JPH0234335B2 - - Google Patents

Info

Publication number
JPH0234335B2
JPH0234335B2 JP56025308A JP2530881A JPH0234335B2 JP H0234335 B2 JPH0234335 B2 JP H0234335B2 JP 56025308 A JP56025308 A JP 56025308A JP 2530881 A JP2530881 A JP 2530881A JP H0234335 B2 JPH0234335 B2 JP H0234335B2
Authority
JP
Japan
Prior art keywords
butadiene
gas
amount
supplied
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56025308A
Other languages
Japanese (ja)
Other versions
JPS57139038A (en
Inventor
Masao Kasahara
Hiroshi Yamamoto
Hiroaki Katori
Jun Torya
Akihisa Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP56025308A priority Critical patent/JPS57139038A/en
Publication of JPS57139038A publication Critical patent/JPS57139038A/en
Publication of JPH0234335B2 publication Critical patent/JPH0234335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はパラジウム系触媒の存在下、ブタジエ
ンからジアセトキシブテンを製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diacetoxybutene from butadiene in the presence of a palladium-based catalyst.

詳しくは、本発明はアセトキシ化反応系、ブタ
ジエン回収系及び排ガス処理系を合理化し、ジア
セトキシブテンを有利に製造する方法の改良方法
を提供するものである。
Specifically, the present invention provides an improved method for advantageously producing diacetoxybutene by streamlining the acetoxylation reaction system, butadiene recovery system, and exhaust gas treatment system.

パラジウム系触媒の存在下、ブタジエン、酢酸
および酸素又は酸素含有ガスを接触反応させ、ジ
アセトキシブテンを製造するにあたり、アセトキ
シ化反応工程から排ガス或いはアセトキシ化反応
物の精製系から放出されるガス中に含まれる有効
成分、特にブタジエンをブタジエン回収塔及びブ
タジエン吸収塔を用いて有利に反応工程にリサイ
クルする方法については特開昭52−151115におい
て既に知られている。
In the presence of a palladium-based catalyst, butadiene, acetic acid, and oxygen or an oxygen-containing gas are catalytically reacted to produce diacetoxybutene. A method is already known from JP-A-52-151115 for advantageously recycling the active ingredients contained, in particular butadiene, into the reaction process using a butadiene recovery column and a butadiene absorption column.

一方、本発明者らは、ブタジエンのアセトキシ
化反応を詳細に検討した結果、ジアセトキシブテ
ンとともに、ブタジエンの酸化生成物であるフラ
ンおよびアクロレインが少量副生し、本反応を連
続的に行なう場合にはフランおよびアクロレイン
が回収使用される反応原料に伴つて反応域に循環
され、反応液中に蓄積すること、および、これら
のフランおよびアクロレインの液中濃度が一定濃
度を越えると触媒活性が極めて速やかに低下する
のでアセトキシ化反応域中のフランおよびアクロ
レインの濃度を一定値以下に保持する必要がある
ことを見い出した(特開昭56−71040)が、かか
る一定値を保持するための工業的有利な方法は末
だ得られていない。
On the other hand, as a result of a detailed study of the acetoxylation reaction of butadiene, the present inventors found that, together with diacetoxybutene, small amounts of furan and acrolein, which are oxidation products of butadiene, are produced as by-products when this reaction is carried out continuously. Furan and acrolein are recycled to the reaction zone along with the reaction raw materials that are recovered and used, and accumulate in the reaction solution.If the concentration of these furan and acrolein in the solution exceeds a certain concentration, the catalyst activity will be extremely rapid. It was discovered that it was necessary to maintain the concentrations of furan and acrolein in the acetoxylation reaction zone below a certain value because the I have yet to find a suitable method.

本発明者等は、原料ブタジエンを損失すること
なく、且つアセトキシ化反応域に循環使用し得る
純度で効果的に回収するため、特に、フラン及び
アクロレインの除去方法について鋭意検討した結
果、アセトキシ化反応生成液中に溶存するブタジ
エンを回収するためのブタジエン回収塔におい
て、回収塔に供給されるブタジエン量、供給ガス
量及び留出ガス量とフラン及びアクロレインの挙
動とは密接な関係を有しており、これらの量的関
係をある特定条件下に維持するならば、フランお
よびアクロレインが効率よく未反応ブタジエンか
ら分離され、系外に排出されることを見い出し、
本発明に到達したものである。
In order to effectively recover raw material butadiene without loss and with a purity that allows it to be reused in the acetoxylation reaction zone, the inventors of the present invention have conducted intensive studies on a method for removing furan and acrolein in particular, and found that the acetoxylation reaction In the butadiene recovery tower for recovering butadiene dissolved in the product liquid, there is a close relationship between the amount of butadiene supplied to the recovery tower, the amount of gas supplied, the amount of distilled gas, and the behavior of furan and acrolein. We have discovered that if these quantitative relationships are maintained under certain specific conditions, furan and acrolein can be efficiently separated from unreacted butadiene and discharged from the system.
This has led to the present invention.

