JP3915152B2 - Method for producing benzyl acetate - Google Patents

Method for producing benzyl acetate Download PDF

Info

Publication number
JP3915152B2
JP3915152B2 JP32319496A JP32319496A JP3915152B2 JP 3915152 B2 JP3915152 B2 JP 3915152B2 JP 32319496 A JP32319496 A JP 32319496A JP 32319496 A JP32319496 A JP 32319496A JP 3915152 B2 JP3915152 B2 JP 3915152B2
Authority
JP
Japan
Prior art keywords
oxyacetoxylation
benzyl acetate
liquid
reactor
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32319496A
Other languages
Japanese (ja)
Other versions
JPH1087564A (en
Inventor
誠 花谷
修男 柳楽
隆志 岡田
晃幸 服部
孝典 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32319496A priority Critical patent/JP3915152B2/en
Publication of JPH1087564A publication Critical patent/JPH1087564A/en
Application granted granted Critical
Publication of JP3915152B2 publication Critical patent/JP3915152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は酢酸ベンジルの製造方法に関するものである。さらに詳しく言えば、本発明は、オキシアセトキシル化能を有する触媒を用い、トルエンと酢酸及び酸素を液相でオキシアセトキシル化して高純度の酢酸ベンジルを工業的に効率よく、経済的に製造する方法に関するものである。酢酸ベンジルは、それ自身、溶剤や香料として有用であり、更に酢酸ベンジルを加水分解して得られるベンジルアルコールは、溶解性に優れた溶剤、無毒性のため医薬用添加物、農薬や医薬等の中間体としても極めて重要な化合物である。
【0002】
【従来の技術】
従来、酢酸ベンジルの工業的製造方法としては、トルエンの塩素化で得られるベンジルクロライドをアルカリを用い加水分解し、得られたベンジルアルコールを酢酸とエステル化反応して製造する方法が知られている。
【0003】
この方法は、多段反応であるため各々の反応に関わる分離・精製工程数が多く非常に複雑なものとなり、経済的に決して有利であるとは言えない。
【0004】
さらに、二段目の加水分解反応では苛性ソーダ等のアルカリがベンジルクロライドと等量以上必要であり、その際反応後には有機物を含んだ多量の塩が副生しその処理が問題である。
【0005】
一方、工業的に実施されていない製造方法として、トルエンと酢酸及び酸素をオキシアセトキシル化能を有する触媒の存在下反応させ酢酸ベンジルを製造する方法が報告されており、この製造方法ならば、一段の反応で酢酸ベンジルを製造でき塩の副生も無く、経済的に有利であり環境にも低負荷となる可能性がある。
【0006】
【発明が解決しようとする課題】
しかしながら、この方法については、例えば、特公昭42−13081号公報、特開昭52−151135号公報、特開昭52−151136号公報、特公昭50−28947号公報、特公昭52−16101号公報、及び特開昭63−174950号公報等、多くの報告がなされているものの、実際の工業化を考えた場合、酢酸ベンジルを得るための詳細な分離・精製工程を含めた製造方法については検討されておらず、高純度酢酸ベンジルの製造方法としては満足できるものではない。
【0007】
本発明は上記の課題に鑑みてなされたものであり、その目的は、オキシアセトキシル化能を有する触媒の存在下、トルエンと酢酸及び酸素を液相でオキシアセトキシル化して酢酸ベンジルを製造する方法において、酢酸ベンジルを効率よく分離・精製して、高純度の酢酸ベンジルを経済的に製造する方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、トルエンと酢酸及び酸素のオキシアセトキシル化反応生成物である酢酸ベンジルと水、そして未反応のトルエン及び酢酸の各成分の沸点、溶解度及び共沸関係等を考慮し、さらに各工程留分を特定な工程に循環することにより、蒸留による酢酸ベンジルの分離・精製プロセスを構築し、これにより一段の反応でしかも合理的な分離・精製工程を経て高純度の酢酸ベンジルを経済的に製造することができることを見出し本発明を完成するに至った。
