JPH023777B2 - - Google Patents

Info

Publication number
JPH023777B2
JPH023777B2 JP21517985A JP21517985A JPH023777B2 JP H023777 B2 JPH023777 B2 JP H023777B2 JP 21517985 A JP21517985 A JP 21517985A JP 21517985 A JP21517985 A JP 21517985A JP H023777 B2 JPH023777 B2 JP H023777B2
Authority
JP
Japan
Prior art keywords
naphthalene
reaction
dicarboxylic acid
metal salt
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21517985A
Other languages
Japanese (ja)
Other versions
JPS6277350A (en
Inventor
Shuichi Mitamura
Koichi Fujishiro
Hiroharu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21517985A priority Critical patent/JPS6277350A/en
Priority to EP86113351A priority patent/EP0217329B1/en
Priority to DE8686113351T priority patent/DE3671742D1/en
Priority to US06/912,957 priority patent/US4820868A/en
Publication of JPS6277350A publication Critical patent/JPS6277350A/en
Publication of JPH023777B2 publication Critical patent/JPH023777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はナフタレン−2,6−ジカルボン酸ジ
アルカリ金属塩の製造方法に関するものである。
ナフタレン−2,6−ジカルボン酸ジアルカリ金
属塩は酸析すると容易に相当するカルボン酸、す
なわちナフタレン−2,6−ジカルボン酸に変換
できるが、このナフタレン−2,6−ジカルボン
酸は耐熱性ポリエステル原料の酸部分として近年
注目を集めており、工業的に価値ある化合物であ
る(特公昭54−945号参照)。 従来の技術 従来、ナフタレン−2,6−ジカルボン酸ジア
ルカリ金属塩の製造方法の一つとして所謂ヘンケ
ル法が提案されている。この方法はナフタレンモ
ノカルボン酸(即ちナフトエ酸)のアルカリ金属
塩又はナフタレンジカルボン酸のジアルカリ金属
塩、あるいはこれらの混合物を、触媒としてのカ
ドミウム、亜鉛、水銀等の酸化物、あるいはハロ
ゲン化物、硫酸塩、炭酸塩、カルボン酸塩等とと
もに、炭酸ガス加圧下、350℃以上に加熱する方
法である。ナフトエ酸アルカリ金属塩からはナフ
タレン−2,6−ジカルボン酸ジアルカリ金属塩
とナフタレンとが不均化反応により生成し、ナフ
タレンジカルボン酸ジアルカリ金属塩からは転位
反応により、ナフタレン−2,6−ジカルボン酸
ジアルカリ金属塩が選択的に生ずる〔a)B.
Raecke,Angew.Chem.,70,1(1958);b)B.
Raeckeら、Org.Syn.Coll.Vol 5,813(1973);
c)山下ら、有合化、20,501(1962);d)E.
McNelis,J.Org.Chem.,30,1209(1965);e)
米国特許第2823231号;f)特公昭51−10224号参
照〕。 前記ヘンケル法の原料であるナフトエ酸アルカ
リ金属塩あるいはナフタレンジカルボン酸ジアル
カリ金属塩、さらには生成物であるナフタレン−
2,6−ジカルボン酸ジアルカリ金属塩は、いず
れも殆んどが融点400℃以上の化合物である。こ
れらのアルカリ金属塩は水やアルコール等のプロ
トン性溶媒に可溶であるが、プロトン性溶媒は、
ヘンケル法の反応温度である350℃以上では、前
記アルカリ金属塩と反応してこれらを分解するの
で、反応溶媒として使用することはできない。こ
のような事情から、従来、ナフタレン−2,6−
ジカルボン酸ジアルカリ金属塩をヘンケル法を用
いて製造する場合、原料と触媒との混合粉体を炭
酸ガス加圧下、無溶媒で加熱反応させて、固体生
成物を得るという方法が提唱されていた。 しかしこの方法では原料および生成物が固体で
あるため、液体の場合にくらべてこれらの反応器
への装入および反応器からの取出し操作が煩雑に
なる欠点がある。これに加えて本発明者等は、従
来法が無溶媒反応であることに起因して、反応の