即ち、本発明の要旨は、 (1) 担体付パラジウム系触媒の存在下、ブタジエ
ン、酸素含有ガス及び酢酸を20Kg/cm2G以上の
圧力下アセトキシ化反応域で反応させジアセト
キシブテンを製造するにあたり (a) アセトキシ化反応域から得られる反応生成
物を気液分離し、分離気体の一部は反応域に
供給し、 (b) 残部は第1ブタジエン吸収塔に供給してブ
タジエンを酢酸に吸収させ、 (c) 他方、分離液体は減圧後、圧力0〜3Kg/
cm2G、塔頂温度50〜130℃で操作されるブタ
ジエン回収塔の塔頂部に供給し、 (d) かつブタジエン回収塔の下部に酸素含有ガ
スを供給し、 (e) 回収塔よりブタジエン含有ガスを留出さ
せ、次いで該留出ガスを第2ブタジエン吸収
塔に供給してブタジエンを酢酸に吸収させ、
その際、該留出ガス量と(c)に於いて分離液体
と共に供給されるガス量との割合(モル比)
を下記の範囲内に保持し、 M×0.95<留出ガス量/供給ガス量<M×
1.1 (但しMは留出ガス量/供給ガス量(モル
比)の最適値を表わし、供給ブタジエン量/
供給ガス量(モル比)=Fとしたとき、関数
M=6.6×F+0.8から求められる。) (f) 回収塔底部よりフラン及びアクロレインを
含有する缶出液を抜き出し、 (g) 第1及び第2ブタジエン吸収塔塔底部より
流出するブタジエン含有酢酸をアセトキシ化
反応域に供給することを特徴とするジアセト
キシブテンの製造方法 に存する。
That is, the gist of the present invention is as follows: (1) Diacetoxybutene is produced by reacting butadiene, an oxygen-containing gas, and acetic acid in an acetoxylation reaction zone under a pressure of 20 kg/cm 2 G or more in the presence of a supported palladium catalyst. (a) The reaction product obtained from the acetoxylation reaction zone is separated into gas and liquid, and part of the separated gas is supplied to the reaction zone. (b) The remainder is supplied to the first butadiene absorption tower to convert butadiene to acetic acid. (c) On the other hand, after reducing the pressure of the separated liquid, the pressure is 0 to 3 kg/
cm 2 G, to the top of a butadiene recovery column operated at a top temperature of 50 to 130°C, (d) and an oxygen-containing gas fed to the bottom of the butadiene recovery column, and (e) a butadiene-containing gas from the recovery column. distilling the gas, then supplying the distilled gas to a second butadiene absorption tower to absorb butadiene in acetic acid,
At that time, the ratio (molar ratio) between the amount of distilled gas and the amount of gas supplied together with the separated liquid in (c)
is maintained within the following range, M×0.95<distillate gas amount/supplied gas amount<M×
1.1 (However, M represents the optimum value of distillate gas amount/supplied gas amount (molar ratio), and the butadiene amount supplied/
When the supply gas amount (molar ratio)=F, it is determined from the function M=6.6×F+0.8. ) (f) extracting bottoms containing furan and acrolein from the bottom of the recovery tower; (g) supplying acetic acid containing butadiene flowing out from the bottom of the first and second butadiene absorption towers to the acetoxylation reaction zone; The present invention relates to a method for producing diacetoxybutene.

次に本発明を更に詳細に説明する。 Next, the present invention will be explained in more detail.

本反応に用いられる原料のブタジエンは高純度
のものが望ましいが必ずしも純粋なものである必
要はなく、工業規格を満足するもののほか窒素、
アルゴン等の不活性ガスやメタン、エタンを含有
していても良い。他の反応原料である酢酸は、特
に制限されず品質的にはJIS規格を満足するもの
であれば充分であるが、反応の選択率を考慮した
場合、含水量は20(重量)%以下であることが望
ましく、又反応器の材質の観点からは酢酸中に含
まれる蟻酸は出来るだけ1.0(重量)%以下とする
のが好ましい。酢酸の供給源としては、新たもの
は勿論のこと、本発明方法に従い、第1及び第2
のブタジエン吸収塔においてブタジエンを吸収し
た酢酸が使用される。酢酸の使用量は、ブタジエ
ン1モルに対し化学量論量以上60モル以下の範囲
で適用される。
It is desirable that the raw material butadiene used in this reaction be of high purity, but it does not necessarily have to be pure.
It may contain an inert gas such as argon, methane, or ethane. Acetic acid, which is another raw material for the reaction, is not particularly limited and is sufficient in terms of quality as long as it satisfies JIS standards. However, when considering the selectivity of the reaction, the water content must be 20% (by weight) or less. It is desirable that the amount of formic acid contained in acetic acid be 1.0% (by weight) or less from the viewpoint of the material of the reactor. As a source of acetic acid, not only new sources but also the first and second sources according to the method of the present invention can be used.
Acetic acid that has absorbed butadiene is used in the butadiene absorption tower. The amount of acetic acid used is within the range of stoichiometric or more and 60 mol or less per 1 mol of butadiene.

アセトキシ化反応に供する酸素は、酸素含有ガ
スとして用いるが窒素、アルゴン等の不活性ガス
で稀釈されたものが良く、好ましくは空気が用い
られる。いかなる場合も、反応器内で実質的に爆
発混合物を形成しないようにすることが必要であ
り、通常酸素含有ガス中の酸素濃度は0.1〜15(容
量)%、好ましくは1〜10(容量)%の範囲で選
ばれる。
The oxygen used in the acetoxylation reaction is used as an oxygen-containing gas, but it is preferably diluted with an inert gas such as nitrogen or argon, and air is preferably used. In any case, it is necessary to ensure that virtually no explosive mixture is formed in the reactor, and the oxygen concentration in the oxygen-containing gas is usually between 0.1 and 15% (by volume), preferably between 1 and 10% (by volume). Selected within a range of %.

本反応に使用される固体触媒としては、パラジ
ウム金属単独或はパラジウム金属とビスマス、セ
レン、アンチモン及びテルルから選ばれた少くと
も1種の助触媒金属とを担体に担持した触媒が好
適である。この触媒担体としては、任意のものが
選ばれるが、具体的には、具体的には、活性炭、
シリカゲル、シリカアルミナ、アルミナ、粘土、
ボーキサイト、マグネシア、ケイソウ土、軽石な
どが挙げられる。
As the solid catalyst used in this reaction, a catalyst in which palladium metal alone or palladium metal and at least one promoter metal selected from bismuth, selenium, antimony, and tellurium is supported on a carrier is suitable. Any carrier can be selected as the catalyst carrier, but specifically, activated carbon,
silica gel, silica alumina, alumina, clay,
Examples include bauxite, magnesia, diatomaceous earth, and pumice.

