JPH05171423A - Deflection electron gun device for vacuum deposition - Google Patents

Deflection electron gun device for vacuum deposition

Info

Publication number
JPH05171423A
JPH05171423A JP33823091A JP33823091A JPH05171423A JP H05171423 A JPH05171423 A JP H05171423A JP 33823091 A JP33823091 A JP 33823091A JP 33823091 A JP33823091 A JP 33823091A JP H05171423 A JPH05171423 A JP H05171423A
Authority
JP
Japan
Prior art keywords
cathode
electron gun
electron
chamber
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33823091A
Other languages
Japanese (ja)
Other versions
JP3100209B2 (en
Inventor
Ikuo Wakamoto
郁夫 若元
Susumu Urano
晋 浦野
Shigeo Konno
茂生 今野
Toru Takashima
徹 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Jeol Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Mitsubishi Heavy Industries Ltd filed Critical Jeol Ltd
Priority to JP03338230A priority Critical patent/JP3100209B2/en
Publication of JPH05171423A publication Critical patent/JPH05171423A/en
Application granted granted Critical
Publication of JP3100209B2 publication Critical patent/JP3100209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize a cathode operating at a low temp. such as lanthanum hexaboride and to prevent the reduction of beam current. CONSTITUTION:An electron gun chamber 9 and a deposition chamber 21 are separated, and in the electron gun chamber 9, a trace amt. of inert gas is introduced toward an electron beam orbit. Then, the inert gas is ionized by an electron beam 15 and is made to bombard the surface of a cathode 2, and the material to be vacuum-deposited stuck on the surface is flipped away, by which an electron emitting area is secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空中で金属等を蒸発
させる熱源として用いる偏向電子銃装置に関し、電子線
照射装置にも応用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection electron gun device used as a heat source for evaporating a metal or the like in a vacuum, and is applicable to an electron beam irradiation device.

【0002】[0002]

【従来の技術】従来の真空蒸気用偏向電子銃のカソード
には、主に高融点金属のタンタル(Ta)やタングステン
(W)が用いられている為、加熱に必要なビーム電流を
得るためには、タングステンで2500〜2700K、タンタル
で2300〜2500Kの高温に加熱しなければならなかった。
また、カソードの加熱方式は、直接通電方式又は電子衝
撃方式となるため、前者ではカソード寿命が短く、後者
では加熱機構が複雑となっていた。
2. Description of the Related Art Tantalum (Ta) and tungsten (W), which are refractory metals, are mainly used for the cathode of a conventional deflection electron gun for vacuum vapor. Therefore, in order to obtain a beam current required for heating. Had to be heated to a high temperature of 2500-2700K with tungsten and 2300-2500K with tantalum.
Moreover, since the heating method of the cathode is a direct energization method or an electron impact method, the cathode has a short life and the latter has a complicated heating mechanism.

【0003】[0003]

【発明が解決しようとする課題】タングステンやタンタ
ルに代わる低温動作カソードとして、電子顕微鏡等に用
いられる六ホウ化ランタン(LaB6)を使用することが
考えられている。しかし、六ホウ化ランタンをカソード
として使用すると、蒸発物がイオン化して低エネルギの
イオンがカソードまで達し、カソード表面にイオン蒸着
することにより、ビーム電流が経時的に低減するという
課題がある。
It has been considered to use lanthanum hexaboride (LaB 6 ) used in an electron microscope or the like as a low-temperature operating cathode which replaces tungsten or tantalum. However, when lanthanum hexaboride is used as the cathode, there is a problem in that the vaporized material is ionized and low-energy ions reach the cathode, and ion deposition occurs on the surface of the cathode, so that the beam current is reduced with time.

