JPS59182204A - Production of aqueous solution of sodium hypochlorite - Google Patents

Production of aqueous solution of sodium hypochlorite

Info

Publication number
JPS59182204A
JPS59182204A JP4970883A JP4970883A JPS59182204A JP S59182204 A JPS59182204 A JP S59182204A JP 4970883 A JP4970883 A JP 4970883A JP 4970883 A JP4970883 A JP 4970883A JP S59182204 A JPS59182204 A JP S59182204A
Authority
JP
Japan
Prior art keywords
chlorine
reaction
aqueous solution
sodium
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4970883A
Other languages
Japanese (ja)
Other versions
JPH0159961B2 (en
Inventor
Shinji Takenaka
竹中 慎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4970883A priority Critical patent/JPS59182204A/en
Publication of JPS59182204A publication Critical patent/JPS59182204A/en
Publication of JPH0159961B2 publication Critical patent/JPH0159961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To avoid the sticking of sodium chloride crystals to the tip part of a charging pipe and produce efficiently the titled aqueous solution in a high concentration, by feeding chlorine from the charging pipe having the bottom opening separated from the liquid surface of a reaction solution in a tank while agitating fully the reaction solution. CONSTITUTION:An aqueous solution containing sodium hydroxide is reacted with chlorine by the gas-liquid contact method to produce an aqueous solution of sodium hypochlorite (forming sodium chloride as a by-product in an equivalent to the sodium hypochlorite expressed by the formula). In the method, (i) the reaction solution is fully agitated (at about 60 r.p.m. agitation speed in a reaction tank having about 10m<3> volume), and (ii) the chlorine is fed from the tip of a chlorine charging pipe separated at about >=1cm interval from the liquid surface.

Description

【発明の詳細な説明】 本発明は、水酸化ナトリウムを含む水溶液と、塩素とを
気−液接触により反応せしめ次亜塩素酸すl〜リウム水
溶液を製造する方法に関するものである0詳しくは、次
亜塩素酸ナトリウムの製造(こ用し)られでいる、通常
の反応槽を用いて高濃度の次亜塩素酸す1−リウム水溶
液を容易に、効率よぐ製造することを主な目的とするO 水酸化ナトリウムと塩素を反応させると、次式に゛従い
、2NaOH+Ce2−−NaCeO+ NaCe +
H20次亜塩素酸ナトリウムと塩化ナトリウムが当量づ
つ生成するが、次亜塩素酸すl〜リウムの分解を抑制す
る為に若干の未反応水酸化す1−リウムを溶存さぜる必
要があり、通常の次亜塩素酸す1−リウムの水溶液は次
亜塩素酸ナトリウム、塩化す1−リウlx、水酸化ナト
リウムを主成分とし、これらの成分の水に対する溶解度
によって組成が決定される。即ち、原料の水酸化すl−
リウム水溶液濃度によって、生成さノする次亜塩素酸ナ
トリウムの濃度及びその水溶液組成はほぼ決まるoしか
し、これら三者が液相で共存し得る領域を越えると、溶
解度の一番小さい塩化ナトリウムの結晶が析出する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aqueous sulfur to lium hypochlorite solution by reacting an aqueous solution containing sodium hydroxide with chlorine through gas-liquid contact. The main purpose is to easily and efficiently produce a high concentration 1-lium hypochlorite aqueous solution using a normal reaction tank that is used for producing sodium hypochlorite. When sodium hydroxide and chlorine are reacted, 2NaOH + Ce2--NaCeO+ NaCe +
H20Equivalent amounts of sodium hypochlorite and sodium chloride are produced, but it is necessary to dissolve some unreacted 1-lium hydroxide in order to suppress the decomposition of sulfur-lium hypochlorite. A typical aqueous solution of 1-lium hypochlorite contains sodium hypochlorite, 1-liurium chloride, and sodium hydroxide as main components, and its composition is determined by the solubility of these components in water. That is, the raw material hydroxide l-
The concentration of sodium hypochlorite and its aqueous solution composition are determined by the concentration of the sodium hypochlorite aqueous solution. However, beyond the range where these three can coexist in the liquid phase, sodium chloride crystals with the lowest solubility is precipitated.