触媒中の触媒金属の担持量は、通常パラジウム
金属は0.1〜20(重量)%、他の助触媒金属は0.01
〜30(重量)%の範囲で選ばれる。反応は、種合
の態様で実施されるが、固定床で実施するのが好
ましい。
The amount of catalyst metal supported in the catalyst is usually 0.1 to 20% (by weight) for palladium metal and 0.01% for other promoter metals.
Selected in the range of ~30% (by weight). The reaction is carried out in a seeded manner, but preferably in a fixed bed.

アセトキシ化反応は、圧力20Kg/cm2G以上で実
施する必要がある。かかる圧力を超えてあまりに
低い圧力下では、充分な反応速度が得られず工業
的に好ましくない。また、300Kg/cm2G以上では
装置の耐圧性および安全性から好ましくなく、通
常、40〜150Kg/cm2Gの範囲から選ばれる。
The acetoxylation reaction needs to be carried out at a pressure of 20 kg/cm 2 G or higher. If the pressure is too low beyond this pressure, a sufficient reaction rate cannot be obtained and this is not preferred industrially. In addition, if it exceeds 300 Kg/cm 2 G, it is not preferable from the viewpoint of pressure resistance and safety of the device, and it is usually selected from the range of 40 to 150 Kg/cm 2 G.

反応温度は通常40〜180℃、好ましくは60〜120
℃の範囲から選ばれる。
The reaction temperature is usually 40-180℃, preferably 60-120℃
Selected from the range of °C.

本発明方法においては、アセトキシ化反応で得
られる反応生成物を気液分離し、得られた該分離
気体の一部はアセトキシ化反応域に循環し、残部
は20Kg/cm2G以上、好ましくは20〜300Kg/cm2
更に好ましくは40〜150Kg/cm2Gの圧力で操作さ
れる第1ブタジエン吸収塔に供給して酢酸でブタ
ジエンを吸収処理する。第1吸収塔の操作温度は
10〜50℃、好ましくは20〜40℃とする。
In the method of the present invention, the reaction product obtained in the acetoxylation reaction is separated into gas and liquid, a part of the separated gas obtained is circulated to the acetoxylation reaction zone, and the remainder is 20 kg/cm 2 G or more, preferably 20~300Kg/ cm2G
More preferably, it is fed to a first butadiene absorption tower operated at a pressure of 40 to 150 kg/cm 2 G to absorb butadiene with acetic acid. The operating temperature of the first absorption tower is
The temperature is 10-50°C, preferably 20-40°C.

他方、前記気体を分離した後の反応生成液は、
減圧後ブタジエン回収塔に供給し、蒸留又は放散
により溶存しているブタジエンを塔頂よりガス状
で留出させる。しかして、本発明方法においては
該回収塔は操作圧力0〜3Kg/cm2G、好ましくは
0.01〜2Kg/cm2G、塔頂温度50〜/30℃、好まし
くは70〜120℃の条件下操作し、又、反応液はブ
タジエン回収塔塔頂部から供給する。
On the other hand, the reaction product liquid after separating the gas is
After the pressure is reduced, it is supplied to a butadiene recovery column, and the dissolved butadiene is distilled out in gaseous form from the top of the column by distillation or diffusion. Therefore, in the method of the present invention, the recovery column has an operating pressure of 0 to 3 kg/cm 2 G, preferably
It is operated under conditions of 0.01 to 2 Kg/cm 2 G and a tower top temperature of 50 to 30°C, preferably 70 to 120°C, and the reaction liquid is supplied from the top of the butadiene recovery column.

尚、反応生成液は、ブタジエン回収塔に供給す
る前にブタジエン回収塔操作圧より若干高い圧力
下フラツシユ蒸発を行ない、発生したガスを第2
ブタジエン吸収塔(後述)の底部に供給し、流出
した液をブタジエン回収塔に供給しても良い。
Before being supplied to the butadiene recovery tower, the reaction product liquid is subjected to flash evaporation under a pressure slightly higher than the operating pressure of the butadiene recovery tower, and the generated gas is transferred to a second
It may be supplied to the bottom of a butadiene absorption tower (described later), and the liquid flowing out may be supplied to a butadiene recovery tower.

更に又、本発明方法においては、ブタジエン回
収塔の下部に酸素含有ガスを供給する。
Furthermore, in the method of the present invention, oxygen-containing gas is supplied to the lower part of the butadiene recovery column.

その場合、回収塔に供給される酸素含有ガス
は、回収塔の操作条件下アセトキシ化反応生成物
との望ましくない副反応などを生起しないために
も酸素濃度のあまり高くないガスが使用され、通
常酸素0.01〜21%、好ましくは0.1〜11%であり、
その他の不活性成分として窒素、アルゴン等の不
活性ガスを含むものが使用される。
In that case, the oxygen-containing gas supplied to the recovery tower is usually a gas with a low oxygen concentration in order to avoid undesirable side reactions with the acetoxylation reaction product under the operating conditions of the recovery tower. oxygen 0.01-21%, preferably 0.1-11%,
Other inert components that contain an inert gas such as nitrogen or argon are used.

更に、本発明方法においては、第1ブタジエン
吸収塔から排出されるガスは、通常、酸素、窒
素、炭酸ガス等を含有しており、その含有割合は
アセトキシ化反応条件によつて異なるが、ガス中
の酸素濃度は、ほぼ1〜10%程度である。それ
故、回収塔に供給する酸素含有ガスとして、第1
ブタジエン吸収塔から排出されるガスの一部を、
ガス中の酸素濃度を調整した後供給するならば、
より一層効率化される。いずれの場合に於ても、
回収塔内で爆発混合物を形成しないようにするこ
とは勿論である。
Furthermore, in the method of the present invention, the gas discharged from the first butadiene absorption tower usually contains oxygen, nitrogen, carbon dioxide, etc., and the content ratio varies depending on the acetoxylation reaction conditions, but the gas The oxygen concentration inside is approximately 1 to 10%. Therefore, as the oxygen-containing gas supplied to the recovery tower,
A part of the gas discharged from the butadiene absorption tower is
If the oxygen concentration in the gas is adjusted and then supplied,
Even more efficient. In either case,
Of course, it is necessary to avoid the formation of explosive mixtures in the recovery tower.