【0004】即ち、図2の従来法の欄に示すように電子
ビームの衝突によりイオン化された金属イオンM+は、
カソード12の負電位により吸引され、カソード表面に
蒸着物Mとして付着する。ここで、カソード12がタン
グステンで2500〜2700Kの温度に加熱される場合、付着
した蒸発物Mはカソード12の加熱温度域で蒸発するた
め、時間の経過により次第に除去され、ビーム電流Iは
あまり低減することはない。ところが、1350〜1600℃で
動作する六ホウ化ランタンのような低温動作カソードで
は、カソードの負電位により吸引して付着した蒸発物は
蒸発しないため殆ど除去されず、イオン蒸着により電子
放出面積が減少するとともにビーム電流Iはその初期値
0から低減する問題があった。尚、図中、11はカソ
ード加熱用フィラメントである。
That is, as shown in the column of the conventional method of FIG. 2, the metal ion M + ionized by the collision of the electron beam is
It is attracted by the negative potential of the cathode 12 and adheres to the surface of the cathode as a deposit M. Here, when the cathode 12 is heated with tungsten to a temperature of 2500 to 2700 K, the attached vaporized substance M is vaporized in the heating temperature range of the cathode 12, so that it is gradually removed over time, and the beam current I is significantly reduced. There is nothing to do. However, in a low-temperature operating cathode such as lanthanum hexaboride operating at 1350 to 1600 ° C, the evaporated substance adsorbed by the negative potential of the cathode does not evaporate and is hardly removed, and the electron emission area is reduced by ion vapor deposition. At the same time, there is a problem that the beam current I is reduced from its initial value I 0 . In the figure, 11 is a cathode heating filament.

【0005】この為、従来の真空蒸気用偏向電子銃にお
いては、六ホウ化ランタンによるカソードは実用化され
ていないのが現状である。本発明は、上記従来技術に鑑
みてなされたものであり、上記課題を解決して低温動作
カソードを実用化する真空蒸着用偏向電子銃装置を提供
することを目的とする。
Therefore, in the conventional deflection electron gun for vacuum vapor, the cathode made of lanthanum hexaboride has not been put into practical use at present. The present invention has been made in view of the above prior art, and an object of the present invention is to provide a deflection electron gun apparatus for vacuum vapor deposition that solves the above problems and puts a low-temperature operating cathode into practical use.

【0006】[0006]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は真空中においてカソードから発生した電子
ビームを磁場により偏向してターゲットに照射し、前記
ターゲットが蒸発した蒸発物を被蒸着物に蒸着させる真
空蒸着用偏向電子銃装置において、前記カソードとして
付着した蒸発物が蒸発しない程度の低温で動作する低温
動作カソードを使用し、また、前記カソードを収納する
電子銃室と前記ターゲット及び被蒸着物を収納する蒸着
室とを分離すると共に真空ポンプを各々接続して真空排
気する一方、前記電子銃室と前記蒸着室との間の壁面に
前記電子ビームを通過させる電子ビーム通過スリットを
形成し、更に、前記電子銃室における前記電子ビームの
軌道に向かって微量の不活性ガスを導入するノズル、ビ
ーム電流を検出するビーム電流検出器及び前記ビーム電
流検出器により検出されるビーム電流が一定値となるよ
うにガスボンベから前記ノズルへ不活性ガスを導入する
流量制御装置よりなるカソード表面自動クリーニング装
置を設けたことを特徴とする。ここで、前記低温動作カ
ソードとしては、六ホウ化ランタンからなることが望ま
しい。
The structure of the present invention that achieves the above object is to deflect an electron beam generated from a cathode in a vacuum by a magnetic field to irradiate a target, and to evaporate an evaporated material evaporated from the target. In a vacuum electron beam deflection electron gun apparatus for vapor deposition on an object, a low-temperature operating cathode that operates at a low temperature that does not evaporate attached vaporized substances is used as the cathode, and an electron gun chamber that houses the cathode, the target, and An electron beam passage slit for passing the electron beam is formed on the wall surface between the electron gun chamber and the vapor deposition chamber while separating the vapor deposition chamber for accommodating the material to be vapor-deposited and evacuating by connecting each vacuum pump. Further, a nozzle for introducing a small amount of inert gas toward the orbit of the electron beam in the electron gun chamber and a beam current are detected. A cathode surface automatic cleaning device comprising a beam current detector and a flow rate control device for introducing an inert gas from the gas cylinder to the nozzle so that the beam current detected by the beam current detector has a constant value is provided. And Here, the low-temperature operation cathode is preferably made of lanthanum hexaboride.