これを具体的に説明すると、20%の水酸化す1〜リウ
ム水溶液に塩素を導入して、次亜塩素酸すl−リウムを
製造する場合には、未反応水酸化ナトリウムを2〜3%
残存させる程度で反応を止めれば、次亜塩素酸11〜リ
ウムは1約16%為塩化すl〜・リウム約13%の次亜
塩素酸ナトリウム水溶液が生成する。この組成では常1
益下で溶解の領域内にあり、均一な反応マスが得られる
。しかし、原料の水酸化ナトリウムの濃度が25%以上
になると、常温で塩化リートリウムの結晶が4ノj出し
、反応マスがスラリー状となる0例えば高硬度次亜塩素
酸ナトリウムを得るため、30%の水酸化ナトリウム水
溶液に塩素を導入した場合、未反応水酸化ナトリウムを
2〜3%残存させたところで反応を止めると、次亜塩素
酸す)ヘリウムは約25%、塩化す1−リウム約20%
となり、これは常温下の溶解の領域外で、塩化ナトリウ
ムは一部析出し、反応液中の塩化ナトリウム濃度は約7
%になる0この朴に、高濃度の次亜塩素酸す1−リウム
を製造する」混合には、反応中に塩化す1〜リウムの結
晶析出は避けることが出来ず、反応終了後は濾過分に1
Fの操作が必要になるとともに、反応マス中に導入した
塩素吹き込み管に塩化ナトリウムの結晶が析出し、導入
管の閉寒を/−1Fしる0この為反応を中断し、管の洗
浄等、繁俯な作業が必要となる他、閉塞傾向になると塩
素の導入が局部的に反応液と接触する原因となったり、
また反応中断にまる反応時間の延長G1生成した次亜塩
素酸ナトリウムの分解や珍;素酸塩の副生を促進する結
果、収率の低下をもたらす0更に析出する塩化ナトリウ
ムの結晶粒度にも悪影響を及ぼし、反応終了後の濾過分
離操作が悪くなり、濾過の目的生成物の収率に影響を考
える。
To explain this specifically, when producing sulfurium hypochlorite by introducing chlorine into a 20% sulfur-lithium hydroxide aqueous solution, 2-3% of unreacted sodium hydroxide is added.
If the reaction is stopped at a level where it remains, an aqueous sodium hypochlorite solution containing about 16% of 11-lium hypochlorite and about 13% of 1-13% sulfur chloride is produced. In this composition, it is always 1
The reaction mass is within the range of dissolution under normal conditions and a homogeneous reaction mass is obtained. However, when the concentration of sodium hydroxide as a raw material exceeds 25%, 4 liters of rythrium chloride crystals are produced at room temperature, and the reaction mass becomes slurry.For example, in order to obtain high hardness sodium hypochlorite, 30 % sodium hydroxide aqueous solution, if the reaction is stopped when 2 to 3% unreacted sodium hydroxide remains, hypochlorous acid (hypochlorous acid), helium (hypochlorous acid), helium chloride (1-lium), approximately 25%, 20%
This is outside the range of dissolution at room temperature, some of the sodium chloride precipitates, and the sodium chloride concentration in the reaction solution is about 7.
%0 In order to produce highly concentrated monolithium hypochlorite, it is impossible to avoid crystal precipitation of monolithium chloride during the reaction, and filtration is necessary after the reaction is complete. 1 minute
At the same time, sodium chloride crystals precipitate in the chlorine injection tube introduced into the reaction mass, causing the inlet tube to become clogged by -1F.For this reason, the reaction must be interrupted and the tube must be cleaned, etc. In addition to requiring laborious work, the introduction of chlorine may cause local contact with the reaction liquid if it tends to become clogged.
In addition, the extension of the reaction time due to interruption of the reaction (G1) promotes the decomposition of the produced sodium hypochlorite and the by-product of the oxalate, resulting in a decrease in yield.0 Furthermore, the crystal grain size of the precipitated sodium chloride This may have an adverse effect, impairing the filtration and separation operation after the reaction is completed, and may affect the yield of the target product of filtration.