供給するガスの量は回収塔で処理されるブタジ
エンの量の30容量倍以下、好ましくは20容量倍以
下とする。
The amount of gas to be supplied is 30 times or less, preferably 20 times or less by volume, the amount of butadiene treated in the recovery column.

本発明方法においては、気液分離後の反応生成
液を必要に応じフラツシユ蒸発を行つた後ブタジ
エン回収塔に供給されるが、その際、ブタジエン
回収塔から留出するガス(以下「留出ガス」と称
する)量と反応生成液と共に供給されるガス量と
を以下に示す特定の割合の範囲(モル比)に保持
することが必要である。
In the method of the present invention, the reaction product liquid after gas-liquid separation is flash evaporated as necessary and then supplied to the butadiene recovery tower. '') and the amount of gas supplied together with the reaction product liquid must be maintained within a specific ratio range (molar ratio) shown below.

(尚、本願明細書中、反応生成液と共に供給され
るガスとは、ブタジエン酸素、窒素、炭酸ガス等
の常温常圧下、気体の物質で、反応生成液に溶存
して供給されるもの並びに必要に応じて供給され
る酸素含有ガスの総称であり、以下「供給ガス」
と称する。又、「供給ガス」中のブタジエン以外
のガスを「イナートガス」と総称する。) M×0.95<留出ガス量/供給ガス量<M×1.1 但しMは未反応ブタジエンを100%回収し、か
つフラン及びアクロレインの除去を好適に行なう
ための(留出ガス量)/(供給ガス量)とのモル
比の最適値を表わし、供給ブタジエン量/供給ガ
ス量(モル比)=Fとしたときこ、関数M=6.6×
F+0.8から求められる。これを横軸をF値、縦
軸をM値としてグラフで示すと図−1のようにな
る。
(In the specification of this application, gases supplied together with the reaction product liquid refer to substances that are gaseous at room temperature and normal pressure, such as butadiene, oxygen, nitrogen, carbon dioxide, etc., and are supplied dissolved in the reaction product liquid, as well as necessary It is a general term for the oxygen-containing gas supplied according to the
It is called. Further, gases other than butadiene in the "supply gas" are collectively referred to as "inert gases." ) M x 0.95 < distillate gas amount / supply gas amount < M x 1.1, where M is (distillate gas amount) / (supply gas amount) in order to recover 100% of unreacted butadiene and to properly remove furan and acrolein. When the amount of butadiene to be supplied/the amount of gas to be supplied (mole ratio) = F, the function M = 6.6×
It can be found from F+0.8. If this is shown in a graph with the horizontal axis as the F value and the vertical axis as the M value, it will look like Figure 1.

かかる範囲を超えて(留出ガス)/(供給ガス
量)の値が大きいとブタジエンは100%回収でき
るものの留出ガスに含まれるフラン及びアクロレ
インの量が大となり、又、熱効率が悪化するので
好ましくない。又、小さすぎるとブタジエンの回
収が不十分になり好ましくない。
If the value of (distillate gas)/(supply gas amount) is large beyond this range, 100% butadiene can be recovered, but the amounts of furan and acrolein contained in the distillate gas will increase, and the thermal efficiency will deteriorate. Undesirable. On the other hand, if it is too small, butadiene recovery will be insufficient, which is not preferable.

かかる範囲内の値の達成は、ブタジエン回収塔
に加える熱量を微妙に調節することにより行われ
るが、具体的には供給液の温度調節、リボイラー
による加熱量の調節、酸素含有ガスの温度の調節
等を行なう。
Achieving a value within this range is achieved by delicately adjusting the amount of heat added to the butadiene recovery column; specifically, adjusting the temperature of the feed liquid, adjusting the amount of heating by the reboiler, and adjusting the temperature of the oxygen-containing gas. etc.

以上のような条件下でブタジエン回収塔を操作
することによつて供給液中に含まれるブタジエン
を実質的に100%回収し、同時にフランおよびア
クロレインの80%程度を回収塔缶出液と系外に抜
き出すことができ、触媒の失活を防止することが
できる。
By operating the butadiene recovery column under the above conditions, virtually 100% of the butadiene contained in the feed solution can be recovered, and at the same time, about 80% of furan and acrolein are removed from the bottom of the recovery column and outside the system. This can prevent catalyst deactivation.

この操作に際して、フラン、アクロレインの除
去率をより向上させる必要が有る場合、即ち、ア
セトキシ化反応条件によつては、フラン、アクロ
レインの生成量が大であるため、80%程度の除去
率では反応器に循環する絶対量が大となり、触媒
を失活させる可能性があるので、そのような場合
には、回収塔からの留出ガスを、分縮器を用いて
40〜70℃に冷却し、凝縮液を回収塔に戻すことに
よつて、除去率を95%程度にまで高めることがで
き、容易に触媒の失活を防止することができる。
During this operation, if it is necessary to further improve the removal rate of furan and acrolein, that is, depending on the acetoxylation reaction conditions, the amount of furan and acrolein produced is large, so a removal rate of about 80% may not be sufficient for the reaction. In such cases, the distillate gas from the recovery tower should be recycled using a partial condenser.
By cooling to 40 to 70°C and returning the condensate to the recovery tower, the removal rate can be increased to about 95%, and deactivation of the catalyst can be easily prevented.

