸ソーダを得る方法を提供する。また、
本法によれば、その後の食塩の分離も容易である
という特徴も有する。
The present invention provides a method for obtaining highly concentrated sodium hypochlorite in a very easily controllable manner. Also,
According to this method, the subsequent separation of common salt is also easy.

即ち、本発明は塩素と苛性ソーダの反応により
次亜塩素酸ソーダ水溶液を製造するにあたり、二
重管式のサイクロン型反応器により、塩素含有ガ
スを内管より供給し、苛性ソーダを含む水溶液、
好ましくは苛性ソーダを100g/以下含む水溶
液を外管に接線方向から供給し、サイクロン下部
で両者を接触反応させつつ下方に流出させること
を特徴とする次亜塩素酸ソーダの製造方法、特に
高濃度の次亜塩素酸ソーダの製造方法である。
That is, in producing a sodium hypochlorite aqueous solution by the reaction of chlorine and caustic soda, the present invention uses a double-tube cyclone reactor to supply a chlorine-containing gas from the inner tube, and produces an aqueous solution containing caustic soda,
A method for producing sodium hypochlorite, which is characterized in that an aqueous solution containing preferably 100 g of caustic soda or less is supplied tangentially to the outer tube, and the two are brought into contact and reacted at the bottom of the cyclone, while flowing downward. This is a method for producing sodium hypochlorite.

本発明の別の特徴は、反応生成物を含む溶液即
ち反応液に更に苛性ソーダ水溶液、好ましくは30
%以上の苛性ソーダ水溶液を添加して、これを前
記苛性ソーダを含む水溶液として循環使用するこ
とである。この場合好ましくは、苛性ソーダの濃
度は100g/以下となるように調製し、且つ、
35℃以下の温度まで冷却すべきである。
Another feature of the invention is that the solution containing the reaction product, i.e., the reaction solution, is further provided with an aqueous solution of caustic soda, preferably 30%
% or more of a caustic soda aqueous solution is added and this is recycled as an aqueous solution containing the caustic soda. In this case, preferably, the concentration of caustic soda is adjusted to 100 g/or less, and
It should be cooled to a temperature below 35°C.

斯様な方法によるときは、循環液中にすでに食
塩の結晶が析出しており、これに新たに反応生成
する食塩が付着成長し粒子径を増大する。このた
め(製品となる次亜塩素酸水溶液が高濃度のため
比較的高粘度であつても)容易に食塩を分離する
ことが可能となるのである。
When such a method is used, salt crystals are already precipitated in the circulating fluid, and the salt newly generated by the reaction adheres to these crystals and grows, increasing the particle size. For this reason, it is possible to easily separate the common salt (even if the hypochlorous acid aqueous solution used as the product has a relatively high viscosity due to its high concentration).

更に本発明を実施する好ましい態様は、該循環
液をサイクロンその他の分離手段により溶液部分
と食塩結晶等の固形分を含むスラリー部分とに分
離し、溶液部分はプレートクーラー等の冷却器に
より35℃、好ましくは30℃以下に冷却した後前記
スラリー部分の一部又は全部をこれに加えて再び
塩素との接触、反応工程に供する。かかる手段が
好ましく用いられる理由は、冷却工程において固
形物が存在すると、しばしば冷却器の詰りその他
のトラブルを生ずることにある。また冷却の有無
に係わらず食塩などの固形物を塩素との接触、反
応工程に供給するのは、すでに述べた食塩の付着
による粒経の増大を図る目的の他に苛性ソーダ水
溶液と塩素との主たる接触領域において析出した
食塩の、器壁やノズル等への付着や延いては、ノ
ズル等が閉塞するのを防止するためである。即ち
循環される食塩粒などの固形物が反応器内壁等に
塩素供給ノズル等の気−液界面における析出食塩
の付着成長を摩擦により除去する働を有するので
ある。
Furthermore, in a preferred embodiment of the present invention, the circulating fluid is separated into a solution portion and a slurry portion containing solids such as salt crystals by a cyclone or other separation means, and the solution portion is heated to 35°C by a cooler such as a plate cooler. After cooling, preferably to below 30° C., part or all of the slurry portion is added thereto and subjected to contact with chlorine and reaction step again. The reason why such means are preferably used is that the presence of solids during the cooling process often causes clogging of the cooler and other problems. Also, regardless of whether or not it is cooled, solids such as common salt are brought into contact with chlorine and supplied to the reaction process, in addition to the purpose of increasing the grain size due to the adhesion of common salt as already mentioned. This is to prevent the salt deposited in the contact area from adhering to the vessel wall, nozzle, etc., and from clogging the nozzle, etc. That is, the circulated solids such as salt grains have the function of removing, by friction, the adhesion and growth of salt precipitated at the gas-liquid interface of the chlorine supply nozzle and the like on the inner wall of the reactor.