【0009】
すなわち、本発明は、オキシアセトキシル化能を有する触媒の存在下に、トルエンと酢酸及び酸素を液相でオキシアセトキシル化して酢酸ベンジルを製造する方法において、
a)トルエン、酢酸及び酸素をオキシアセトキシル化能を有する触媒を充填したオキシアセトキシル化反応器に供給して反応させて反応器流出物を得、反応器流出物を気液分離器に供給して、酸素と窒素を主成分とする気相部と、トルエン、酢酸及び酢酸ベンジルを主成分とする液相部に分離し、気液分離器から取り出した液相部を原料回収塔に供給して蒸留し、トルエン及び酢酸を主成分とする塔頂留分と酢酸ベンジルを主成分とする塔底液とに分離し、原料回収塔の塔頂留分をオキシアセトキシル化反応器に循環させ、
b)原料回収塔の塔底液を低沸物除去塔に供給して蒸留し、ベンズアルデヒドを主成分とする塔頂液と酢酸ベンジルを主成分とする塔底液とに分離し、低沸物除去塔の塔底液を高沸物除去塔に供給して蒸留し、塔頂より酢酸ベンジルを得る
ことを特徴とする酢酸ベンジルの製造方法である。
【0010】
本発明の方法においては、原料としてトルエンと酢酸を使用する。
【0011】
原料として用いられるトルエン及び酢酸はどのような製法によって製造されたものでも使用可能である。例えば、トルエンは、石油留分から分離されたもの、石油留分を分解して得られる分解油から分離されたもの等を使用することができ、また酢酸は、アセトアルデヒドの酸化によって製造されたもの、炭化水素の酸化によって製造されたもの、メタノールと一酸化炭素から合成されたもの等のいずれでも用いることができる。
【0012】
本発明の方法においては、トルエンと酢酸及び酸素をオキシアセトキシル化して酢酸ベンジルを得るために、オキシアセトキシル化反応器にオキシアセトキシル化能を有する触媒を充填して用いる。
【0013】
オキシアセトキシル化能を有する触媒としては、所望のオキシアセトキシル化反応成績を得ることができる触媒が特に制限なく使用できる。例えば、オキシアセトキシル化活性を持つパラジウムを主成分とする触媒が好適なものとして挙げられる。具体的には、例えば、特公昭42−13081号公報には、アルミナにパラジウムを担持した触媒とアルカリ金属の酢酸塩からなる触媒系が開示されている。また、特開昭52−151135号公報及び特開昭52−151136号公報にはシリカに担持したビスマス、モリブデン、マンガン、バナジウム及びタングステンから選ばれる一つをパラジウムと組み合わせた触媒が開示されている。また、特公昭50−28947号公報には、シリカに担持したビスマス、コバルト及び鉄から選ばれる一成分とパラジウムからなる触媒と酢酸カリウムからなる触媒系が開示されている。また、特公昭52−16101号公報には、シリカにパラジウム、ビスマス及びクロムを担持した触媒とアルカリ金属の酢酸塩からなる触媒系が開示されている。さらに、特開昭63−174950号公報には、シリカにパラジウムとビスマス又は鉛を担持した触媒と反応系に可溶なビスマス化合物又は鉛化合物の両方からなる触媒系が開示されている。本発明においては、これらの触媒を特に支障なく使用することができる。
【0014】
これらの触媒は反応器中に固定床として使用する。使用する触媒量は、触媒の性能等により一律には規定できないが、経済性を勘案すると、単位触媒体積当たり、単位時間当たりのトルエンと酢酸の合計供給量(LHSV)として、0.1〜30h-1の範囲となる触媒量が好ましい。また、反応器の材質は、充分な耐腐食性を備えておれば特に限定するものではない。例えば、経済性を考慮してステンレス鋼を用いる場合は、SUS316以上の耐腐食性に優れた鋼を用いることが好ましい。
【0015】
オキシアセトキシル化反応の形式としては、例えば、原料液のトルエン、酢酸と所定濃度の酸素を固定床触媒に連続的に供給し接触させる固定床連続流通反応方式が用いられる。オキシアセトキシル化反応器の形式は、特に限定されるものではなく、例えば、単管式又は多管式の反応器形式でよい。また、この反応は酸化反応であり発熱を伴う反応であるが、熱の制御方法についても、特に制限はなく、断熱形式、多管式反応器を用いて反応熱を除熱する形式、又は、原料の分割供給形式等を採用することが可能である。
【0016】
原料液の組成は、トルエンを基準にして酢酸が0.1〜10(モル比)の範囲で任意の混合比で反応を行うことができる。
【0017】
本発明の方法においては、酸素を酸化剤として用いる。酸素は、窒素等の不活性ガスで希釈されていてもよく、実用性を考慮すると空気を用いることが好ましい。
【0018】