尚、ブタジエン回収塔としては一般の蒸留塔を
用いても、リボイラーの無い放散塔を用いても良
い。
Incidentally, as the butadiene recovery column, a general distillation column may be used, or a stripping column without a reboiler may be used.

ブタジエン回収塔或いは分縮器より留出するブ
タジエン含有ガスは塔頂圧力以下、好ましくは0
〜4Kg/cm2G、更に好ましくは0.2〜1Kg/cm2
の圧力で操作される第2ブタジエン吸収塔に供給
して酢酸にてブタジエンを吸収処理する。第2吸
収塔の操作温度は10〜50℃、好ましくは20〜40℃
とする。
The butadiene-containing gas distilled from the butadiene recovery tower or fractional condenser is at a pressure below the tower top pressure, preferably 0.
~4Kg/ cm2G , more preferably 0.2~1Kg/ cm2G
The butadiene is then fed to a second butadiene absorption tower operated at a pressure of 200 mL, and the butadiene is absorbed and treated with acetic acid. The operating temperature of the second absorption tower is 10-50℃, preferably 20-40℃
shall be.

第1及び第2ブタジエン吸収塔において使用さ
れる酢酸は特に制限はなく、市販のものでも製造
工程からの回収酢酸、例えばジアセトキシブテン
製造工程からの回収酢酸或はジアセトキシブテン
の加水分解によつて生成した酢酸など任意のもの
が挙げられる。
There are no particular restrictions on the acetic acid used in the first and second butadiene absorption towers, and commercially available acetic acid may be used as well. For example, acetic acid produced by heating may be used.

ただし、ジアセトキシブテン製造工程からの回
収酢酸にはフラン及びアクロレインが同伴される
ので、これを用いる場合には、事前に、フラン及
びアクロレインを酢酸から蒸発分離しておく必要
がある。
However, since acetic acid recovered from the diacetoxybutene manufacturing process is accompanied by furan and acrolein, when this is used, it is necessary to evaporate and separate furan and acrolein from acetic acid in advance.

ブタジエン吸収塔としては、通常の吸収操作に
用いられる装置であれば十分適用することが出
来、充填塔、段塔、スプレー塔などが挙げられ
る。
As the butadiene absorption tower, any equipment used in normal absorption operations can be used, and examples thereof include packed towers, tray towers, spray towers, and the like.

以上、本発明方法に従い、ブタジエンの回収に
必要充分な条件の範囲内で、更に限定された条件
でブタジエン回収塔を操作することによりアセト
キシ化触媒の寿命に致命的な悪影響を与える物質
であるフラン及びアクロレインを新たな設備装置
を設置せずに循環系から除去することができ、安
定かつ経済的有利にジアセトキシブテンを製造す
ることが出来る。
As described above, according to the method of the present invention, by operating the butadiene recovery column under more limited conditions within the range of conditions necessary and sufficient for butadiene recovery, fluorine, a substance that has a fatal adverse effect on the life of the acetoxylation catalyst, is used. and acrolein can be removed from the circulation system without installing new equipment, and diacetoxybutene can be produced stably and economically advantageously.

次に、実施例に基づいて本発明をより詳細に説
明するが、本発明はその要旨を超えない限り、以
下の実施例に限定されるものではない。尚、「部」
は「重量部」を表わす。
Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In addition, “department”
represents "parts by weight".

実施例 1 ブタジエン、空気、リサイクルガス、リサイク
ル酢酸をそれぞれ1400、2290、63630、25450部/
hr、の割合で圧力93Kg/cm2G、温度50℃でアセト
キシ化反応域に供給する。反応域は内径1800mm、
高さ8000mmのSUS316製反応器を2基板連結した
もので、各反応器の内部にはパラジウムとテルル
を担持した4〜6メツシユのヤシガラ活性炭を
4500部充填した。
Example 1 1400, 2290, 63630, and 25450 parts of butadiene, air, recycled gas, and recycled acetic acid, respectively.
hr, to the acetoxylation reaction zone at a pressure of 93 Kg/cm 2 G and a temperature of 50°C. The reaction area has an inner diameter of 1800 mm.
Two SUS316 reactors with a height of 8,000 mm are connected to each other. Inside each reactor, 4 to 6 meshes of coconut shell activated carbon supporting palladium and tellurium are installed.
4500 copies were filled.

該反応域の出口圧力は91Kg/cm2G、温度は80℃
であり、反応器底部でこの条件下で生成物の気液
分離を行つて、主として1,4−ジアセトキシブ
テン(13.7wt%)及び酢酸を含有する流出液
27240部/hr(イナートガス1120部/hr含有)と、
酸素及びブタジエンを含む流出ガス65530部/hr
との得た。
The outlet pressure of the reaction zone is 91Kg/cm 2 G, and the temperature is 80℃.
Under these conditions, the product is separated into gas and liquid at the bottom of the reactor, resulting in an effluent containing mainly 1,4-diacetoxybutene (13.7wt%) and acetic acid.
27240 parts/hr (contains inert gas 1120 parts/hr),
Effluent gas containing oxygen and butadiene 65530 parts/hr
Got it.

流出液は減圧してブタジエン回収塔の最上段多
孔板トレイ上に供給し、同時に、回収塔塔底には
第1ブタジエン吸収塔(後述)からの留出ガス
179部/hrを供給した。
The effluent is depressurized and fed onto the uppermost perforated plate tray of the butadiene recovery tower, and at the same time, the distillate gas from the first butadiene absorption tower (described later) is fed to the bottom of the recovery tower.
179 parts/hr was supplied.