【0007】[0007]

【実施例】以下、本発明について図面に示す実施例を参
照して詳細に説明する。図1に本発明の一実施例を示
す。同図に示すように電子銃室9と蒸着室21とは分離
されると共に電子銃室9には差動排気用真空ポンプ1
0、蒸着室21には真空容器用真空ポンプ20がそれぞ
れ接続され、各室を真空排気している。蒸着室21の底
面には、ターゲット(蒸着源)16を滞留する水冷るつ
ほ17が配置されると共にその天井部には、被蒸着物1
7が吊り下げられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 shows an embodiment of the present invention. As shown in the figure, the electron gun chamber 9 and the vapor deposition chamber 21 are separated, and the electron gun chamber 9 has a vacuum pump 1 for differential exhaust.
0, the vacuum chamber vacuum pump 20 is connected to the vapor deposition chamber 21, and each chamber is evacuated. A water-cooled crucible 17 for accumulating a target (vapor deposition source) 16 is arranged on the bottom surface of the vapor deposition chamber 21, and the deposition target 1 is placed on the ceiling thereof.
7 is suspended.

【0008】一方、電子銃室9には、低温動作カソード
2を備えた電子銃5が設けられている。即ち、低温動作
カソード2の後方にカソード加熱用フィラメント1が配
置されると共にその前方にはアノード4がそれぞれ配置
されており、更に、ビーム形成用電極としてウェーネル
ト3が配置されている。低温動作カソード2は、本実施
例では六ホウ化ランタン(LaB6)により構成され、必
要な電流密度が得られる1350℃〜1600℃まで加熱され
る。低温動作カソードとしては、六ホウ化ランタンに限
らず、付着した蒸発物が蒸発しない程度の低温で動作す
るカソードが使用可能である。カソード加熱用フィラメ
ント1、アノード4は、それぞれ電子銃電源8を構成す
るカソード加熱用電源6、加速電源7に接続している。
従って、カソード加熱用フィラメント1にカソード加熱
用電源6から通電して、低温動作カソード2を輻射加熱
することができ、また、アノード4に加速電源7の正の
高電圧を印加し、カソード2から熱電子を引き出し加速
することができる。
On the other hand, the electron gun chamber 9 is provided with an electron gun 5 having a low temperature operating cathode 2. That is, the cathode heating filament 1 is arranged behind the low-temperature operating cathode 2, the anodes 4 are arranged respectively in front of it, and further the Wehnelt 3 is arranged as a beam forming electrode. The low-temperature operation cathode 2 is composed of lanthanum hexaboride (LaB 6 ) in this embodiment, and is heated to 1350 ° C. to 1600 ° C. at which the required current density can be obtained. The low-temperature operation cathode is not limited to lanthanum hexaboride, and a cathode that operates at a low temperature at which the attached evaporate does not evaporate can be used. The cathode heating filament 1 and the anode 4 are connected to a cathode heating power source 6 and an acceleration power source 7, which form an electron gun power source 8, respectively.
Therefore, the low-temperature operating cathode 2 can be radiantly heated by energizing the cathode heating filament 1 from the cathode heating power source 6, and the positive high voltage of the acceleration power source 7 is applied to the anode 4 so that the cathode 2 is heated. Thermionics can be extracted and accelerated.

【0009】更に、加速さた電子ビーム15を磁場Bに
より270°偏向させるビーム偏向用磁場発生器23が
設けられており、偏向した電子ビーム15は水冷銅るつ
ぼ17中のターゲット(蒸着源)に照射されることにな
る。ターゲット15は、この熱で加熱溶融し、蒸発して
蒸気18となり、上方の被蒸着物19に蒸着される。ま
た、電子ビーム15が90°偏向した位置における、電
子銃室9と蒸着室21と間の壁面には、電子ビーム15
を通過させる電子ビームスリット14が形成されてい
る。
Further, a beam deflection magnetic field generator 23 for deflecting the accelerated electron beam 15 by 270 ° by a magnetic field B is provided, and the deflected electron beam 15 is directed to a target (deposition source) in a water-cooled copper crucible 17. It will be irradiated. The target 15 is heated and melted by this heat and evaporated to become vapor 18, which is vapor-deposited on the vapor deposition target material 19 above. Further, the electron beam 15 is formed on the wall surface between the electron gun chamber 9 and the vapor deposition chamber 21 at a position where the electron beam 15 is deflected by 90 °.
An electron beam slit 14 is formed to allow the electron beam to pass therethrough.