以上の如く、高濃度の次亜塩素酸す)−リウム水溶液を
製造する場合には、塩素導入方法に工夫をこらす必要が
〃)る。この方法として、一般的には水による塩化ナト
リウムの溶解、機械的な方法により付着した塩化ナトリ
ウムの除去等の他、反応液の流動方向に沿って開口する
二重の塩素導入管を設4iで反応液を高速循環さぜなが
ら反応さぜる方法(特開昭56−114807)、二重
管式のサイクロン壓反応器により、塩素含有カスを内管
より供給し、新たな水酸す)−リウム水溶液を含む循環
反応液を外管に接線方向から供給シ2、サイクロン下部
で両者を、接触反応させつつ下方に流出させる方法(特
開昭58−20703)等がJ〃案さ21ている。これ
等は、かなり繁雑な方法で〃)るばかりでなく、付着を
完全に防止することは出来ず)また設備費や、動力費の
ロス1−高となるだけでtC<、操作上も厄介である。
As mentioned above, when producing a highly concentrated aqueous solution of lithium hypochlorite, it is necessary to devise a method for introducing chlorine. Generally speaking, this method includes dissolving sodium chloride with water, removing attached sodium chloride using mechanical methods, and installing a double chlorine introduction pipe that opens along the flow direction of the reaction solution. A method of stirring the reaction solution while stirring it at high speed (Japanese Unexamined Patent Publication No. 56-114807), using a double-tube type cyclone reactor, chlorine-containing scum is supplied from the inner tube, and fresh hydroxyl is produced). A method has been proposed in which a circulating reaction liquid containing an aqueous solution of lithium is supplied tangentially to the outer tube, and the two are caused to contact each other at the bottom of the cyclone while flowing downward (Japanese Patent Application Laid-Open No. 58-20703). . This is not only a fairly complicated method, but also cannot completely prevent adhesion), it only results in a loss in equipment costs and power costs, and is also troublesome to operate. It is.

例えばiIJ記特開昭56−114807では、反応器
の上部に二車の反応管を設け、循環ポンプにより内管外
側イ5−流れる(IXi Lit反応液の流速と、内管
より導入されるl:1l11素ガスとの流速を調節する
ことにより塩素尋人管先端部を?)・k圧状態の空間部
をつくり、塩化す1−リウ1、の結、It、イー1着ヲ
防止しなから実旌さねているが1反応液流速と塩素ガス
流速の制御に問題がある0木発明者(肥と21らの点を
改善すべく鋭意研究の結果、塩化す)ヘリウムの結晶の
付着、閉塞が全くなく、シかし通常使用されている反応
槽を用いた簡便な方法を見い出し本発明を完成させた。
For example, in JP-A-56-114807, a two-wheeled reaction tube is installed at the top of the reactor, and a circulation pump is used to control the flow rate of the IXi Lit reaction liquid and the amount of l introduced from the inner tube. : By adjusting the flow rate with the 1l11 elemental gas, a space at the tip of the chlorine gas tube is created to create a pressure state to prevent the formation of 1-1 chloride, It, and E1. The inventor has been working diligently since 1. There is a problem in controlling the flow rate of the reaction solution and the flow rate of chlorine gas.(As a result of intensive research to improve the points of 21 and 21, helium chloride) Adhesion of helium crystals The present invention was completed by discovering a simple method that does not cause any blockage and uses a commonly used reaction tank.