ブタジエン回収塔は、SUS316製の内径1000
mm、高さ7000mmの多孔板トレイ10段のものであ
り、回収塔供給液を加熱量を調節しながら供給し
て塔頂圧0.3Kg/cm2G、塔頂温度88℃で操作し回
収塔塔頂より、ブタジエン10.0wt%を含む留出ガ
ス2298部/hrを得、塔底から1,4−ジアセトキ
シブテン(14.9wt%)および主として酢酸を含有
する缶出液25121部/hrを得た。
The butadiene recovery tower is made of SUS316 with an inner diameter of 1000 mm.
It has 10 perforated plate trays with a height of 7,000 mm and a height of 7,000 mm.The recovery tower feed liquid is supplied while adjusting the amount of heating, and is operated at a tower top pressure of 0.3 kg/cm 2 G and a tower top temperature of 88°C. 2,298 parts/hr of distillate gas containing 10.0 wt% butadiene was obtained from the top of the column, and 25,121 parts/hr of bottoms containing 1,4-diacetoxybutene (14.9 wt%) and mainly acetic acid was obtained from the bottom of the column. Ta.

この缶出液はひき続き脱酢酸塔に供給して塔頂
より純度98.5wt%の酢酸を得、塔底より純度
86.5wt%の1,4−ジアセトキシブテンを得た。
This bottoms is continuously fed to a deacetic acid tower to obtain acetic acid with a purity of 98.5wt% from the top of the tower, and acetic acid with a purity of 98.5wt% is obtained from the bottom of the tower.
86.5 wt% of 1,4-diacetoxybutene was obtained.

一方、アセトキシ化反応域からの流出ガス
65530部/hrは、90Kg/cm2G圧下、第1ブタジエ
ン吸収塔(後述)からのブタジエンを含み、酢酸
を主成分とする流出液2460部/hrと共に45℃に冷
却したのち更に気液分離に付し、酸素4.95wt%を
含む窒素を主成分とする分離ガス65120部/hrと
酢酸を主成分とする分離液2870部/hrとを得た。
On the other hand, the effluent gas from the acetoxylation reaction zone
65,530 parts/hr contains butadiene from the first butadiene absorption tower (described later) under a pressure of 90 Kg/cm 2 G, and is cooled to 45°C together with 2,460 parts/hr of effluent mainly composed of acetic acid, and then further separated into gas and liquid. 65,120 parts/hr of a separated gas mainly composed of nitrogen containing 4.95 wt% oxygen and 2870 parts/hr of a separated liquid mainly composed of acetic acid were obtained.

この分離液を減圧した後、前述のブタジエン回
収塔からの留出ガス2298部/hrと共に第2ブタジ
エン吸収塔の底部に供給し、一方同時に塔頂より
35℃の酢酸を20971部/hrで供給し、塔内で気液
交流接触させた。第2ブタジエン吸収塔は、内径
1000mm、高さ15000mmのSUS316製で35℃、塔頂
圧0.2Kg/cm2Gで操作し、塔底からブタジエンを
含む酢酸を25450部/hr得た。又、塔頂からは、
ブタジエン含有量が100ppm(容量)の廃ガスを
689部/hrで得、これは水洗塔で洗浄したのち排
出した。
After reducing the pressure of this separated liquid, it was supplied to the bottom of the second butadiene absorption tower together with 2298 parts/hr of distillate gas from the above-mentioned butadiene recovery tower, while at the same time it was supplied from the top of the tower.
Acetic acid at 35°C was supplied at a rate of 20,971 parts/hr and brought into contact with gas-liquid exchange within the column. The second butadiene absorption tower has an inner diameter of
It was made of SUS316 and was 1,000 mm long and 15,000 mm high. It was operated at 35° C. and a column top pressure of 0.2 Kg/cm 2 G, and 25,450 parts/hr of acetic acid containing butadiene was obtained from the bottom of the column. Also, from the top of the tower,
Waste gas with a butadiene content of 100 ppm (volume)
689 parts/hr was obtained, which was washed in a water washing tower and then discharged.

前述の気液分離で得られた圧力90Kg/cm2Gの分
離ガス65120部/hrのうち1490部/hrを第1吸収
塔の底部に供給し、他方吸収塔塔頂から35℃の酢
酸2430部/hrを96Kg/cm2Gで供給し、気液交流接
触させた。塔頂よりブタジエン含有量が100ppm
(容量)の廃ガスを1460部/hrで得、そのうち179
部/hrを回収塔底部に供給した。また、圧力90
Kg/cm2の分離ガスの残部63630部/hrは、アセト
キシ化反応域にリサイクルした。
Of the 65,120 parts/hr of separated gas at a pressure of 90 Kg/cm 2 G obtained in the gas-liquid separation described above, 1,490 parts/hr is supplied to the bottom of the first absorption tower, while 2,430 parts/hr of acetic acid at 35°C is supplied from the top of the absorption tower. parts/hr was supplied at a rate of 96 kg/cm 2 G to bring about gas-liquid exchange contact. Butadiene content is 100ppm from the top of the tower.
(capacity) of waste gas was obtained at 1460 parts/hr, of which 179
parts/hr were fed to the bottom of the recovery column. Also, pressure 90
The remaining 63,630 parts/hr of the Kg/cm 2 separation gas was recycled to the acetoxylation reaction zone.

第1ブタジエン吸収塔の底部からはブタジエン
を含む酢酸が2460部/hrで得られ、これは前述の
如く気液分離器へリサイクルした。第1ブタジエ
ン吸収塔は内径500mm、高さ10000mmのSUS316製
で35℃、96Kg/cm2Gで操作した。
From the bottom of the first butadiene absorption tower, 2460 parts/hr of acetic acid containing butadiene was obtained, which was recycled to the gas-liquid separator as described above. The first butadiene absorption tower was made of SUS316 with an inner diameter of 500 mm and a height of 10,000 mm, and was operated at 35° C. and 96 Kg/cm 2 G.