【0010】更に、電子銃室9には、カソード表面自動
クリーニング装置が設けられている。即ち、電子ビーム
15の軌道上に不活性ガスを導入するスパッタ用ガスノ
ズル11が設けられると共にこのスパッタ用ガスノズル
11はガス微小流量制御装置12を介してスパッタ用ガ
スボンベ13に接続している。不活性ガスとしては、A
r,He等が使用できる。更に、電子銃熱源8には、ビー
ム電流を検出するビーム電流検出器22が設けられてお
り、その電流値は前記ガス微量流量制御装置11へ入力
される。ガス微量流量制御装置11は、ビーム電流検出
器22により得られた電流値が一定となるように、ガス
ボンベ13からノズル11へのガス流量を制御するもの
である。
Further, the electron gun chamber 9 is provided with a cathode surface automatic cleaning device. That is, a sputtering gas nozzle 11 for introducing an inert gas is provided on the orbit of the electron beam 15, and this sputtering gas nozzle 11 is connected to a sputtering gas cylinder 13 via a gas minute flow rate control device 12. As the inert gas, A
r, He, etc. can be used. Further, the electron gun heat source 8 is provided with a beam current detector 22 for detecting a beam current, and the current value is input to the gas minute flow rate control device 11. The gas minute flow rate control device 11 controls the gas flow rate from the gas cylinder 13 to the nozzle 11 so that the current value obtained by the beam current detector 22 becomes constant.

【0011】ここで、図2の本発明の欄に示すようにス
パッタ用ガスノズル11から電子ビーム軌道上に不活性
ガス、例えば、アルゴンArを導入すると、導入された
アルゴンArは電子ビーム15によりイオン化されてア
ルゴンイオンAr+となり、低温動作カソード2の負電位
に向かって加速される。この為、アルゴンイオンAr
+は、カソード表面に衝突し、その表面に付着した蒸着
物Mを弾き飛ばすことになる。このようにカソード表面
の蒸着物MがアルゴンイオンAr+により取り除かれるこ
とにより、電子放出面積が回復しビーム電流量Iはその
初期値I0に回復することになる。
Here, as shown in the column of the present invention in FIG. 2, when an inert gas such as argon Ar is introduced from the sputtering gas nozzle 11 onto the electron beam orbit, the introduced argon Ar is ionized by the electron beam 15. As a result, argon ions Ar + are generated and accelerated toward the negative potential of the low temperature operating cathode 2. Therefore, Argon ion Ar
The + collides with the surface of the cathode and repels the deposit M adhering to the surface. By removing the deposit M on the cathode surface by the argon ions Ar + , the electron emission area is recovered and the beam current amount I is recovered to its initial value I 0 .

【0012】また、ビーム電流検出器22により得られ
た電流値が一定となるように、ガス微量流量制御装置1
1は、不活性ガスの導入を制御するため、不活性ガスが
過剰に導入されることはない。更に、蒸発室21と電子
銃室9とは分離されているため、不活性ガスを電子銃室
9へ導入することにより、蒸着室21の圧力が大きく変
動することはない。尚、低温動作カソード2としては、
上記実施例では六ホウ化ランタンを使用するが、その他
に、Ba含侵カソード(Ba-W)を使用することができ
る。このBa含侵カソードが低温で動作するメカニズム
は、多孔質Wに含侵したBaが電子放出面に滲み出して
単原子層を作り、ここから電子放出を行うことによるも
のである。従って、上述したようにイオン蒸着した物質
をスパッタリングにより除去すると、場合に依っては、
電子放出を行う単原子層を除去することもあるため、何
らかの処置を施すことが望ましい。尚、六ホウ化ランタ
ンは、LaB6焼結体であるため、過大なスパッタリング
を行っても、電子放出量に影響することはない。
Further, the gas minute flow rate control device 1 is controlled so that the current value obtained by the beam current detector 22 becomes constant.
1 controls the introduction of the inert gas, so that the inert gas is not excessively introduced. Further, since the evaporation chamber 21 and the electron gun chamber 9 are separated from each other, the pressure in the vapor deposition chamber 21 does not greatly change when the inert gas is introduced into the electron gun chamber 9. In addition, as the low temperature operation cathode 2,
Although lanthanum hexaboride is used in the above example, a Ba-impregnated cathode (Ba-W) can also be used. The mechanism of operating the Ba-impregnated cathode at a low temperature is that Ba impregnated in the porous W exudes to the electron emission surface to form a monoatomic layer, from which electrons are emitted. Therefore, if the ion-deposited material is removed by sputtering as described above, in some cases,
Since the monoatomic layer that emits electrons may be removed, it is desirable to take some measures. Since lanthanum hexaboride is a LaB 6 sintered body, it does not affect the amount of electron emission even if excessive sputtering is performed.