かくして本発明は苛性ソーダ水溶液特に30%又
はそれ以上の濃厚な水溶液を循環液に添加するこ
とにより、系内の水量を増大することなく、苛性
ソーダ分を100g/以下、好ましくは90g/
乃至10g/に保つことが容易となり、過塩素化
物の副生が実質的に防止できるのである。また反
応温度を35℃特に30℃以下で行うことにより更に
有効に達成される。
Thus, the present invention allows the caustic soda content to be reduced to 100 g/less or less, preferably 90 g/L, without increasing the amount of water in the system by adding an aqueous solution of caustic soda, particularly a concentrated aqueous solution of 30% or more, to the circulating fluid.
This makes it easy to maintain the amount between 10 g and 10 g/m, and the by-product of perchlorinated substances can be substantially prevented. Further, the reaction can be more effectively achieved by carrying out the reaction at a temperature of 35°C, particularly 30°C or lower.

次に本発明を実施するにあたり二重管式のサイ
クロン型反応器を用い、塩素含有ガス好ましくは
塩素含有率が90%乃至100%のガスを内管より供
給し、苛性ソーダを含む水溶液を外管に特に接線
方向から供給するものである。かくして、塩素ガ
スは苛性ソーダを含む水溶液に取り囲まれる形態
で反応器内に供給される。このため生成する食塩
は器壁に付着することなく流出する。更に液の排
出方向も重要である。サイクロン型反応器の下部
で液が停滞することなく、むしろ気体を巻き込む
形で排出されることが特に好ましい。このために
排出口は十分な断面積を有する円筒状の直管とし
て、ほぼ垂直に下方へ導くものが好ましい。しか
しながらあまりに大断面積となり部分的に苛性ソ
ーダを含む溶液で十分に濡れない場合は、そこに
食塩が付着し、徐々に成長してついには閉塞等ト
ラブルの原因となるので注意を要するが、これら
の形状の決定にあたつては、技術者が本明細書の
記載に基づいてあらかじめ予備実験により容易に
なし得るものである。
Next, in carrying out the present invention, a double-tube cyclone reactor is used, and a chlorine-containing gas, preferably a gas with a chlorine content of 90% to 100%, is supplied from the inner tube, and an aqueous solution containing caustic soda is supplied to the outer tube. In particular, it is supplied from the tangential direction. Thus, chlorine gas is supplied into the reactor surrounded by an aqueous solution containing caustic soda. Therefore, the salt produced flows out without adhering to the vessel wall. Furthermore, the direction of liquid discharge is also important. It is particularly preferable that the liquid does not stagnate in the lower part of the cyclone reactor, but rather is discharged in a form that entrains gas. For this purpose, the discharge port is preferably a cylindrical straight pipe having a sufficient cross-sectional area and leading downward almost vertically. However, if the cross-sectional area is too large and some parts cannot be sufficiently wetted with a solution containing caustic soda, salt will adhere there and gradually grow, eventually causing problems such as blockages, so be careful. The shape can be easily determined by an engineer through preliminary experiments based on the description in this specification.

本発明に用いる反応装置の好ましい態様を示す
と、下部が逆円錐形となり、その先端部に排出口
を有する円筒状外管と、先端部が外管の円錐部に
近接した位置に開口するように、円筒状外管のほ
ぼ中心部に上方から挿入された内管(これを塩素
供給ノズルということもある)とよりなり、且
つ、該外管円筒部に対して接線方向に液導入用ノ
ズルを有する主反応器と、液の導入口、同排出口
及び所望により気体の排出口を具備した貯槽とよ
りなり、該貯槽は主反応器の直下に位置しており
且つ主反応器の排出口と貯槽とが直管によつて接
合されている次亜塩素酸ソーダ水溶液の製造装置
である。かかる装置において不純ガス等の非反応
性ガスを含有する塩素ガスを用いる場合には該貯
槽は気−液分離槽の働きも兼ねさせることができ
る。
A preferred embodiment of the reactor used in the present invention includes a cylindrical outer tube whose lower part has an inverted conical shape and a discharge port at its tip, and a cylindrical outer tube whose tip opens at a position close to the conical portion of the outer tube. It consists of an inner tube (sometimes referred to as a chlorine supply nozzle) inserted from above into approximately the center of the cylindrical outer tube, and a liquid introduction nozzle tangentially to the cylindrical portion of the outer tube. The storage tank is located directly below the main reactor, and is equipped with a liquid inlet, a liquid outlet, and, if desired, a gas outlet. This is an equipment for manufacturing a sodium hypochlorite aqueous solution in which a storage tank and a storage tank are connected by a straight pipe. When using chlorine gas containing a non-reactive gas such as an impure gas in such an apparatus, the storage tank can also function as a gas-liquid separation tank.