再現性が悪く、かつ目的物の収率および選択率が
低いという問題点が生ずることを明らかにした。 すなわち、反応は通常反応器を加熱して行なわ
れるが、原料および生成物が高融点の固体であ
り、さらに溶媒がないために、反応混合物間の伝
熱が遅く、また不均一となる。このため反応混合
物のある部分は過熱されて炭化物が多く生じ、一
方他のある部分では反応熱が不足して反応が不完
全となり、原料の残存や目的のナフタレン−2,
6−ジカルボン酸ジアルカリ金属塩以外の異性体
の副生が顕著となる。この結果、目的とするナフ
タレン−2,6−ジカルボン酸ジアルカリ金属塩
の収率、選択率ともに低くなり、また反応の再現
性も悪かつた。 発明が解決しようとする問題点 本発明者等は、このような従来法の問題点を解
決すべく鋭意検討を行ない、目的とするナフタレ
ン−2,6−ジカルボン酸ジアルカリ金属塩の収
率および選択率が向上し、反応の再現性をよくす
る方法を見い出し、本発明を完成させたものであ
る。 問題点を解決するための手段 本発明は、ナフトエ酸アルカリ金属塩および/
又はナフタレンジカルボン酸ジアルカリ金属塩
を、触媒とともに炭酸ガス加圧下、環数2〜3の
非プロトン性多環芳香族化合物を分散媒あるいは
溶媒に用い、その中で加熱することを特徴とする
ナフタレン−2,6−ジカルボン酸ジアルカリ金
属塩の製造方法である。 本発明の方法の原料は、ナフトエ酸アルカリ金
属塩又はナフタレンジカルボン酸ジアルカリ金属
塩、あるいはこれらの混合物である。ナフトエ酸
アルカリ金属塩としては、1−又は2−異性体、
あるいはこれらの混合物が使用できる。またナフ
タレンジカルボン酸ジアルカリ金属塩としては、
1,2−,1,3−,1,4−,1,5−,1,
6−,1,7−,1,8−,2,3−,2,6
−,2,7−異性体、あるいはこれらの混合物が
使用できる。但し、上記異性体のうちナフタレン
−2,6−ジカルボン酸ジアルカリ金属塩は本発
明の目的化合物であるが、これ自身を少量含有す
る場合および粗製の混合物を用いる場合には原料
として利用できる。アルカリ金属塩としては、通
常のヘンケル法と同様に、カリウム塩が好結果を
与える。 触媒としては、一般のヘンケル法における不均
化反応あるいは転位反応で用いる触媒ならば何で
も使用することができる。その代表例としてカド
ミウム、亜鉛、あるいは水銀化合物を挙げること
ができる。しかし、カドミウムや水銀化合物は毒
性があり高価でもあるので、工業的観点からは亜
鉛化合物の使用が好ましい。 亜鉛化合物としては塩化亜鉛、臭化亜鉛、ヨウ
化亜鉛の如きハロゲン化亜鉛、ナフトエ酸亜鉛、
ナフタレンジカルボン酸亜鉛の如きカルボン酸亜
鉛、酸化亜鉛、炭酸亜鉛等を例示することができ
る。また、助触媒として塩化カリウム、臭化カリ
ウム、ヨウ化カリウム、臭化ナトリウム、ヨウ化
ナトリウムの如きハロゲン化アルカリを少量添加
することも可能である。触媒の使用量は、通常、
原料に対して1〜10mol%である。また助触媒の
使用量も、通常原料に対して1〜10mol%であ
る。なお以下の文章では触媒と助触媒とを特に区
別せずに、触媒と総称する。 原料と触媒とはよく混合されていることが好ま
しい。このためには、原料の水溶液に触媒を加え
てよく混合し、しかる後に水を加熱留去して原料
と触媒との混合物を得る方法や、原料と触媒とを
ボールミル等でよく粉砕混合する方法や、さらに
は原料と触媒とをそれぞれよく粉砕し、これらを
後記する多環芳香族化合物の分散媒あるいは溶媒
中で撹拌して混合する方法等があるが、いずれの
方法を採つても本発明には差し支えない。 本発明では原料と触媒とを分散媒あるいは溶媒
中、炭酸ガス加圧下で加熱反応させる。ここで用
いる分散媒あるいは溶媒は、反応条件下での安定
性がよく、反応条件下で液体となる物質である。 このような物質は単一化合物あるいは混合物の
いずれであつても差し支えない。本発明における
不均化反応および/又は転位反応は350〜500℃で
実質的に進行する。したがつて融点500℃以下、
臨界温度350℃以上の物質であれば、いずれかの
反応条件下で液体となり分散媒あるいは溶媒とし
て使用できる。本発明者等は、このような融点お
よび臨界温度をもち、かつ反応条件下での安定性
が良く反応収率を向上させる物質を探索した結
果、このような要件を満足するものとして、環数
が2〜3の非プロトン性多環芳香族化合物を見い
出した。 非プロトン性多環芳香族化合物の具体例として
は、ナフタレン、メチルナフタレンやジメチルナ
フタレンの如き低級アルキルナフタレン、ジフエ
ニル、メチルジフエニルやジメチルジフエニルの
如き低級アルキルジフエニル、ジフエニルエーテ
ルの如きジアリールエーテル、ターフエニル、ア
ントラセン、フエナンスレンあるいはこれらの混
合物等を挙げることができる。その使用量は原料
に対して0.5〜10倍量、通常は1〜5倍量である。 本発明の原料および触媒の前記多環芳香族化合
物に対する溶解度は著しく低い。したがつて、通