【0013】[0013]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明は、六ホウ化ランタンのような低温駆
動カソードが使用可能となるため、カソード加熱温度が
低下し、カソード加熱機構が簡便となる。更に、円板
状、角棒状等のブロック状カソードが採用可能となり、
イオンスパッタリングによる損傷が生じても板厚貫通す
るまで使用できるため、直接通電方式のコイル状やワイ
ヤ状のカソードに比較して、カソード寿命が向上する利
点がある。また、カソード形状を任意に選ぶことが可能
となり、線状の電子ビームを得るリニア電子銃の制作が
容易となる。このため、電子銃の低コスト化と共に電子
銃の長寿命化により連続運転が可能となり、生産効率が
大幅に向上する。
As described above in detail with reference to the embodiments, the present invention makes it possible to use a low temperature driven cathode such as lanthanum hexaboride, so that the cathode heating temperature is lowered and the cathode heating is reduced. The mechanism becomes simple. Furthermore, it becomes possible to adopt block-shaped cathodes such as disk-shaped, square bar-shaped,
Even if damage occurs due to ion sputtering, it can be used until it penetrates through the plate thickness, so there is an advantage that the life of the cathode is improved as compared with a coil or wire type cathode of the direct energization system. Further, the shape of the cathode can be arbitrarily selected, which facilitates the production of a linear electron gun that obtains a linear electron beam. As a result, the cost of the electron gun is reduced and the life of the electron gun is extended, so that continuous operation is possible and the production efficiency is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例をに係る真空蒸着用偏向電子
銃装置を示す構成図である。
FIG. 1 is a configuration diagram showing a deflection electron gun apparatus for vacuum vapor deposition according to an embodiment of the present invention.

【図2】本発明と従来法について、その動作原理とビー
ム電流変化率とを比較して示す説明図である。
FIG. 2 is an explanatory view showing the operating principle and beam current change rate of the present invention and the conventional method in comparison.

【符号の説明】[Explanation of symbols]