酸素の供給量は、反応条件、触媒量等によって最適量が変わるため一概に限定できないが、オキシアセトキシル化反応器の少なくとも出口部分においてガス組成中のトルエン、酢酸及び酢酸ベンジルを合計した濃度が爆発範囲から外れるような供給量であればかまわない。また、単位触媒体積、単位時間当たりの酸素供給量(GHSV)は、0℃、1気圧体積換算で5000h-1以下が好ましい。
【0019】
本発明の方法による反応は、通常、加温、加圧下で実施される。反応温度は、80〜230℃、好ましくは120〜200℃が選ばれる。これより高くしても副反応の進行が増すだけであり、低くすると反応速度の点で不利になる。また、圧力は、反応温度で触媒表面が液相に保たれていればよく、3〜100kg/cm2G、好ましくは5〜50kg/cm2Gが選ばれる。また、反応時間は、反応器内の液の滞留時間として通常0.03〜10時間が好ましい。
【0020】
オキシアセトキシル化反応器からの流出物は、気液分離装置である気液分離器に供給される。
【0021】
気液分離装置としては、独立した気液分離器の他、オキシアセトキシル化反応器出口での流出物の取り出し方法によっては気液分離操作が可能であり、この場合は反応器と一体型の気液分離装置及び操作と見なすことができ、このような形態を使用してもかまわない。
【0022】
気液分離器からの液相部は、トルエン、酢酸及び酢酸ベンジルを主成分とする混合液であり、それらは原料回収塔に供給される。原料回収塔では蒸留が行われ、塔頂からは未反応原料であるトルエンと酢酸を主成分とする混合液が留分として回収され、塔底からは目的生成物である酢酸ベンジルを主成分とする混合液が得られる。原料回収塔で回収されたトルエンと酢酸を主成分とする塔頂留分は、オキシアセトキシル化反応器に循環される。
【0023】
原料回収塔で回収された酢酸ベンジルを主成分とする塔底液は、そのまま又は温度及び圧力を調整して低沸物除去塔に供給される。低沸物除去塔では蒸留が行われ、ベンズアルデヒドを主成分とする塔頂液と酢酸ベンジルを主成分とする塔底液とに分離される。低沸物除去塔の蒸留条件は、ベンズアルデヒド等の酢酸ベンジルよりも沸点の低い成分を塔頂から除去できれば特に限定されるものではない。
【0024】
低沸物除去塔で回収された酢酸ベンジルを主成分とする塔底液は、そのまま又は温度及び圧力を調整して高沸物除去塔に供給される。高沸物除去塔では蒸留が行われ、塔頂より製品純度の酢酸ベンジルを得る。また、高沸物除去塔の塔底からは安息香酸や安息香酸ベンジル等の酢酸ベンジルよりも沸点の高い成分が除去される。高沸物除去塔の蒸留条件は特に限定されるものではなく、製品酢酸ベンジルの純度に応じた任意の蒸留条件が選ばれる。さらに高品質の酢酸ベンジルを製造する場合は、別の蒸留塔を用いて酢酸ベンジルを蒸留・精製することも可能である。
【0025】
【発明の実施の形態】
図面を使って、本発明の実施態様を説明する。なお、本発明の実施態様は各種考えられ、図面に示される実施態様の一例に限定されるものではない。
【0026】
図1において、オキシアセトキシル化反応器1には、原料として供給されるトルエンと酢酸及び空気、また、原料回収塔3及び水除去塔7から循環されるトルエンと酢酸を主成分とする循環液相部、さらに、凝縮器6から少なくとも一部循環される酸素と窒素を主成分とする循環気相部が供給される。
【0027】
原料の供給方法については特に限定されるものではないが、反応を液相で行うため触媒の表面が原料液で覆われていればよく、気液並流又は向流であってもかまわないし、気液の流れ方向が下向流又は上向流であってもかまわない。また、原料液及び/又は空気は、オキシアセトキシル化反応器1に分割供給してもかまわない。
【0028】
オキシアセトキシル化反応器1の気液混相流となった反応器流出物は、気液分離器2に供給される。
【0029】
気液分離器2から取り出された気相部は、凝縮装置である凝縮器6に供給され、トルエン、酢酸、水及び酢酸ベンジルを主成分とする液相部と、酸素と窒素を主成分とする気相部に分離される。
【0030】
凝縮器6で分離された液相部の少なくとも一部は、気液分離器2からの液相部に混合して原料回収塔3に供給され、残りの液相部は水除去塔7に供給される。また、凝縮器6で分離された気相部の少なくとも一部はオキシアセトキシル化反応器1に循環され、残りの気相部は系外にパージされる。このオキシアセトキシル化反応器1に少なくとも一部循環される気相部の循環量は、オキシアセトキシル化反応器1に供給される空気と混合したときの全気相部中の酸素濃度が所望の濃度になるように制御される。
【0031】
凝縮装置及び操作は公知であり、本発明においても各種の凝縮装置及び操作を使用できる。また、凝縮操作を複数回実施することも可能である。例えば、一回目の凝縮操作により沸点の高いベンズアルデヒドや酢酸ベンジルをより多く含む凝縮液を取り出し、それらを原料回収塔3に供給した後で、二回目の凝縮操作により残りの気相部分からトルエン、酢酸及び水を主成分とする凝縮液を取り出し、それらを水除去塔7に供給することもできる。
【0032】