以下図面により本発明の好ましい態様を説明す
る。第1図は、本発明を実施するフローシートの
一例であり、第2図はその主反応器の部分の拡大
図である。第1図において、貯槽1に苛性ソーダ
を含む水溶液が張り込まれている。
Preferred embodiments of the present invention will be explained below with reference to the drawings. FIG. 1 is an example of a flow sheet for implementing the present invention, and FIG. 2 is an enlarged view of the main reactor portion thereof. In FIG. 1, a storage tank 1 is filled with an aqueous solution containing caustic soda.

通常主反応器との間で溶液の循環を行うため
一般に食塩及び次亜塩素酸をも含有する。貯槽は
食塩の沈澱堆積の防止や苛性ソーダの速やかな混
合を助けるため、撹拌機6を設けておくのがよ
い。また苛性ソーダの補給は配管20により、好
ましくは30%以上の高濃度で供給する。勿論、低
濃度の苛性を用いても次亜塩素酸ソーダは得られ
るが系内の水が増大し、食塩の溶解量が増加し且
つ製品濃度も低下するため本法のメリツトは減少
する。従つて供給苛性ソーダは、30%以上特に35
%以上とし、貯槽内の苛性ソーダは100g/以
下に保つようにするのが好ましい。貯槽内の苛性
ソーダ濃度を、これ以上にすることは、製品中に
持ち去られる苛性ソーダが増大すること、及び溶
液粘度増加により食塩の分離が容易でなくなり、
特に循環液をサイクロンにより処理する場合の効
率を低下させるので好ましくない。
Generally, it also contains common salt and hypochlorous acid to circulate the solution to and from the main reactor 4 . The storage tank is preferably provided with a stirrer 6 in order to prevent precipitation of common salt and to assist in rapid mixing of caustic soda. Further, caustic soda is replenished through piping 20, preferably at a high concentration of 30% or more. Of course, sodium hypochlorite can be obtained even if a low concentration of caustic is used, but the merits of this method are reduced because the amount of water in the system increases, the amount of dissolved salt increases, and the product concentration decreases. Therefore, the caustic soda supplied is more than 30% especially 35
% or more, and it is preferable to keep the amount of caustic soda in the storage tank at 100 g/or less. If the concentration of caustic soda in the storage tank is increased above this level, the amount of caustic soda carried away into the product will increase, and the viscosity of the solution will increase, making it difficult to separate the salt.
In particular, this is not preferable because it reduces the efficiency when treating circulating fluid with a cyclone.