即ち本発明方法は、水酸化す1−リウム水溶液と塩素イ
マ・反応さ」1−で、次亜塩素酸ナトリウム水溶液を製
造するに除して、反応槽の反応液の最終液面より上に」
n1導入管の開口位置を設け、導入管先端部分に対する
jマ、λ化ナトリウム結M、の付着を、防止しつつ塩素
イ、3 It、給し、反応液を充分かきまぜながら塩素
化度15を行なうことを特徴とする次亜塩素酸ナトリウ
ム水溶液の製造方法であり、これにより、管のつまりが
無くなり、論素の流量も変動なく所定時間流すことが可
能となった0この為、反応がスムーズに進行するととも
に、析出する塩化す1−リウムの結晶性も良くなり、い
わゆる液切れも向上した。その結果P液中の次亜塩素酸
ナトリウムの収率も6〜7%改善されるものである。
That is, in the method of the present invention, an aqueous sodium hypochlorite solution is produced by reacting a 1-lium hydroxide aqueous solution with a chlorine imprinter, and the reaction solution is reacted with an aqueous solution of 1-lium hydroxide to produce an aqueous solution of sodium hypochlorite. ”
Set the opening position of the n1 inlet tube, and supply chlorine, 3 It, while preventing adhesion of sodium chloride M to the tip of the inlet tube, and bring the degree of chlorination to 15 while stirring the reaction solution thoroughly. This is a method for producing an aqueous solution of sodium hypochlorite, which eliminates clogging of the pipes and allows the flow rate of logic to flow for a specified period of time without fluctuation. Therefore, the reaction is smooth. As the process progressed, the crystallinity of the precipitated 1-lium chloride also improved, and so-called liquid drainage also improved. As a result, the yield of sodium hypochlorite in the P solution is also improved by 6 to 7%.

本発明は、気−液接触反応であるので、反応中は攪拌は
必要条件である○(W拌が少ないと、反応液が局部的に
、塩素と接触する時間が長くなる為に、生成し・た次亜
塩素酸すl−リウムの分解反応が促進される結果、塩素
酸す)ヘリウムが副生ずる等好ましくなく、ある程度以
上の攪拌が必要である。しかし、この反応は迅速に行な
われるので、激しい4景拌は必要としない。具体的には
10m3の反応槽でG Q I’plTlセ、一度であ
り、これは通常の反応の攪拌と大差ない。攪拌速度が早
い分tこは、反応自身に悪影響はないが、あまり早いと
反応液の飛沫が反応槽の」二部に伺ズ」オる他余分の動
力コス)−を要することになりなんらメリットはない。
Since the present invention involves a gas-liquid contact reaction, stirring is a necessary condition during the reaction. - As a result of the accelerated decomposition reaction of sulfurium hypochlorite, helium chlorate is produced as a by-product, which is undesirable and requires a certain level of stirring. However, this reaction occurs quickly and does not require vigorous agitation. Specifically, G Q I'plTl was stirred once in a 10 m3 reaction tank, which is not much different from stirring in a normal reaction. The faster stirring speed does not have a negative effect on the reaction itself, but if it is too fast, the reaction liquid will splash into the second part of the reaction tank, and additional power costs will be required. There is no benefit.

攪拌速度は反応液量や、攪拌翼の形状などの段別にもと
ずき適宜最適条件を設定すればよい。
The stirring speed may be set to an optimal condition based on the amount of reaction liquid, the shape of the stirring blade, etc.

塩素尋人管の形状については特に限定する必要はなく、
また開大口も、反応液面へ垂直、直角方向いず21ても
構わない。液面から導入管までの距離も特に限定するも
のでないが、あまり接近していると、反応i1にの飛沫
が付着するので約Icm以上離した方が好ましい。前述
の如く、本反応は迅速であり液面より上の吹込みであっ
てもへ未反応塩素はほとんど系外へ逃散することはない
There is no need to limit the shape of the chlorine pipe.
Further, the opening may be opened either perpendicularly or perpendicularly to the reaction liquid surface. The distance from the liquid surface to the inlet tube is not particularly limited either, but if they are too close, droplets from reaction i1 will adhere, so it is preferable to keep them at least about Icm apart. As mentioned above, this reaction is rapid, and even if the chlorine is blown above the liquid level, almost no unreacted chlorine escapes out of the system.