この方法を採用すれば、原料回収塔3の負荷を低減できるとともに、オキシアセトキシル化反応器1に循環される酢酸ベンジルの循環量が減少するため目的生成物である酢酸ベンジルの反応収率が向上し、さらに副反応生成物であるベンズアルデヒドのオキシアセトキシル化反応器1への循環量を低減する効果もある。水除去塔7に供給される凝縮器6からの大部分の液相部は、トルエン、酢酸及び水を主成分とするもので、水除去塔7で蒸留され、水除去塔7の塔頂からはトルエンと水が主留分として得られる。このトルエンと水を主成分とする塔頂留分は静定槽8で液液二相分離され、トルエンを主体とした上相はそのままオキシアセトキシル化反応器1に循環され、水を主体とした下相は除去される。また、水除去塔7の塔底からは酢酸が得られそのままオキシアセトキシル化反応器1に循環される。
【0033】
気液分離器2からの液相部は、凝縮器6で分離された少なくとも一部の液相部と混合して原料回収塔3に供給される。この気液分離器2からの液相部と凝縮器6で分離された少なくとも一部の液相部との混合液には、酸素及び窒素等の非凝縮ガス成分が溶存しており、原料回収塔3に供給する前にフラッシュ蒸発器、真空脱気器等の公知の装置及び操作によって溶存した非凝縮ガス成分を取り除くことが好ましい。この方法を採用すれば、原料回収塔3を小型化できるとともに、非凝縮ガス成分と同時に系外へ放出される有効成分の損失を抑制するための原料回収塔3に付属させる凝縮装置等の特別な装置及び操作が不必要となる。
【0034】
原料回収塔3の塔頂留分は、トルエン、酢酸を主成分とするものでそのままオキシアセトキシル化反応器1に循環される。
【0035】
本発明の方法によれば、オキシアセトキシル化反応器1に循環される未反応原料であるトルエン及び酢酸を主成分とする循環液相部は少量の水を含む。水の濃度が高くなった場合、触媒の活性、選択性に悪影響を及ぼすことがあるため、この場合、オキシアセトキシル化反応器1に供給される原料トルエン及び酢酸と、循環されたトルエンと酢酸を主成分とする循環液相部との全混合液中の水の濃度が5重量%以下となるように、気液分離器2の気液分離条件、凝縮器6の凝縮条件、及び原料回収塔3又は水除去塔7の蒸留条件を制御することが好ましい。
【0036】
【発明の効果】
以上のように、本発明の方法によれば、オキシアセトキシル化能を有する触媒の存在下、トルエンと酢酸及び酸素をオキシアセトキシル化し、この一段の反応で得られる酢酸ベンジル及び水等の反応生成物と未反応のトルエン及び酢酸との混合液中から高純度の酢酸ベンジルを経済的に製造することができる。
【0037】
また、気液分離操作と凝縮操作を効率的に組み合わせることによって、気液混相の反応器流出物からの未反応原料の回収・精製が容易に行え、原料回収塔の負荷を低減することができ、機器コスト削減及び省エネルギー化が可能となり経済的にも工業的にも極めて有用である。
【0038】
【実施例】
次に本発明を実施例により更に詳しく説明するが、本発明が以下の実施例のみに限定されるものではないことは言うまでもない。また、本実施例中では重量%をすべて%と省略する。
【0039】
実施例1
図1を使って実施例を説明する。
【0040】
オキシアセトキシル化反応器1に、触媒として球状のシリカ担持パラジウム−ビスマス触媒100ミリリットルを充填した。この反応器1に、トルエン、酢酸及び原料回収塔3と水除去塔7の蒸留分離操作で回収された循環液からなる液原料200.5g/h(トルエン:59.7%、酢酸:39.0%、水:1.2%)と、空気14.4g/hと循環ガス9.9g/h(酸素:3.9%、窒素:92.6%)からなるガス原料を供給し、触媒層入口温度170℃、圧力14kg/cm2Gで反応させた。
【0041】
その結果、次の組成からなる気液混相流出物224.8g/h(トルエン:47.4%、酢酸:31.4%、酢酸ベンジル:8.3%、水:2.2%、ベンズアルデヒド:0.3%、安息香酸:0.6%、安息香酸ベンジル:0.2%、酸素:0.3%、窒素:9.0%)を得た。この時の反応器の出口の温度は190℃であった。
【0042】
この気液混相流出物を気液分離器2に供給し気液分離操作を行った後、気相部を一部凝縮し、この凝縮液を液相部と混合した。得られた液相部を、常圧化でフラッシュ蒸発させ、その時発生する気相部を98℃に冷却して凝縮液を得、フラッシュ蒸発後の液相部と混合し、117.2g/h(トルエン:46.2%、酢酸:36.1%、酢酸ベンジル:15.2%、水:0.3%、ベンズアルデヒド:0.6%、安息香酸:1.1%、安息香酸ベンジル:0.4%)の流出液を得た。
【0043】
この流出液を塔頂圧130Torrの原料回収塔3に連続的に供給したところ、塔頂からは95.6g/h(トルエン:56.1%、酢酸:43.6%、水:0.4%)、塔底からは21.6g/h(酢酸:1.4%、酢酸ベンジル:86.0%、ベンズアルデヒド:3.2%、安息香酸:6.5%、安息香酸ベンジル:2.3%)の各留分を得た。