貯槽内液は一部配管21により好ましくはサイ
クロン2に供給し、上澄液は配管22からクーラ
ー3を経て35℃以下、好ましくは30℃以下に冷却
され配管23より主反応器に供給される。また
サイクロン2により固形分として分離された、主
として食塩よりなるスラリーも配管24より、同
23を経て主反応器に供給される。主反応器には
別に配管25より塩素が、上方から下方に向けて
供給される。苛性ソーダと塩素との反応速度は極
めて速いため、塩素供給ノズルの先端は常に苛性
ソーダを含む溶液で洗われる必要があるが、気−
液接触界面に食塩が生成し付着するため、ノズル
内にその界面が来てはいけない。同様に主反応器
の内壁も完全に液で覆われている必要があるた
め、第2図に示す如く、必ず塩素はサイクロン型
の反応器の中心部へ上方から下方へ向けて導入し
苛性ソーダを含む溶液は、主反応器のサイクロン
へ接線方向に向けて供給する必要がある。また主
反応器の排出口及び脚部5は、比較的大きい断面
積を持ち、十分気体を巻き込む構造とするのが好
ましい。更に重要なことは、塩素供給ノズルの先
端が主反応器下部の逆円錐形となつた部分に近接
して開口していることである。壁面とノズル先端
との間隙は、供給する溶液量及び苛性ソーダの濃
度、供給塩素濃度及び圧力によつても異なるが、
この間隙が重要な意味を有することに留意して、
当業者が必要に応じ予備的実験によつて決定し得
る。一般に間隙が大き過ぎるとノズル先端部に食
塩が付着しノズルの閉塞を来たし、狭小過ぎると
器壁面に食塩が付着する傾向を生ずる。
Part of the liquid in the storage tank is preferably supplied to the cyclone 2 through piping 21, and the supernatant liquid is cooled from piping 22 through cooler 3 to 35°C or lower, preferably 30°C or lower, and then supplied to main reactor 4 through piping 23. Ru. Further, a slurry mainly consisting of common salt separated as a solid by the cyclone 2 is also supplied to the main reactor via the pipe 24 and the same 23. Chlorine is separately supplied to the main reactor from a pipe 25 from above to below. The reaction rate between caustic soda and chlorine is extremely fast, so the tip of the chlorine supply nozzle must always be washed with a solution containing caustic soda, but the tip of the chlorine supply nozzle must be washed with a solution containing caustic soda.
Because salt forms and adheres to the liquid contact interface, the interface must not come into the nozzle. Similarly, the inner wall of the main reactor must be completely covered with liquid, so chlorine must be introduced from the top to the bottom into the center of the cyclone-type reactor, and caustic soda must be introduced into the center of the cyclone-type reactor, as shown in Figure 2. The containing solution must be fed tangentially to the cyclone of the main reactor. Further, it is preferable that the outlet and leg portions 5 of the main reactor have a relatively large cross-sectional area and have a structure that sufficiently entrains gas. More importantly, the tip of the chlorine supply nozzle opens close to the inverted conical portion at the bottom of the main reactor. The gap between the wall surface and the nozzle tip varies depending on the amount of solution supplied, the concentration of caustic soda, the concentration of chlorine supplied, and the pressure.
Keeping in mind that this gap has an important meaning,
Those skilled in the art can determine this by preliminary experiments as necessary. Generally, if the gap is too large, salt will adhere to the tip of the nozzle, causing nozzle blockage, and if it is too narrow, salt will tend to adhere to the vessel wall.

さて、主反応器では上記の如くサイクロンによ
る渦巻流とこれに直角方向のガス流との接触混合
のため一瞬の間に十分な混合が達成されるため、
反応時の液粘度の影響を殆んど受けない。しかし
ながら、副生する食塩もその粒径が小さくなる傾
向にある。しかるに苛性ソーダを含む水溶液中に
食塩結晶を存在させておくと、これが核となり、
それに付着することによつて食塩粒径が増大す
る。
Now, in the main reactor, as mentioned above, sufficient mixing is achieved in an instant due to the contact mixing of the swirling flow caused by the cyclone and the gas flow in the direction perpendicular to it.
Almost unaffected by liquid viscosity during reaction. However, the particle size of by-product salt also tends to become smaller. However, when salt crystals are present in an aqueous solution containing caustic soda, these crystals become nuclei,
By adhering to it, the salt particle size increases.

かくして、主反応器を排出する反応液及びこれ
に巻き込まれた気体(主として塩素中の不純物な
ど)は、再び貯槽に至り、ここで気−液分離を行
い必要に応じてガス抜26より、オフガスを排出
する。製品は配管27より分離器、例えば遠心分
離機など種々のデカンターにより食塩その他の固
形物を適宜除いた後製品タンク8に至る。ここで
必要に応じて水を加え製品濃度を調整することが
できる。該タンクは、必要に応じて撹拌機9及び
(又は)分解を防ぐために冷却器(図示せず)を
付設することができる。
In this way, the reaction liquid discharged from the main reactor and the gas entrained therein (mainly impurities in chlorine, etc.) reach the storage tank again, where gas-liquid separation is performed, and off-gas is removed from the gas vent 26 as necessary. discharge. The product is delivered to the product tank 8 through piping 27 after salt and other solids are appropriately removed using a separator such as a centrifuge or various decanters. Here, water can be added to adjust the product concentration if necessary. The tank can optionally be equipped with an agitator 9 and/or a cooler (not shown) to prevent decomposition.