上記の操作条件で、全装置の連続運転を行なつ
たところ、全系が定常状態に達した時点ではブタ
ジエン回収塔供給液中のフラン濃度とアクロレイ
ン濃度の合計は1700wtppmとなり、このうち83
%相当量がブタジエン回収塔の塔底から流出し
た。ブタジエンは実質的に100℃塔頂へ回収され
た。
When the entire system was operated continuously under the above operating conditions, the total concentration of furan and acrolein in the butadiene recovery tower feed liquid was 1700wtppm, of which 83%
% equivalent amount flowed out from the bottom of the butadiene recovery tower. Butadiene was essentially recovered overhead at 100°C.

また、アセトキシ化触媒の活性は約1000時間の
間ほぼ一定であつた。
Furthermore, the activity of the acetoxylation catalyst remained almost constant for about 1000 hours.

ここで、ブタジエン回収塔における供給ブタジ
エン量/供給ガス量のモル比(F)は0.101、留出ガ
ス量/供給ガス量のモル比は1.46である。
Here, the molar ratio (F) of the amount of butadiene supplied/the amount of gas supplied in the butadiene recovery column is 0.101, and the molar ratio of the amount of distilled gas/the amount of gas supplied is 1.46.

(但し、ブタジエンの分子量54、イナートガスの
平均分子量28.3、留出ガス中のブタジエン及びイ
ナートガス以外の物質(酢酸等)の平均分子量
51.6として算出した。) この時の留出ガス量/供給ガスの最適値Mは関
数M=6.6×F+0.8から1.47であり、本実施例の
留出ガス量/供給ガス量は所定の範囲内の値を維
持している。
(However, the molecular weight of butadiene is 54, the average molecular weight of inert gas is 28.3, and the average molecular weight of substances other than butadiene and inert gas (acetic acid, etc.) in the distillate gas.
Calculated as 51.6. ) The optimal value M of distillate gas amount/supply gas at this time is the function M=6.6×F+0.8 to 1.47, and the distillate gas amount/supply gas amount in this example is maintained within a predetermined range. are doing.

比較例 1 ブタジエン回収塔の塔頂温度が98℃となるよう
に供給液を加熱温度を調節しつつ供給し、ブタジ
エン回収塔からの留出ガス量が3033部/hr、第2
吸収塔の供給酢酸量が20236部/hrである以外は
実施例1と同じ装置を用い、同じ条件で操作し
た。その結果、定常状態でのブタジエン回収塔供
給液中のフラン濃度とアクロレイン濃度の合計は
2800wtppmとなり、このうち50%相当量がブタ
ジエン回収塔の塔底から流出したに過ぎなかつ
た。ブタジエンは全量塔頂へ回収された。
Comparative Example 1 The feed liquid was supplied while adjusting the heating temperature so that the top temperature of the butadiene recovery column was 98°C, and the distillate gas amount from the butadiene recovery column was 3033 parts/hr.
The same equipment as in Example 1 was used, except that the amount of acetic acid supplied to the absorption tower was 20,236 parts/hr, and the operation was carried out under the same conditions. As a result, the sum of furan concentration and acrolein concentration in the butadiene recovery tower feed liquid in steady state is
The amount was 2800wtppm, of which only 50% equivalent flowed out from the bottom of the butadiene recovery tower. All butadiene was recovered to the top of the column.

アセトキシ化触媒の活性は約100時間の間に大
幅に低下し、ブタジエン回収塔供給液中の1,4
−ジアセトキシブテンの濃度は13.7wt%から
12.6wt%に低下した。
The activity of the acetoxylation catalyst decreased significantly over about 100 hours, and the 1,4
-Diacetoxybutene concentration starts from 13.7wt%
It decreased to 12.6wt%.

この場合、供給ブタジエン量/供給ガス量のモ
ル比は0.101、留出ガス量/供給ガス量のモル比
は1.80であつた。
In this case, the molar ratio of the amount of butadiene supplied/the amount of gas supplied was 0.101, and the molar ratio of the amount of distilled gas/the amount of gas supplied was 1.80.

【図面の簡単な説明】[Brief explanation of drawings]

図−1はブタジエンを実質的に100%回収し、
かつフラン及びアクロレインの除去を好適に行う
時のブタジエン回収塔における供給ガス量と留出
ガス量とのモル比の値(最適値(M))と供給ブ
タジエン量と供給ガス量とのモル比の値(F)との関
数M=6.6×F+0.8を表わすグラフであり、縦軸
は留出ガス量/供給ガス量の最適値(M)を、横
軸は供給ブタジエン量/供給ガス量(F)を表わす。
Figure 1 shows virtually 100% recovery of butadiene.
and the value of the molar ratio between the amount of gas supplied and the amount of distilled gas in the butadiene recovery tower (optimal value (M)) and the molar ratio between the amount of butadiene supplied and the amount of supplied gas when removing furan and acrolein in a suitable manner. This is a graph representing the function M = 6.6 x F + 0.8 with the value (F), the vertical axis is the optimal value (M) of distillate gas amount/supply gas amount, and the horizontal axis is the supply butadiene amount/supply gas amount ( F).