1 カソード加熱用フィラメント 2 低温動作カソード 3 ウェーネルト 4 アノード 5 電子銃 6 カソード加熱用電源 7 加速電源 8 電子銃電源 9 電子銃室 10 差動排気用真空ポンプ 11 スパッタ用ガスノズル 12 ガス微小流量制御装置 13 スパッタ用ガスボンベ 14 電子ビーム通過スリット 15 電子ビーム 16 ターゲット(蒸着源) 17 水冷銅るつぼ 18 蒸気 19 被蒸着物 20 真空容器用真空ポンプ 21 蒸着室 22 ビーム電流検出器 23 ビーム偏向用磁場発生器 B 磁界 M+ 金属イオン Ar+ アルゴンイオン I ビーム電流 I0 ビーム電流の初期値DESCRIPTION OF SYMBOLS 1 Cathode heating filament 2 Low temperature operation cathode 3 Wehnelt 4 Anode 5 Electron gun 6 Cathode heating power supply 7 Acceleration power supply 8 Electron gun power supply 9 Electron gun chamber 10 Vacuum pump for differential exhaust 11 Sputtering gas nozzle 12 Gas minute flow controller 13 Gas cylinder for sputtering 14 Electron beam passage slit 15 Electron beam 16 Target (deposition source) 17 Water-cooled copper crucible 18 Vapor 19 Deposition object 20 Vacuum pump for vacuum container 21 Deposition chamber 22 Beam current detector 23 Beam deflection magnetic field generator B Magnetic field M + metal ion Ar + argon ion I beam current I 0 initial value of beam current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今野 茂生 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 (72)発明者 高島 徹 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Konno 3-1-2 Musashino, Akishima-shi, Tokyo Nihon Denshi Co., Ltd. (72) Toru Takashima 3-1-2 Musashino, Akishima-shi, Tokyo Nihon Denshi Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空中においてカソードから発生した電
子ビームを磁場により偏向してターゲットに照射し、前
記ターゲットが蒸発した蒸発物を被蒸着物に蒸着させる
真空蒸着用偏向電子銃装置において、前記カソードとし
て付着した蒸発物が蒸発しない程度の低温で動作する低
温動作カソードを使用し、また、前記カソードを収納す
る電子銃室と前記ターゲット及び被蒸着物を収納する蒸
着室とを分離すると共に真空ポンプを各々接続して真空
排気する一方、前記電子銃室と前記蒸着室との間の壁面
に前記電子ビームを通過させる電子ビーム通過スリット
を形成し、更に、前記電子銃室における前記電子ビーム
の軌道に向かって微量の不活性ガスを導入するノズル、
ビーム電流を検出するビーム電流検出器及び前記ビーム
電流検出器により検出されるビーム電流が一定値となる
ようにガスボンベから前記ノズルへ不活性ガスを導入す
る流量制御装置よりなるカソード表面自動クリーニング
装置を設けたことを特徴とする真空蒸着用偏向電子銃装
置。
1. A deflection electron gun apparatus for vacuum vapor deposition, wherein an electron beam generated from a cathode in a vacuum is deflected by a magnetic field to irradiate a target, and an evaporated material evaporated by the target is vapor-deposited on an object to be vapor-deposited. A low-temperature operating cathode that operates at a temperature that does not evaporate the attached evaporation is used, and the electron gun chamber that accommodates the cathode and the evaporation chamber that accommodates the target and the object to be vapor-deposited are separated and a vacuum pump is used. While each of them is evacuated, an electron beam passage slit for passing the electron beam is formed on the wall surface between the electron gun chamber and the vapor deposition chamber, and the trajectory of the electron beam in the electron gun chamber is further formed. Nozzle that introduces a small amount of inert gas toward
A cathode surface automatic cleaning device comprising a beam current detector for detecting a beam current and a flow rate control device for introducing an inert gas from a gas cylinder to the nozzle so that the beam current detected by the beam current detector has a constant value. A deflection electron gun device for vacuum vapor deposition characterized by being provided.
【請求項2】 前記低温動作カソードは、六ホウ化ラン
タンからなることを特徴とする請求項1記載の真空蒸着
用偏向電子銃装置。
2. The deflection electron gun apparatus for vacuum vapor deposition according to claim 1, wherein the low-temperature operation cathode is made of lanthanum hexaboride.
JP03338230A 1991-12-20 1991-12-20 Deflection electron gun for vacuum deposition Expired - Fee Related JP3100209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03338230A JP3100209B2 (en) 1991-12-20 1991-12-20 Deflection electron gun for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03338230A JP3100209B2 (en) 1991-12-20 1991-12-20 Deflection electron gun for vacuum deposition

Publications (2)

Publication Number Publication Date
JPH05171423A true JPH05171423A (en) 1993-07-09
JP3100209B2 JP3100209B2 (en) 2000-10-16

Family

ID=18316155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03338230A Expired - Fee Related JP3100209B2 (en) 1991-12-20 1991-12-20 Deflection electron gun for vacuum deposition

Country Status (1)

Country Link
JP (1) JP3100209B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026668A1 (en) * 2014-08-22 2016-02-25 Arcam Ab Enhanced electron beam generation
JP2017027917A (en) * 2015-07-28 2017-02-02 株式会社ニューフレアテクノロジー Cleaning method of electron source and electron beam lithography apparatus
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9897513B2 (en) 2014-08-20 2018-02-20 Arcam Ab Energy beam size verification
US9919361B2 (en) 2013-12-16 2018-03-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9950366B2 (en) 2013-04-18 2018-04-24 Arcam Ab Apparatus for additive manufacturing
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US10406599B2 (en) 2012-12-17 2019-09-10 Arcam Ab Additive manufacturing method and apparatus
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10586683B2 (en) 2015-01-21 2020-03-10 Arcam Ab Method and device for characterizing an electron beam
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10814392B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005555B1 (en) * 2017-12-20 2019-07-30 한국세라믹기술원 A vacuum deposition apparatus using a plurality of target structures