以上図面によつて本発明を説明したが、本発明
が、かかる態様に限定されるものではない。また
本発明は貯槽1主反応器4間で一部循環を行いな
がら、回分式に一定の量製造し、これを製品とし
て取り出すことも、また連続的に製品を取り出し
ながら、製造することも任意に行うことができ
る。
Although the present invention has been described above with reference to the drawings, the present invention is not limited to such embodiments. In addition, the present invention can produce a certain amount batchwise while partially circulating between the storage tank 1 and the main reactor 4, and then take it out as a product, or it can be produced while taking out the product continuously. can be done.

以下に実施例を示す。 Examples are shown below.

実施例 1 第2図に示す形状の反応器を第1図に示す如き
貯槽と組合せてバツチ式に反応を行う。即10%苛
性ソーダ溶液9tonの入つている撹拌機付貯槽に、
苛性ソーダ濃度10%を維持するように、48%苛性
ソーダ水溶液0.67m3/Hr(平均値)の割合で連続
的に仕込み、30m3/Hで反応器に循環する。他方
反応器には塩素を317Kg/Hで供給し15時間反応
させた。その後48%苛性ソーダ水溶液の仕込みを
停止し、塩素ガスのみを317Kg/Hrの割合で6.4
時間仕込み反応を行い、次亜塩素酸ソーダ26.2
%、溶液中の食塩7.0%苛性ソーダ2.0%を含有す
る塩化液26.6tonを得た。上記塩素化反応は、反
応温度25℃を保つように冷却を行つた。この塩化
液中の食塩の結晶は、粒径105μ以上94%で、分
離機で容易に分離出来た。分離された食塩の量は
3.7トンであつた。また得られた次亜塩素酸ソー
ダ水溶液の対塩素収率は98.0%であつた。
Example 1 A reactor having the shape shown in FIG. 2 is combined with a storage tank as shown in FIG. 1 to conduct a batch reaction. Immediately place it in a storage tank with a stirrer containing 9 tons of 10% caustic soda solution.
To maintain a caustic soda concentration of 10%, a 48% caustic soda aqueous solution was continuously charged at a rate of 0.67 m 3 /Hr (average value) and circulated to the reactor at a rate of 30 m 3 /H. On the other hand, chlorine was supplied to the reactor at a rate of 317 kg/H, and the reaction was carried out for 15 hours. After that, the preparation of 48% caustic soda aqueous solution was stopped, and only chlorine gas was added at a rate of 317Kg/Hr for 6.4 hours.
Perform the preparation reaction for a time of 26.2 hours with sodium hypochlorite.
%, 26.6 tons of chloride solution containing 7.0% common salt and 2.0% caustic soda in solution was obtained. In the above chlorination reaction, cooling was performed to maintain the reaction temperature at 25°C. 94% of the salt crystals in this chloride solution had a particle size of 105μ or more, and could be easily separated using a separator. The amount of salt separated is
It weighed 3.7 tons. The yield of the obtained sodium hypochlorite aqueous solution relative to chlorine was 98.0%.

比較例 1 実施例1と同様に行うが、苛性ソーダを含む水
溶液の循環は行わず、貯槽に直接塩素を吹き込ん
だ。この場合、食塩の結晶は粒径105μ以上は約
30%であり、得られた次亜塩素酸ソーダ水溶液の
対塩素収率は87%であつた。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that the aqueous solution containing caustic soda was not circulated and chlorine was blown directly into the storage tank. In this case, salt crystals with a particle size of 105μ or more are approximately
The resulting sodium hypochlorite aqueous solution had a chlorine yield of 87%.

実施例 2 実施例1の方法で製造した塩化液を撹拌機付貯
槽に5m3入れ、これに48%苛性ソーダ水溶液に水
を加えて35%に調整した水溶液を1000Kg/H連続
添加し、この混合液を30m3/Hで反応器に供給す
る。他方塩素ガスは317Kg/Hで供給して塩化液
の次亜塩素酸ソーダ濃度を25.7〜26.8%に維持す
るように反応を行つた。塩化液の量は5m3を維持
するように連続的に貯槽より排出した。
Example 2 5 m 3 of the chloride solution produced by the method of Example 1 was placed in a storage tank equipped with a stirrer, and 1000 kg/h of an aqueous solution adjusted to 35% by adding water to a 48% caustic soda aqueous solution was continuously added thereto, and this mixing was carried out. The liquid is fed to the reactor at 30 m 3 /H. On the other hand, chlorine gas was supplied at a rate of 317 kg/H to carry out the reaction so as to maintain the sodium hypochlorite concentration of the chloride solution at 25.7 to 26.8%. The amount of chloride solution was continuously discharged from the storage tank to maintain a volume of 5 m 3 .