常原料および触媒は、前記多環芳香族化合物に分
散したスラリー状態で反応に供することになる。
この際、原料および触媒の分散をよくするため
に、原料および触媒、あるいはこれらの混合物
は、あらかじめ粉砕しておくことが望ましい。 また水の存在は本発明の反応を著しく阻害す
る。したがつて、本発明の反応の遂行に当つて
は、事前に原料、触媒および前記多環芳香族化合
物の脱水乾燥を行なうことが好反応結果をもたら
す。この脱水乾燥の方法としては、原料および触
媒については、加熱通風乾燥や加熱真空乾燥な
ど、前記多環芳香族化合物については蒸留精製な
ど、いずれも通常行なわれている方法なら何でも
適用することができる。さらに以下に示す方法
も、その一つとしてつけ加えることができる。 すなわち、原料、触媒、および前記多環芳香族
化合物の混合物から成るスラリーを加熱して、そ
の一部を留去する方法であり、水が含有される場
合には、これが初留留分として留出し、容易に混
合物から除去できる。この方法は前記多環芳香族
化合物がいずれも常圧の沸点が200℃以上の高沸
点化合物であり、水との沸点差が大きいことに基
礎を置いている。 原料、触媒、および前記多環芳香族化合物の三
者の反応器への導入方法は、各々を単独あるいは
混合物いずれの状態で導入してもかまわない。三
者の混合物を導入する場合には、これを前記多環
芳香族化合物の融点以上に加熱してスラリーと
し、これを反応器に導入する方法も、本発明の特
徴を活かした好ましい実施態様の一つである。 このようにして反応器に導入した原料、触媒、
および前記多環芳香族化合物は、炭酸ガス加圧
下、加熱し反応を生起させる。この際、原料と触
媒の分散の均一化および伝熱の均一化をはかるた
め、反応器内容物を撹拌することが好ましい。反
応器の形式は、回分式あるいは連続式いずれの方
式であつても、本質的には支障がない。 炭酸ガスの圧力は100℃での圧力に換算して5
〜100Kg/cm2・G、好ましくは10〜70Kg/cm2・G
の範囲である。反応温度は、基本的には従来知ら
れているヘンケル法の反応温度とほぼ同じであ
る。すなわち、原料および触媒の種類で異なる
が、通常350〜500℃の範囲であり、反応を速やか
に生起させ、かつ炭化物生成等の副反応を抑える
観点から、380〜470℃の範囲が好ましい。反応時
間は、反応温度により異なるが、通常5分〜3時
間の範囲である。 反応終了後、反応混合物を反応器より取り出
し、分離、精製操作を行なう。この取り出しに際
しては、反応混合物を前記多環芳香族化合物の融
点以上の温度に保ち、スラリー状で取り出す方法
を、本発明の特徴を利用した簡易な方法として特
記することができる。 取り出した反応混合物にトルエンやキシレンの
如き有機溶剤および水を加えると、前記多環芳香
族化合物は有機溶剤に溶解し、一方、生成物であ
るナフタレン−2,6−ジカルボン酸ジアルカリ
金属塩は水に溶解する。また、触媒の亜鉛化合物
あるいはカドミウム化合物や副生する炭化物はい
ずれにも不溶となる。これらを濾過あるいは分液
等の操作で分離し、ナフタレン−2,6−ジカル
ボン酸ジアルカリ金属塩の水溶液を得る。この水
溶液からは常法により塩酸等により酸析してナフ
タレン−2,6−ジカルボン酸を得ることができ
る。 以下、実施例および比較的にて本発明を更に詳
細に説明する。 実施例 1〜12 ナフタレン−1,8−ジカルボン酸ジカリウム
塩すなわち1,8−ナフタル酸ジカリウム塩10.0
gに、塩化亜鉛およびヨウ化カリウムを該ジカリ
ウム塩に対して各々8mol%あるいは各々1mol%
加え、ボールミルで粉砕混合したのち、内容積
200mlの撹拌機つき反応器に装入した。 これに所定量の多環芳香族化合物を加えて100
℃に加熱し、反応器内を炭酸ガスで置換後、炭酸
ガスを所定圧力(表1における初圧)まで導入し
た。次いで反応器内の混合物を撹拌しながら4
℃/minの速度で所定反応温度まで昇温し、さら
に同温度で1時間撹拌して反応を完結せしめた。 反応終了後、反応混合物にトルエン200mlおよ
び水200mlを加えてよく撹拌した。水層ならびに
トルエン層いずれにも不溶な固体を濾別後、水層
を分離した。この水層の一部を採取し、高速液体
クロマトグラフイーを用いて、内部標準法で含有
するナフタレン2,6−ジカルボン酸ジカリウム
塩を定量し、収率を算出した。 多環芳香族化合物として、ナフタレン、メチル
ナフタレン、ジフエニル、ジフエニルエーテルと
ジフエニルとの混合物(混合比約7:3)、フエ
ナンスレンをそれぞれ用いた。結果を表1に示
す。 比較例 1 実施例1において多環芳香族化合物としてのナ
フタレンを加えずに、その他は同様の操作を行な
つた。結果を表1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a dialkali metal salt of naphthalene-2,6-dicarboxylic acid.