【0044】
この原料回収塔3の塔底液を一時容器内に溜め、塔頂圧40Torrの低沸物除去塔4に連続的に107.9g/hを供給したところ、塔頂から4.3g/h(トルエン:1.7%、酢酸:20.9%、ベンズアルデヒド:77.3%)、塔底から103.6g/h(酢酸ベンジル:90.2%、安息香酸:6.8%、安息香酸ベンジル:2.4%)の各留分を得た。
【0045】
さらに、この低沸物除去塔4の塔底液を塔頂圧20Torrの高沸物除去塔5に連続的に供給したところ、塔頂から純度99.8%の酢酸ベンジル93.3g/hを得た。
【図面の簡単な説明】
【図1】本発明の方法を実施する際の一例を具体的に示した工程図である。
【符号の説明】
1 オキシアセトキシル化反応器
2 気液分離器
3 原料回収塔
4 低沸物除去塔
5 高沸物除去塔
6 凝縮器
7 水除去塔
8 静定槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing benzyl acetate. More specifically, the present invention uses a catalyst having an oxyacetoxylation ability to oxyacetoxylate toluene, acetic acid and oxygen in the liquid phase to produce high purity benzyl acetate industrially efficiently and economically. It is about how to do. Benzyl acetate itself is useful as a solvent and a fragrance. Furthermore, benzyl alcohol obtained by hydrolysis of benzyl acetate is a solvent with excellent solubility, and is non-toxic. It is an extremely important compound as an intermediate.
[0002]
[Prior art]
Conventionally, as an industrial production method of benzyl acetate, a method is known in which benzyl chloride obtained by chlorination of toluene is hydrolyzed using an alkali, and the resulting benzyl alcohol is produced by esterification with acetic acid. .
[0003]
Since this method is a multistage reaction, the number of separation / purification steps involved in each reaction becomes large and very complicated, and it cannot be said that it is economically advantageous.
[0004]
Further, in the second stage hydrolysis reaction, an alkali such as caustic soda is required to be equal to or more than benzyl chloride. In this case, a large amount of salt containing organic substances is by-produced after the reaction, and its treatment is a problem.
[0005]
On the other hand, as a production method not industrially practiced, a method for producing benzyl acetate by reacting toluene, acetic acid and oxygen in the presence of a catalyst having an oxyacetoxylation ability has been reported. Benzyl acetate can be produced in a single reaction, and there is no by-product of salt, which is economically advantageous and may have a low environmental impact.