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US11161177B2 (en) 2011-12-28 2021-11-02 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US11141790B2 (en) 2011-12-28 2021-10-12 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10406599B2 (en) 2012-12-17 2019-09-10 Arcam Ab Additive manufacturing method and apparatus
US9950366B2 (en) 2013-04-18 2018-04-24 Arcam Ab Apparatus for additive manufacturing
US10814393B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US10814392B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US10099289B2 (en) 2013-12-16 2018-10-16 Arcam Ab Additive manufacturing of three-dimensional articles
US9919361B2 (en) 2013-12-16 2018-03-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10974448B2 (en) 2013-12-18 2021-04-13 Arcam Ab Additive manufacturing of three-dimensional articles
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US11517964B2 (en) 2013-12-19 2022-12-06 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US10071424B2 (en) 2014-03-07 2018-09-11 Arcam Ab Computer program products configured for additive manufacturing of three-dimensional articles
US10058921B2 (en) 2014-04-02 2018-08-28 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10071423B2 (en) 2014-04-02 2018-09-11 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US11084098B2 (en) 2014-04-02 2021-08-10 Arcam Ab Apparatus for fusing a workpiece
US10821517B2 (en) 2014-04-02 2020-11-03 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9915583B2 (en) 2014-08-20 2018-03-13 Arcam Ab Energy beam position verification
US9897513B2 (en) 2014-08-20 2018-02-20 Arcam Ab Energy beam size verification
CN106573306B (en) * 2014-08-22 2019-12-03 阿卡姆股份公司 The electron beam of enhancing generates
WO2016026668A1 (en) * 2014-08-22 2016-02-25 Arcam Ab Enhanced electron beam generation
CN106573306A (en) * 2014-08-22 2017-04-19 阿卡姆股份公司 Enhanced electron beam generation
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US10586683B2 (en) 2015-01-21 2020-03-10 Arcam Ab Method and device for characterizing an electron beam
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
JP2017027917A (en) * 2015-07-28 2017-02-02 株式会社ニューフレアテクノロジー Cleaning method of electron source and electron beam lithography apparatus
US10134559B2 (en) 2015-07-28 2018-11-20 Nuflare Technology, Inc. Method of cleaning electron source and electron beam writing apparatus
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11806800B2 (en) 2015-09-24 2023-11-07 Arcam Ab X-ray calibration standard object
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11623282B2 (en) 2015-11-18 2023-04-11 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11724316B2 (en) 2018-03-29 2023-08-15 Arcam Ab Method and device for distributing powder material
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material

Also Published As

Publication number Publication date
JP3100209B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
JP3100209B2 (en) Deflection electron gun for vacuum deposition
EP2633543B1 (en) Device for producing an electron beam
US4019077A (en) Field emission electron gun
US5354445A (en) Thin film-forming apparatus
JP2619068B2 (en) Thin film forming equipment
US4424104A (en) Single axis combined ion and vapor source
Probyn A low-energy ion source for the deposition of chromium
JPH0456761A (en) Thin film forming device
JPH07258832A (en) Electron gun for vacuum deposition device and vacuum deposition device having the same
JP4307304B2 (en) Piercing electron gun, vacuum deposition apparatus equipped with the same, and method for preventing abnormal discharge of the piercing electron gun
JP2849771B2 (en) Sputter type ion source
JP3186777B2 (en) Plasma source
US7866278B2 (en) Thin-film deposition system
JP4065725B2 (en) Piercing-type electron gun and vacuum deposition apparatus provided with the same
JPS594045Y2 (en) Ionization device for thin film production
JPH0214426B2 (en)
JP2620474B2 (en) Ion plating equipment
JP2566602B2 (en) Ion source
JPH01177364A (en) Negative ion source
JP3330159B2 (en) Dynamic mixing device
JP2689929B2 (en) Evaporation source
JPH0721993B2 (en) Sputter type ion source
JPH0735569B2 (en) Thin film forming equipment
JPH02194165A (en) Ionizing method in ion plating and ion plating device
JP2011119140A (en) Electron beam device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

LAPS Cancellation because of no payment of annual fees