Claims (1)

【特許請求の範囲】 1 担体付パラジウム系触媒の存在下、ブタジエ
ン、酸素含有ガス及び酢酸を20Kg/cm2G以上の圧
力下アセトキシ化反応域で反応させジアセトキシ
ブテンを製造するにあたり、 (a) アセトキシ化反応域から得られる反応生成物
を気液分離し、分離気体の一部は反応域に供給
し、 (b) 分離気体の残部は第1ブタジエン吸収塔に供
給してブタジエンを酢酸に吸収させ (c) 他方、分離液体は、減圧後、圧力0〜3Kg/
cm2G、塔頂温度50〜130℃で操作されるブタジ
エン回収塔の塔頂部に供給し、 (d) かつブタジエン回収塔の下部に酸素含有ガス
を供給し、 (e) 回収塔よりブタジエン含有ガスを留出させ、
次いで該留出ガスを第2ブタジエン吸収塔に供
給してブタジエンを酢酸に吸収させ、その際、
該留出ガス量と(c)に於いて分離液体と共に供給
されるガス量との割合(モル比)を下記の範囲
内に保持し、 M×0.95<留出ガス量/供給ガス量<M×
1.1(但しMは留出ガス量/供給ガス量(モル
比)の最適値を表わし、供給ブタジエン量/供
給ガス量(モル比)=Fとしたとき、関数M=
6.6×F+0.8から求められる。) (f) 回収塔底部よりフラン及びアクロレインを含
有する缶出液を抜き出し、 (g) 第1及び第2ブタジエン吸収塔塔底部より流
出するブタジエン含有酢酸をアセトキシ化反応
域に供給することを特徴とするジアセトキシブ
テンの製造方法。 2 特許請求の範囲第1項記載の方法において、
ブタジエン回収塔より留出するブタジエン含有ガ
スを分縮器にて40〜70℃に冷却して凝縮液をブタ
ジエン回収塔に循環することを特徴とするジアセ
トキシブテンの製造方法。
[Claims] 1. In producing diacetoxybutene by reacting butadiene, an oxygen-containing gas, and acetic acid in an acetoxylation reaction zone under a pressure of 20 kg/cm 2 G or higher in the presence of a supported palladium-based catalyst, (a ) The reaction product obtained from the acetoxylation reaction zone is separated into gas and liquid, and a part of the separated gas is supplied to the reaction zone. (b) The remainder of the separated gas is supplied to the first butadiene absorption tower to convert butadiene into acetic acid. (c) On the other hand, the separated liquid has a pressure of 0 to 3 kg/kg after being decompressed.
cm 2 G, to the top of a butadiene recovery column operated at a top temperature of 50 to 130°C, (d) and an oxygen-containing gas fed to the bottom of the butadiene recovery column, and (e) a butadiene-containing gas from the recovery column. distill the gas,
The distillate gas is then fed to a second butadiene absorption tower to absorb butadiene into acetic acid, and at this time,
The ratio (molar ratio) between the amount of distilled gas and the amount of gas supplied together with the separated liquid in (c) is maintained within the following range, M x 0.95<Amount of distilled gas/Amount of gas supplied<M ×
1.1 (However, M represents the optimum value of the distillate gas amount/supplied gas amount (molar ratio), and when the supplied butadiene amount/supplied gas amount (molar ratio) = F, the function M =
It is obtained from 6.6×F+0.8. ) (f) extracting bottoms containing furan and acrolein from the bottom of the recovery tower; (g) supplying acetic acid containing butadiene flowing out from the bottom of the first and second butadiene absorption towers to the acetoxylation reaction zone. A method for producing diacetoxybutene. 2. In the method described in claim 1,
A method for producing diacetoxybutene, which comprises cooling a butadiene-containing gas distilled from a butadiene recovery tower to 40 to 70°C in a condenser, and circulating the condensate to the butadiene recovery tower.
JP56025308A 1981-02-23 1981-02-23 Preparation of diacetoxybutene Granted JPS57139038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56025308A JPS57139038A (en) 1981-02-23 1981-02-23 Preparation of diacetoxybutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56025308A JPS57139038A (en) 1981-02-23 1981-02-23 Preparation of diacetoxybutene

Publications (2)

Publication Number Publication Date
JPS57139038A JPS57139038A (en) 1982-08-27
JPH0234335B2 true JPH0234335B2 (en) 1990-08-02

Family

ID=12162372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56025308A Granted JPS57139038A (en) 1981-02-23 1981-02-23 Preparation of diacetoxybutene

Country Status (1)

Country Link
JP (1) JPS57139038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130554U (en) * 1990-04-13 1991-12-27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151115A (en) * 1976-06-10 1977-12-15 Mitsubishi Chem Ind Ltd Preparation of diacetoxybutene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151115A (en) * 1976-06-10 1977-12-15 Mitsubishi Chem Ind Ltd Preparation of diacetoxybutene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130554U (en) * 1990-04-13 1991-12-27

Also Published As

Publication number Publication date
JPS57139038A (en) 1982-08-27

Similar Documents

Publication Publication Date Title
US7576236B2 (en) Utilization of acetic acid reaction heat in other process plants
US5214185A (en) Continuous process for preparing dimethyl carbonate
JPH11503154A (en) Recovery of acetic acid from dilute aqueous streams formed during the carbonation process
EP0046598B1 (en) Process for continuously preparing a diester of oxalic acid
KR20020014763A (en) Process for purifying carbon dioxide-containing gas streams
JP3136950B2 (en) Continuous production method of dimethyl carbonate
JP3810144B2 (en) Continuous production method of diaryl carbonate
JPH07188117A (en) Method of treating liquid reaction product obtained in production dimethyl carbonate in the presence of cu catalyst
JPH1017529A (en) Continuous production of aryl carbonate
US5534648A (en) Process for continuously producing dimethyl carbonate
JP2937292B2 (en) Continuous production method of dimethyl carbonate
JP2795360B2 (en) Continuous production of dimethyl carbonate
JPH0234335B2 (en)
US4075413A (en) Process for preparation of diacetoxybutene
US4228301A (en) Process for the preparation of diacetoxybutene
JP3915152B2 (en) Method for producing benzyl acetate
CN116390902A (en) Process for producing trifluoroethylene
JP2000302728A (en) Production of dialkyl carbonate
JPH06116209A (en) Production of carbonic acid diester
JPH06321861A (en) Production of diacetoxybutene
JPH0296548A (en) Production of allyl acetate
JP2962454B2 (en) Continuous production method of dimethyl carbonate
JPH11315053A (en) Recovery of methyl nitrite
JPH10168032A (en) Production of diacetoxybutene
JPS6215059B2 (en)