Naphthalene-2,6-dicarboxylic acid dialkali metal salt can be easily converted into the corresponding carboxylic acid, that is, naphthalene-2,6-dicarboxylic acid, by acid precipitation, but this naphthalene-2,6-dicarboxylic acid is a raw material for heat-resistant polyester. It has attracted attention in recent years as an acid moiety, and is an industrially valuable compound (see Japanese Patent Publication No. 54-945). BACKGROUND ART Conventionally, the so-called Henkel method has been proposed as one of the methods for producing a dialkali metal salt of naphthalene-2,6-dicarboxylic acid. This method uses an alkali metal salt of naphthalene monocarboxylic acid (i.e. naphthoic acid) or a dialkali metal salt of naphthalene dicarboxylic acid, or a mixture thereof, with an oxide such as cadmium, zinc, or mercury, or a halide or sulfate as a catalyst. , carbonate, carboxylate, etc., under pressure of carbon dioxide gas and heated to 350°C or higher. Naphthalene-2,6-dicarboxylic acid dialkali metal salt and naphthalene are generated from naphthoic acid alkali metal salt through a disproportionation reaction, and naphthalene-2,6-dicarboxylic acid is generated from naphthalene-2,6-dicarboxylic acid dialkali metal salt through a rearrangement reaction. Dialkali metal salts are selectively produced [a) B.
Raecke, Angew. Chem., 70 , 1 (1958); b) B.
Raecke et al., Org.Syn.Coll.Vol 5, 813 (1973);
c) Yamashita et al., 20 , 501 (1962); d) E.
McNelis, J.Org.Chem., 30 , 1209 (1965); e)
See US Pat. No. 2,823,231; f) Japanese Patent Publication No. 51-10224]. The alkali metal salt of naphthoic acid or the dialkali metal salt of naphthalene dicarboxylic acid, which is the raw material of the Henkel process, and also the product, naphthalene.
Most dialkali metal salts of 2,6-dicarboxylic acids are compounds with a melting point of 400°C or higher. These alkali metal salts are soluble in protic solvents such as water and alcohol;
At temperatures above 350°C, which is the reaction temperature of the Henkel method, it reacts with the alkali metal salt and decomposes them, so it cannot be used as a reaction solvent. Due to these circumstances, naphthalene-2,6-
When producing a dialkali metal dicarboxylic acid salt using the Henkel method, a method has been proposed in which a mixed powder of a raw material and a catalyst is heated and reacted under pressure with carbon dioxide gas without a solvent to obtain a solid product. However, in this method, since the raw materials and products are solid, there is a drawback that the operations for charging them into the reactor and taking them out from the reactor are more complicated than in the case of liquids. In addition, the present inventors have clarified that due to the conventional method being a solvent-free reaction, problems arise such as poor reproducibility of the reaction and low yield and selectivity of the target product. I made it. That is, the reaction is usually carried out by heating a reactor, but since the raw materials and products are solids with high melting points and there is no solvent, heat transfer between the reaction mixtures is slow and non-uniform. For this reason, some parts of the reaction mixture are overheated and a large amount of carbide is produced, while in other parts the reaction heat is insufficient and the reaction is incomplete, resulting in the remaining raw materials and the desired naphthalene-2,
The by-product of isomers other than the dialkali metal salt of 6-dicarboxylic acid becomes noticeable. As a result, both the yield and selectivity of the desired dialkali metal salt of naphthalene-2,6-dicarboxylic acid were low, and the reproducibility of the reaction was also poor. Problems to be Solved by the Invention The present inventors have conducted intensive studies to solve the problems of the conventional method, and have improved the yield and selection of the target dialkali metal salt of naphthalene-2,6-dicarboxylic acid. The present invention was completed by discovering a method to improve the reaction rate and reproducibility of the reaction. Means for Solving the Problems The present invention provides naphthoic acid alkali metal salts and/or
Alternatively, a naphthalene dicarboxylic acid dialkali metal salt is heated together with a catalyst under carbon dioxide gas pressure using an aprotic polycyclic aromatic compound having 2 to 3 rings as a dispersion medium or solvent. This is a method for producing a dialkali metal salt of 2,6-dicarboxylic acid. The raw material for the process of the invention is an alkali metal salt of naphthoic acid or a dialkali metal salt of naphthalene dicarboxylic acid, or a mixture thereof. As the naphthoic acid alkali metal salt, 1- or 2-isomer,
Alternatively, mixtures of these can be used. In addition, as dialkali metal naphthalene dicarboxylic acid salts,
1,2-,1,3-,1,4-,1,5-,1,
6-, 1, 7-, 1, 8-, 2, 3-, 2, 6
-, 2,7-isomers or mixtures thereof can be used. However, among the above isomers, naphthalene-2,6-dicarboxylic acid dialkali metal salt is the target compound of the present invention, but it can be used as a raw material when it contains a small amount itself or when a crude mixture is used. As the alkali metal salt, potassium salt gives good results as in the usual Henkel method. As the catalyst, any catalyst used in the disproportionation reaction or rearrangement reaction in the general Henkel process can be used. Representative examples include cadmium, zinc, and mercury compounds. However, since cadmium and mercury compounds are toxic and expensive, it is preferable to use zinc compounds from an industrial standpoint. Zinc compounds include zinc halides such as zinc chloride, zinc bromide, zinc iodide, zinc naphthoate,