本発明によ21ば、塩素尋人管の閉塞は全く起こらず、
長時間にわたり塩素化反応を円滑に、しかも容易に行な
うことが出来るため、特に、原料の水酸化す1−1トク
ム旋度の高い、高濃度次」II塩素酸す1−11・りj
lの製造に効果的で〃)る。また設(iifiの省力化
、作業の労務IY減にも役立つものである。
According to the present invention, no blockage of the chlorine gas pipe occurs,
Since the chlorination reaction can be carried out smoothly and easily over a long period of time, it is particularly advantageous to use chlorinated chloric acid with a high degree of rotation and a high concentration of chloric acid.
It is effective for the production of l. It is also useful for saving labor in installation (iifi) and reducing labor costs.

以下に本発明の実施例および比較例を挙げて、具体的に
説明するが、もちろん、こ)]により本発明は何ら限定
さ11るものではないOなお%は重量%を示す0 実施例1 直%F、 I O5mm %高さ110mmのセパラブ
ルの4つロフラスコに、直径60mmの半円形の撹拌翼
を持った撹拌棒、温度計、直径8mmの塩素導入管(開
穴1」を液面と直角に、反応終了時の液面上1 cm 
に設置。)と、廃ガスの排気管(排気管は15%の水酸
化す)−11ウムの吸収槽に導いた。)を設置して反応
装置として用いた。
Examples and comparative examples of the present invention will be specifically explained below, but of course, the present invention is not limited to these in any way. In a separable four-bottle flask with a height of 110 mm, a stirring rod with a semicircular stirring blade of 60 mm in diameter, a thermometer, and a chlorine introduction tube with a diameter of 8 mm (open hole 1) was placed at the liquid level. perpendicularly, 1 cm above the liquid level at the end of the reaction.
Installed in. ) and the waste gas was led to an exhaust pipe (the exhaust pipe was 15% hydroxide) to an -11 um absorption tank. ) was installed and used as a reactor.

40%の水酸化す)−リウム700gを仕込んだ後、塩
素を57g/hrで4.1 hrs導入した。この間反
応マスは30゛Cに維持し、攪拌は500rpmであっ
た。この間1塩素導入管内に塩化す1−リウムの結晶付
着は見ら才]ず、反応はスムーズに完結した。また排ガ
ス吸収槽の増加も認められなかった。生成した塩化す1
−リウムの結晶分を濾過した後、次亜塩素酸ナトリウム
濃度295%のP 7(M715gを得た。対塩素収率
は86%であった。
After charging 700 g of 40% sodium hydroxide, chlorine was introduced at 57 g/hr for 4.1 hr. During this time, the reaction mass was maintained at 30°C and stirring was at 500 rpm. During this time, no crystals of 1-lium chloride were observed in the chlorine introduction tube, and the reaction was completed smoothly. Also, no increase in the number of exhaust gas absorption tanks was observed. Generated chloride 1
After filtering the crystals of -lium, 715 g of P7 (M) with a sodium hypochlorite concentration of 295% was obtained. The yield based on chlorine was 86%.

実施例2 反応マスの温度を20”Cに替えた以外は実施例1と同
様に行なった。
Example 2 The same procedure as Example 1 was carried out except that the temperature of the reaction mass was changed to 20''C.

得られたろ液は次亜塩素酸す1−リウム濃度305%で
710gであった。対塩素収率は88%であった。
The obtained filtrate had a concentration of 1-lium hypochlorite of 305% and weighed 710 g. The yield based on chlorine was 88%.

実施例3゜ 原料の水酸化ナトリウムの濃度を35%に替えるととも
に塩素導入速度を5011/h rにした以外は、実施
例1と同様に行なった。
Example 3 The same procedure as in Example 1 was carried out except that the concentration of sodium hydroxide as a raw material was changed to 35% and the chlorine introduction rate was changed to 5011/hr.

29%の次亜塩素酸す1〜リウム700Sの炉液が得ら
れた。対塩素収率は94%であった。
A furnace solution containing 700S of 29% mono-lium hypochlorite was obtained. The yield based on chlorine was 94%.

比較例1 実施例1と同様に行ったが、ただし塩素導入管を原料の
水酸化す)−リウ1、液中に浸漬させて、行なった。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that the chlorine introduction tube was immersed in the hydroxide solution of the raw material.