かくして3日間(72時間)連続、塩素化反応を
行い、次亜塩素酸ソーダ26.1%、食塩7.0%苛性
ソーダ2.1%の液化液を得た。上記塩素化反応は、
反応温度25℃を保つように冷却を行つた。この塩
化液中の食塩の結晶は、粒径105μ以上96.5%で、
分離機で容易に分離できた。得られた次亜塩素酸
ソーダ水溶液の対塩素収率は98.2%であつた。
又、運転中スケーリングによるトラブルはなかつ
た。停止後反応器を分解して調べたが反応器中に
は全くスケーリングが認められなかつた。
The chlorination reaction was thus carried out continuously for 3 days (72 hours) to obtain a liquefied solution containing 26.1% sodium hypochlorite, 7.0% common salt, and 2.1% caustic soda. The above chlorination reaction is
Cooling was performed to maintain the reaction temperature at 25°C. 96.5% of the salt crystals in this chloride solution have a particle size of 105μ or more,
It was easily separated using a separator. The resulting sodium hypochlorite aqueous solution had a chlorine yield of 98.2%.
Also, there were no problems due to scaling during operation. After stopping, the reactor was disassembled and examined, but no scaling was observed in the reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する場合のフローシー
トの一例である。第2図は、本発明に用いる反応
器の一例の斜視図である。 図中、1は貯槽、2はサイクロン、3は熱交換
器、4は反応器、7は分離器、8は製品タンクを
各々表わす。
FIG. 1 is an example of a flow sheet for implementing the present invention. FIG. 2 is a perspective view of an example of a reactor used in the present invention. In the figure, 1 represents a storage tank, 2 a cyclone, 3 a heat exchanger, 4 a reactor, 7 a separator, and 8 a product tank.

Claims (1)

【特許請求の範囲】 1 塩素と苛性ソーダの反応により次亜塩素酸ソ
ーダ水溶液を製造するに当り、二重管式のサイク
ロン型反応器により、塩素含有ガスを内管より供
給し、苛性ソーダを含む水溶液を外管に接線方向
から供給しサイクロン下部で両者を接触反応させ
つつ下方に流出させることを特徴とする次亜塩素
酸ソーダ水溶液の製造方法。 2 反応生成物を含む液に苛性ソーダ水溶液を添
加し、これを反応器に循環することを特徴とする
特許請求の範囲第1項記載の方法。 3 塩素と接触する苛性ソーダの濃度が100g/
以下である特許請求の範囲第1項記載の方法。 4 反応生成物を含む液に添加する苛性ソーダが
30%以上である特許請求の範囲第2項記載の方
法。 5 循環する液は、溶液部分と固形分を含むスラ
リーとに分離し、溶液部分は冷却した後、再度固
形分を含むスラリーと合流させた後、反応器に供
給する特許請求の範囲第2項記載の方法。 6 下部が逆円錘形となり、その先端部に排出口
を有する円筒状外管と、先端部が外管の円錘部に
近接した位置に開口するように、円筒状外管のほ
ぼ中心部に上方から挿入された内管とよりなり、
且つ該外管円筒部には、内壁に対して接線方向に
液を供給するように液導入用ノズルを有するサイ
クロン型の主反応器と液の導入口及び排出口を具
備した貯槽とによつて構成され、該貯槽は主反応
器の直下に位置しており、且つ主反応器の排出口
と貯槽とが直管によつて接合されている次亜塩素
酸ソーダ水溶液の製造装置。
[Claims] 1. In producing a sodium hypochlorite aqueous solution by the reaction of chlorine and caustic soda, a chlorine-containing gas is supplied from the inner tube of a double-tube cyclone reactor to produce an aqueous solution containing caustic soda. A method for producing an aqueous solution of sodium hypochlorite, which comprises supplying aqueous solution of sodium hypochlorite from a tangential direction to an outer tube, allowing both to contact and react at the bottom of a cyclone, and flowing downward. 2. The method according to claim 1, characterized in that an aqueous solution of caustic soda is added to the liquid containing the reaction product and this is circulated to the reactor. 3 The concentration of caustic soda in contact with chlorine is 100g/
The method according to claim 1, which is: 4 The caustic soda added to the liquid containing the reaction product is
30% or more. The method according to claim 2. 5. The circulating liquid is separated into a solution portion and a slurry containing solids, and the solution portion is cooled and then combined with the slurry containing solids again before being supplied to the reactor. Method described. 6. A cylindrical outer tube whose lower part is in the shape of an inverted cone and has a discharge port at its tip, and a cylindrical outer tube whose tip is opened at a position close to the conical portion of the outer tube, approximately in the center of the cylindrical outer tube. It consists of an inner tube inserted from above,
In addition, the cylindrical part of the outer tube has a cyclone-type main reactor having a liquid introduction nozzle so as to supply liquid tangentially to the inner wall, and a storage tank equipped with a liquid inlet and an outlet. An apparatus for producing an aqueous sodium hypochlorite solution, in which the storage tank is located directly below a main reactor, and the outlet of the main reactor and the storage tank are connected by a straight pipe.
JP11524881A 1981-07-24 1981-07-24 Production of aqueous sodium hypochlorite solution Granted JPS5820703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11524881A JPS5820703A (en) 1981-07-24 1981-07-24 Production of aqueous sodium hypochlorite solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11524881A JPS5820703A (en) 1981-07-24 1981-07-24 Production of aqueous sodium hypochlorite solution