Examples include zinc carboxylates such as zinc naphthalene dicarboxylate, zinc oxide, and zinc carbonate. It is also possible to add a small amount of an alkali halide such as potassium chloride, potassium bromide, potassium iodide, sodium bromide, and sodium iodide as a cocatalyst. The amount of catalyst used is usually
It is 1 to 10 mol% based on the raw material. Further, the amount of co-catalyst used is usually 1 to 10 mol% based on the raw material. In the following text, catalysts and co-catalysts are collectively referred to as catalysts without any particular distinction. It is preferable that the raw material and the catalyst are well mixed. For this purpose, there are methods such as adding a catalyst to an aqueous solution of the raw material and mixing well, and then heating and distilling off the water to obtain a mixture of the raw material and catalyst, or thoroughly pulverizing and mixing the raw material and catalyst with a ball mill, etc. Alternatively, there is a method in which the raw material and the catalyst are thoroughly ground, and then stirred and mixed in a dispersion medium or solvent for a polycyclic aromatic compound as described below. There is no problem. In the present invention, a raw material and a catalyst are reacted by heating in a dispersion medium or solvent under pressure of carbon dioxide gas. The dispersion medium or solvent used here is a substance that has good stability under the reaction conditions and becomes liquid under the reaction conditions. Such substances may be either single compounds or mixtures. The disproportionation reaction and/or rearrangement reaction in the present invention substantially proceeds at 350 to 500°C. Therefore, the melting point is below 500℃,
Any substance with a critical temperature of 350°C or higher becomes liquid under any reaction conditions and can be used as a dispersion medium or solvent. The present inventors have searched for a substance that has such a melting point and critical temperature, is stable under reaction conditions, and improves the reaction yield, and has found that it satisfies these requirements by reducing the number of rings. We have discovered an aprotic polycyclic aromatic compound with 2 to 3 carbon atoms. Specific examples of aprotic polycyclic aromatic compounds include naphthalene, lower alkylnaphthalenes such as methylnaphthalene and dimethylnaphthalene, diphenyl, lower alkyl diphenyls such as methyldiphenyl and dimethyldiphenyl, diaryl ethers such as diphenyl ether, and terphenyl. , anthracene, phenanthrene, or a mixture thereof. The amount used is 0.5 to 10 times, usually 1 to 5 times, the amount of the raw material. The solubility of the raw material and catalyst of the present invention in the polycyclic aromatic compound is extremely low. Therefore, the raw materials and catalyst are usually subjected to the reaction in the form of a slurry dispersed in the polycyclic aromatic compound.
At this time, in order to improve the dispersion of the raw materials and the catalyst, it is desirable that the raw materials and the catalyst, or a mixture thereof, be pulverized in advance. Also, the presence of water significantly inhibits the reaction of the present invention. Therefore, in carrying out the reaction of the present invention, it is best to dehydrate and dry the raw materials, catalyst, and the polycyclic aromatic compound in advance to obtain good reaction results. As for this dehydration and drying method, any commonly used method can be used, such as heated ventilation drying or heated vacuum drying for raw materials and catalysts, and distillation purification for the polycyclic aromatic compounds. . Furthermore, the method shown below can be added as one of them. That is, it is a method in which a slurry consisting of a mixture of raw materials, a catalyst, and the polycyclic aromatic compound is heated and a portion of the slurry is distilled off. If water is contained, this is distilled as the first distillate fraction. and can be easily removed from the mixture. This method is based on the fact that all of the polycyclic aromatic compounds are high boiling point compounds with boiling points of 200°C or higher at normal pressure, and have a large boiling point difference with water. The raw material, the catalyst, and the polycyclic aromatic compound may be introduced into the reactor either singly or as a mixture. When a mixture of the three is introduced, a method of heating it above the melting point of the polycyclic aromatic compound to form a slurry and introducing this into the reactor is also a preferred embodiment that takes advantage of the features of the present invention. There is one. The raw materials, catalyst, and
And the polycyclic aromatic compound is heated under pressure of carbon dioxide gas to cause a reaction. At this time, it is preferable to stir the contents of the reactor in order to ensure uniform dispersion of the raw materials and catalyst and uniform heat transfer. There is essentially no problem whether the reactor is of a batch type or a continuous type. The pressure of carbon dioxide gas is 5 when converted to the pressure at 100℃.