反応中、塩素導入管がしばしば塩化ナトリウムの結晶で
閉塞するので10〜20mMごとに付着した結龍を取り
除きつつ、反応を行なった。
During the reaction, the chlorine introduction tube was often clogged with sodium chloride crystals, so the reaction was carried out while removing adhering crystals every 10 to 20 mM.

29%の次亜塩素酸す1〜リウム°68.Ofgのp液
を得た。
29% sodium to lium hypochlorite °68. Ofg p solution was obtained.

対塩ヌそ収率は80%であった。The yield based on salt starch was 80%.

比較例2 実施例3と同様であるが、塩素導入管を原料の水酸化す
1−リウム液中に浸漬させて行なった。反応中塩素導入
管がしばしば、塩化ナトリウムの結晶で閉塞するので、
10〜20m1nごとに付着した結晶を取り除きつつ反
応を行なった。
Comparative Example 2 The same procedure as in Example 3 was carried out, except that the chlorine introduction tube was immersed in a 1-lium hydroxide solution as a raw material. During the reaction, the chlorine inlet tube is often clogged with sodium chloride crystals.
The reaction was carried out while removing attached crystals every 10 to 20 ml.

28%の次亜塩素酸すl−リウム670IのP液を得た
0対塩素収率は87%であった○ 比較例3 攪拌の回転数を実施例1の50Orpmに替えて300
rprnに低減して実施した以外は、実施例1と全く同
じ方法で行った。結果は29%の次亜塩素酸す1−リウ
ム670gのp液が得られ、対塩素収率は79%であつ
T:0また攪拌速度300.400.500 rpmで
実施した場合の、対次亜塩素酸ナトリウム収率との関係
は図1に示すとおりであり、300rpmでは攪拌が不
充分であることがわかる0
The P solution of 28% sl-lium hypochlorite 670I was obtained, and the chlorine yield was 87%. Comparative Example 3 The rotation speed of stirring was changed to 50 Orpm as in Example 1 to 300 rpm.
The process was carried out in exactly the same manner as in Example 1, except that the sample was reduced to rprn. The results showed that 670 g of p-liquid with 29% sodium 1-lium hypochlorite was obtained, and the yield relative to chlorine was 79%. The relationship with the sodium chlorite yield is shown in Figure 1, and it can be seen that stirring is insufficient at 300 rpm.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明実施例1を行った場合の反応液の攪拌速
度と、導入した塩素に対するp液中の次亜塩素酸ナトリ
ウムの収率との関係を示したものである。 特許出願人 三井東圧化学株式会社 図面の浄書(内容に変更なし) 121−1 撹拌遠度(rrm) 手続補正書(方式) %式% 1、事件の表示 昭和58年特許願第049708号 2、発明の名称 次亜塩素酸ナトリウム水溶液の製造方法3、補正をする
者 4、補正命令の日付 昭和58年06月、08日 5、補正の対象 図面(図−1) 6、?!正の内容 図面の浄書(内容に変更なり
Figure 1 shows the relationship between the stirring speed of the reaction solution and the yield of sodium hypochlorite in the p-liquid relative to the introduced chlorine when carrying out Example 1 of the present invention. Patent applicant: Mitsui Toatsu Chemical Co., Ltd. Engraving of drawings (no change in content) 121-1 Stirring distance (rrm) Procedural amendment (method) % formula % 1. Indication of case 1982 Patent Application No. 049708 2 , Title of the invention: Method for producing aqueous sodium hypochlorite solution 3, Person making the amendment 4, Date of amendment order: June 1980, 08 5, Drawing subject to amendment (Figure-1) 6, ? ! Positive contents drawing engraving (changes to contents)

Claims (1)