Publications (2)

Publication Number Publication Date
JPS5820703A JPS5820703A (en) 1983-02-07
JPH0239444B2 true JPH0239444B2 (en) 1990-09-05

Family

ID=14657993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11524881A Granted JPS5820703A (en) 1981-07-24 1981-07-24 Production of aqueous sodium hypochlorite solution

Country Status (1)

Country Link
JP (1) JPS5820703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743903U (en) * 1993-06-24 1995-09-26 ジャン−ミアオ カオ Earth leakage circuit breaker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2532291A1 (en) * 1982-08-24 1984-03-02 Ugine Kuhlmann OBTAINING HIGH-CONCENTRATION SODIUM HYPOCHLORITE SOLUTION BY A CONTINUOUS PROCESS
JPS6081003A (en) * 1983-10-13 1985-05-09 Asahi Chem Ind Co Ltd Manufacture of aqueous solution of sodium hypochlorite
CN112154120A (en) * 2018-03-29 2020-12-29 奥林公司 Process for producing highly concentrated bleach slurries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028521A (en) * 1973-07-17 1975-03-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028521A (en) * 1973-07-17 1975-03-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743903U (en) * 1993-06-24 1995-09-26 ジャン−ミアオ カオ Earth leakage circuit breaker

Also Published As

Publication number Publication date
JPS5820703A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
US4780303A (en) Continuous process for the preparation of high strength sodium hypochlorite solutions
JPS6114119A (en) Continuous hot water manufacture for sodium silicate solution and facilities therefor
JP5393478B2 (en) Manufacture of high strength, low salt sodium hypochlorite bleach
KR830002388B1 (en) Method for Extracting Titanium Components from Titanium Iron-Containing Materials
US2853363A (en) Manufacture of potassium silicofluoride
EP1773715B1 (en) Manufacture of high-strength, low-salt hypochlorite bleach
JPH0239444B2 (en)
JPH0735245B2 (en) Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution
EP0123749A1 (en) Continuous process for the manufacture of calcium hypochlorite
US8491864B2 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
US5164523A (en) Process for the production of granular metal soap
JPH09136091A (en) Wastewater treatment apparatus
EP0059589B1 (en) Improved process for preparing calcium hypochlorite
US3347623A (en) Preparation of potassium bicarbonate
CN101668699B (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
FR2490618A1 (en) PROCESS FOR MANUFACTURING STABLE SOLUTION OF TITANYLE SULFATES
EP0131713B1 (en) An improved process for calcium hypochlorite
JPS59182204A (en) Production of aqueous solution of sodium hypochlorite
JPH03275509A (en) Production of sodium hydrogencarbonate
US4260752A (en) Chlorination process
WO1990009958A1 (en) Preparation of nitrosyl fluoride
JPS608961B2 (en) Manufacturing method of high concentration sodium hypochlorite aqueous solution
JPS6126502A (en) Continuous production of bleaching liquid