~100Kg/ cm2・G, preferably 10-70Kg/ cm2・G
is within the range of The reaction temperature is basically almost the same as that of the conventionally known Henkel method. That is, the temperature is usually in the range of 350 to 500°C, although it varies depending on the type of raw material and catalyst, and is preferably in the range of 380 to 470°C from the viewpoint of causing the reaction to occur quickly and suppressing side reactions such as carbide formation. The reaction time varies depending on the reaction temperature, but is usually in the range of 5 minutes to 3 hours. After the reaction is completed, the reaction mixture is taken out from the reactor and subjected to separation and purification operations. When taking out the reaction mixture, a method of keeping the reaction mixture at a temperature higher than the melting point of the polycyclic aromatic compound and taking it out in the form of a slurry can be specially mentioned as a simple method that takes advantage of the features of the present invention. When an organic solvent such as toluene or xylene and water are added to the taken out reaction mixture, the polycyclic aromatic compound is dissolved in the organic solvent, while the product, dialkali metal salt of naphthalene-2,6-dicarboxylic acid, is dissolved in the water. dissolve in Further, the zinc compound or cadmium compound of the catalyst and the carbide produced as a by-product are insoluble in both. These are separated by filtration or liquid separation to obtain an aqueous solution of dialkali metal naphthalene-2,6-dicarboxylic acid salt. From this aqueous solution, naphthalene-2,6-dicarboxylic acid can be obtained by acid precipitation using hydrochloric acid or the like in a conventional manner. Hereinafter, the present invention will be explained in more detail with reference to Examples and comparisons. Examples 1-12 Naphthalene-1,8-dicarboxylic acid dipotassium salt, i.e. 1,8-naphthalic acid dipotassium salt 10.0
g, zinc chloride and potassium iodide are each 8 mol% or each 1 mol% relative to the dipotassium salt.
In addition, after pulverizing and mixing with a ball mill, the internal volume
A 200 ml reactor with a stirrer was charged. Add a predetermined amount of polycyclic aromatic compound to this and make 100
After heating the reactor to a temperature of 0.degree. C. and replacing the inside of the reactor with carbon dioxide gas, carbon dioxide gas was introduced to a predetermined pressure (initial pressure in Table 1). Then, while stirring the mixture in the reactor, 4
The temperature was raised to a predetermined reaction temperature at a rate of °C/min, and the reaction was completed by further stirring at the same temperature for 1 hour. After the reaction was completed, 200 ml of toluene and 200 ml of water were added to the reaction mixture and stirred well. After filtering off solids that were insoluble in both the aqueous layer and the toluene layer, the aqueous layer was separated. A portion of this aqueous layer was collected, and using high performance liquid chromatography, the naphthalene 2,6-dicarboxylic acid dipotassium salt contained therein was quantified using an internal standard method, and the yield was calculated. As the polycyclic aromatic compound, naphthalene, methylnaphthalene, diphenyl, a mixture of diphenyl ether and diphenyl (mixing ratio of about 7:3), and phenanthrene were used, respectively. The results are shown in Table 1. Comparative Example 1 The same operation as in Example 1 was performed except that naphthalene as a polycyclic aromatic compound was not added. The results are shown in Table 1.

【表】【table】

【表】 実施例 13〜21 実施例3における触媒としての塩化亜鉛とヨウ
化カリウムとの組み合せの代りに、ヨウ化亜鉛、
塩化亜鉛、塩化亜鉛と臭化カリウムとの組み合
せ、1,8―ナフタル酸亜鉛、1,8―ナフタル
酸亜鉛とヨウ化カリウムとの組み合せ、酸化亜
鉛、酸化亜鉛とヨウ化カリウムとの組み合せ、ヨ
ウ化カドミウム、塩化カドミウムをそれぞれ用い
て、ナフタレン30g共存下で同様の反応を行なつ
た。触媒量は原料の1,8―ナフタル酸ジカリウ
ム塩に対して触媒が単一化合物の場合は8mol%、
組み合せの場合はそれぞれの化合物について
8mol%である。結果を表2に示す。 比較例 2〜10 実施例13〜21において、ナフタレンを添加しな
いで同様の反応を行なつた。結果を表2に実施例
13〜21の結果とともに併記する。
[Table] Examples 13 to 21 Instead of the combination of zinc chloride and potassium iodide as a catalyst in Example 3, zinc iodide,
Zinc chloride, combination of zinc chloride and potassium bromide, zinc 1,8-naphthalate, combination of zinc 1,8-naphthalate and potassium iodide, zinc oxide, combination of zinc oxide and potassium iodide, iodine A similar reaction was carried out using cadmium chloride and cadmium chloride in the presence of 30 g of naphthalene. The amount of catalyst is 8 mol% when the catalyst is a single compound based on the raw material 1,8-naphthalic acid dipotassium salt,
For each compound in the case of a combination
It is 8mol%. The results are shown in Table 2. Comparative Examples 2-10 Similar reactions were carried out in Examples 13-21 without adding naphthalene. The results are shown in Table 2.