【特許請求の範囲】[Claims] ■、 水酸化ナトリウム水溶液と塩素を反応させて欠伸
塩素酸ナトリウム水溶液を製造するに際して、反応槽の
反応液の最終液面より上に塩素導入管の開口位置を設け
て、導入管先端部分に対する塩イヒナ1−リウム結晶の
付着を防止しつつ塩素を供給し、反応液イ?充分攪拌し
ながら塩素化反応を行なうことを特徴とする次亜塩素酸
ナトリウム水溶液の製造方法0
■ When producing a decreted sodium chlorate aqueous solution by reacting an aqueous sodium hydroxide solution with chlorine, the opening position of the chlorine introduction tube is set above the final liquid level of the reaction solution in the reaction tank, and the salt is applied to the tip of the introduction tube. By supplying chlorine while preventing the adhesion of Ihina-1-lium crystals, the reaction solution is removed. Method 0 for producing an aqueous solution of sodium hypochlorite, characterized by carrying out a chlorination reaction with sufficient stirring
JP4970883A 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite Granted JPS59182204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970883A JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970883A JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Publications (2)

Publication Number Publication Date
JPS59182204A true JPS59182204A (en) 1984-10-17
JPH0159961B2 JPH0159961B2 (en) 1989-12-20

Family

ID=12838685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970883A Granted JPS59182204A (en) 1983-03-26 1983-03-26 Production of aqueous solution of sodium hypochlorite

Country Status (1)

Country Link
JP (1) JPS59182204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241713A (en) * 2013-05-15 2013-08-14 乳源东阳光电化厂 Preparation method of sodium hypochlorite
KR20150076088A (en) 2013-12-26 2015-07-06 쇼와 덴코 가부시키가이샤 Production process of aqueous sodium hypochlorite solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328382A (en) * 1976-07-27 1978-03-16 Mitsubishi Electric Corp Production method of semiconductor devi ce

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328382A (en) * 1976-07-27 1978-03-16 Mitsubishi Electric Corp Production method of semiconductor devi ce

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241713A (en) * 2013-05-15 2013-08-14 乳源东阳光电化厂 Preparation method of sodium hypochlorite
CN103241713B (en) * 2013-05-15 2015-01-14 乳源东阳光电化厂 Preparation method of sodium hypochlorite
KR20150076088A (en) 2013-12-26 2015-07-06 쇼와 덴코 가부시키가이샤 Production process of aqueous sodium hypochlorite solution

Also Published As

Publication number Publication date
JPH0159961B2 (en) 1989-12-20

Similar Documents

Publication Publication Date Title
TWI635043B (en) Production process of aqueous sodium hypochlorite solution
US4310690A (en) Preparation of the calcium salt of α-hydroxy-gamma-methylmercaptobutyric acid
US8454929B2 (en) Continuous process for preparation of calcium thiosulfate liquid solution
CN106861582B (en) The purification and hydrodynamics fused salt tank of high-temperature liquid state nitrate
CA2032627C (en) Process for producing sodium carbonate and ammonium sulphate from sodium sulphate
US7175824B2 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
JPS59182204A (en) Production of aqueous solution of sodium hypochlorite
US4069300A (en) Process for producing α-type calcium sulfate hemihydrate
US4367209A (en) Calcium hypochlorite production from its dibasic salt
JPH0735245B2 (en) Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution
NO841402L (en) PROCEDURE FOR THE PRODUCTION OF ZEOLITE A
EP0413437B1 (en) Process for producing trichloroisocyanuric acid
US8491864B2 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
JP4194288B2 (en) Method for producing calcium carbonate
JP2009132583A (en) Method for producing sodium hypochlorite and method for storing the same
JPH0239444B2 (en)
JPS591201B2 (en) Method for producing high concentration sodium hypochlorite aqueous solution
CN110305065A (en) Bromochloroin continuous production equipment and production method
FR2490618A1 (en) PROCESS FOR MANUFACTURING STABLE SOLUTION OF TITANYLE SULFATES
CN100378004C (en) Method for producing potassium stannate
RU2379365C1 (en) Method of titanium-bearing raw material processing
US4260752A (en) Chlorination process
JPS5910932B2 (en) Manufacturing method of carbonated soda water salt
JPH03275509A (en) Production of sodium hydrogencarbonate
JPH07172836A (en) Production of antimony pentachloride