It will be listed together with the results of 13-21.

【表】【table】

【表】【table】

【表】 実施例 22〜26 実施例3における原料の1,8−ナフタル酸ジ
カリウム塩の代りに、ナフタレン−2,3−ジカ
ルボン酸ジカリウム塩、2−ナフトエ酸カリウム
塩、1,8−ナフタル酸ジカリウム塩と2−ナフ
トエ酸カリウム塩との混合物(重量比1:1)、
ナフタレンジカルボン酸ジカリウム塩の異性体混
合物すなわち2,6−,2,7−,1,6−,
1,7−,1,3−異性体の混合物をそれぞれ原
料に用い、触媒として塩化亜鉛とヨウ化カリウム
の組み合せあるいはヨウ化カドミウムを用いて、
ナフタレン30g共存下で同様の反応を行なつた。
結果を表3に示す。尚、触媒量は原料に対してヨ
ウ化カドミウムの場合は8mol%、塩化亜鉛とヨ
ウ化カリウムの組み合せの場合はそれぞれについ
て8mol%である。 比較例 11〜15 実施例22〜26において、ナフタレンを添加しな
いで同様の反応を行なつた。結果を表3に、実施
例22〜26の結果とともに併記する。 発明の効果 本発明では多環芳香族化合物を反応分散媒ある
いは溶媒として用いることにより、反応の再現性
がよくなり、また目的とするナフタレン−2,6
−ジカルボン酸ジアルカリ金属塩の収率および選
択率が向上した。 本発明によりナフタレン−2,6−ジカルボン
酸が安価かつ容易に製造できるようになり、工業
的生産の途が拓かれた。
[Table] Examples 22 to 26 Instead of the 1,8-naphthalic acid dipotassium salt as the raw material in Example 3, naphthalene-2,3-dicarboxylic acid dipotassium salt, 2-naphthoic acid potassium salt, 1,8-naphthalic acid A mixture of dipotassium salt and potassium 2-naphthoic acid salt (weight ratio 1:1),
Isomal mixture of naphthalene dicarboxylic acid dipotassium salts, i.e. 2,6-, 2,7-, 1,6-,
Using a mixture of 1,7- and 1,3-isomers as raw materials and a combination of zinc chloride and potassium iodide or cadmium iodide as a catalyst,
A similar reaction was carried out in the presence of 30 g of naphthalene.
The results are shown in Table 3. In addition, the catalyst amount is 8 mol % in the case of cadmium iodide and 8 mol % in the case of the combination of zinc chloride and potassium iodide, based on the raw material. Comparative Examples 11-15 Similar reactions were carried out in Examples 22-26 without adding naphthalene. The results are listed in Table 3 together with the results of Examples 22-26. Effects of the Invention In the present invention, by using a polycyclic aromatic compound as a reaction dispersion medium or solvent, the reproducibility of the reaction is improved, and the target naphthalene-2,6
- The yield and selectivity of dialkali metal dicarboxylic acid salts were improved. The present invention has made it possible to produce naphthalene-2,6-dicarboxylic acid cheaply and easily, paving the way for industrial production.

Claims (1)

【特許請求の範囲】 1 ナフトエ酸アルカリ金属塩および/又はナフ
タレンジカルボン酸ジアルカリ金属塩を、触媒と
ともに炭酸ガス加圧下、環数2〜3の非プロトン
性多環芳香族化合物を分散媒あるいは溶媒に用
い、その中で加熱することを特徴とするナフタレ
ン−2,6−ジカルボン酸ジアルカリ金属塩の製
造方法。 2 環数2〜3の非プロトン性多環芳香族化合物
が、ナフタレン、低級アルキルナフタレン、ジフ
エニル、低級アルキルジフエニル、ジアリールエ
ーテル、ターフエニル、アントラセン、フエナン
スレンあるいはこれらの混合物である特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. A naphthoic acid alkali metal salt and/or a naphthalene dicarboxylic acid dialkali metal salt are prepared together with a catalyst under pressure of carbon dioxide gas, and an aprotic polycyclic aromatic compound having 2 to 3 rings is used as a dispersion medium or solvent. 1. A method for producing a dialkali metal salt of naphthalene-2,6-dicarboxylic acid, the method comprising: using a dialkali metal salt of naphthalene-2,6-dicarboxylic acid; 2. Claim 1, wherein the aprotic polycyclic aromatic compound having 2 to 3 rings is naphthalene, lower alkylnaphthalene, diphenyl, lower alkyl diphenyl, diaryl ether, terphenyl, anthracene, phenanthrene, or a mixture thereof. The method described in section.
JP21517985A 1985-09-30 1985-09-30 Production of dialkali metallic salt of naphthalene-2,6-dicarboxylic acid Granted JPS6277350A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21517985A JPS6277350A (en) 1985-09-30 1985-09-30 Production of dialkali metallic salt of naphthalene-2,6-dicarboxylic acid
EP86113351A EP0217329B1 (en) 1985-09-30 1986-09-29 Process for preparation of naphthalene-2,6-dicarboxylic acid dialkali metal salts
DE8686113351T DE3671742D1 (en) 1985-09-30 1986-09-29 METHOD FOR PRODUCING DIALKALISALS OF NAPHTHALINE-2,6-DICARBONIC ACID.
US06/912,957 US4820868A (en) 1985-09-30 1986-09-29 Process for preparation of naphthalene-2,6-dicarboxylic acid dialkali metal salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21517985A JPS6277350A (en) 1985-09-30 1985-09-30 Production of dialkali metallic salt of naphthalene-2,6-dicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS6277350A JPS6277350A (en) 1987-04-09
JPH023777B2 true JPH023777B2 (en) 1990-01-24

Family

ID=16667976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21517985A Granted JPS6277350A (en) 1985-09-30 1985-09-30 Production of dialkali metallic salt of naphthalene-2,6-dicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6277350A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106045A (en) * 1985-10-31 1987-05-16 Nippon Steel Corp Improved production of dialkali metal naphthalene-2,6-dicarboxylate
DE4316933A1 (en) * 1993-05-21 1994-11-24 Hoechst Ag Process for the preparation of aromatic hydroxycarboxylic acids
DE102009044080A1 (en) 2009-09-23 2011-04-21 Contitech Transportbandsysteme Gmbh Stahlseilfördergurt with a connecting hinge for coupling two strap ends
JP5897971B2 (en) * 2012-04-20 2016-04-06 株式会社豊田中央研究所 Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery

Also Published As

Publication number Publication date
JPS6277350A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
CN109096099B (en) Production method of 3, 5-di-tert-butyl-4-hydroxybenzoic acid
US4287357A (en) Process for the production of 6-hydroxy-2-naphthoic acid
EP0217329B1 (en) Process for preparation of naphthalene-2,6-dicarboxylic acid dialkali metal salts
JPH023777B2 (en)
US4345095A (en) Process for the production of 6-hydroxy-2-naphthoic acid
US2816913A (en) Preparation of substituted acids
CN108947801B (en) Preparation of biphenyldicarboxylic acid by coupling of 4-chlorobenzoic acid in ionic liquid
US5241121A (en) Process for preparation of 4,4'-dihydroxydiphenylsulfone
JPH0334979B2 (en)
EP1232136B1 (en) Alkyl carboxylate salts as solvents for henkel-related processes
JPH0232042A (en) Production of dialkali metal salt of naphthalene-2,6-dicarboxylic acid
EP1210311B1 (en) A process for carboxylation of naphthoic acid to naphthalene dicarboxylic acid
EP1026146B1 (en) A method for producing purified phenylenedioxydiacetic acids
US6441224B1 (en) Process for carboxylation of naphthoic acid to naphthalene dicarboxylic acid
US4942257A (en) Method of manufacturing alkali metal salt of 2,3,6,7-naphthalenetetracarboxylic acid
US6479699B2 (en) Process for carboxylation of naphthoic acid to naphthalene dicarboxylic acid
JPH0114214B2 (en)
US2956086A (en) Preparation of hydrocarbons
JPH06340582A (en) Preparation of aromatic hydroxycarboxylic acid
JP2003508365A (en) Production of diacids by carboxylation of phenolic compounds
JP2003508371A (en) Disproportionation reaction High yield Henkel to improve yield
JPH0219340A (en) Production of biphenyl-4,4'-dicarboxylic acid dialkali metal salt
JPH06312953A (en) Production of 2,6-naphthalene dicarboxylic acid and naphthalene polycarboxylic acid
JPH03128346A (en) Production of aromatic carboxylic acids
EP0461272A1 (en) Process for producing 4,4'-dihydroxydiphenyl sulfone