[0006]
[Problems to be solved by the invention]
However, with respect to this method, for example, Japanese Patent Publication No. 42-13081, Japanese Patent Publication No. 52-151135, Japanese Patent Publication No. 52-151136, Japanese Patent Publication No. 50-28947, Japanese Patent Publication No. 52-16101. Although many reports have been made, such as JP-A-63-174950, in consideration of actual industrialization, a production method including a detailed separation / purification process for obtaining benzyl acetate has been studied. This is not satisfactory as a method for producing high-purity benzyl acetate.
[0007]
The present invention has been made in view of the above problems, and its object is to produce benzyl acetate by oxyacetoxylation of toluene, acetic acid and oxygen in the liquid phase in the presence of a catalyst having oxyacetoxylation ability. In the method, it is to provide a method for economically producing high-purity benzyl acetate by efficiently separating and purifying benzyl acetate.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have determined that benzyl acetate and water, which are oxyacetoxylation reaction products of toluene, acetic acid and oxygen, and unreacted components of toluene and acetic acid Considering the boiling point, solubility, azeotropic relationship, etc. of each and further circulating each process fraction to a specific process, a process for separating and purifying benzyl acetate by distillation was built, which is a one-step reaction and rational The inventors have found that high purity benzyl acetate can be economically produced through various separation and purification steps, and have completed the present invention.
[0009]
That is, the present invention provides a method for producing benzyl acetate by oxyacetoxylation of toluene, acetic acid and oxygen in a liquid phase in the presence of a catalyst having oxyacetoxylation ability.
a) Toluene, acetic acid, and oxygen are supplied to a oxyacetoxylation reactor packed with a catalyst having oxyacetoxylation ability to react to obtain a reactor effluent, and the reactor effluent is supplied to a gas-liquid separator. Then, the gas phase part mainly composed of oxygen and nitrogen and the liquid phase part mainly composed of toluene, acetic acid and benzyl acetate are separated, and the liquid phase part taken out from the gas-liquid separator is supplied to the raw material recovery tower. And then distilling into a tower top fraction mainly composed of toluene and acetic acid and a tower bottom liquid mainly composed of benzyl acetate, and the top fraction of the raw material recovery tower is circulated to the oxyacetoxylation reactor. Let
b) The bottom liquid of the raw material recovery tower is fed to a low boiling point removal tower and distilled, and separated into a top liquid mainly composed of benzaldehyde and a bottom liquid mainly composed of benzyl acetate. This is a method for producing benzyl acetate, wherein the bottom liquid of the removal tower is fed to a high boiling point removal tower and distilled to obtain benzyl acetate from the top of the tower.
[0010]
In the method of the present invention, toluene and acetic acid are used as raw materials.
[0011]
Toluene and acetic acid used as raw materials can be produced by any manufacturing method. For example, toluene can be used that is separated from petroleum fraction, one separated from cracked oil obtained by cracking petroleum fraction, etc., and acetic acid is produced by oxidation of acetaldehyde, Any of those produced by oxidation of hydrocarbons and those synthesized from methanol and carbon monoxide can be used.
[0012]
In the method of the present invention, in order to obtain benzyl acetate by oxyacetoxylation of toluene, acetic acid and oxygen, the oxyacetoxylation reactor is packed with a catalyst having oxyacetoxylation ability.
[0013]
As the catalyst having oxyacetoxylation ability, a catalyst capable of obtaining a desired oxyacetoxylation reaction result can be used without particular limitation. For example, a catalyst mainly composed of palladium having oxyacetoxylation activity is preferable. Specifically, for example, Japanese Patent Publication No. 42-13081 discloses a catalyst system comprising a catalyst in which palladium is supported on alumina and an alkali metal acetate. JP-A-52-151135 and JP-A-52-151136 disclose a catalyst in which one selected from bismuth, molybdenum, manganese, vanadium and tungsten supported on silica is combined with palladium. . Japanese Examined Patent Publication No. 50-28947 discloses a catalyst system composed of one component selected from bismuth, cobalt and iron supported on silica, a catalyst composed of palladium and potassium acetate. Japanese Patent Publication No. 52-16101 discloses a catalyst system comprising a catalyst in which palladium, bismuth and chromium are supported on silica and an acetate of an alkali metal. Further, JP-A-63-174950 discloses a catalyst system comprising both a catalyst in which palladium and bismuth or lead are supported on silica and a bismuth compound or lead compound soluble in the reaction system. In the present invention, these catalysts can be used without any particular trouble.
[0014]
These catalysts are used as a fixed bed in the reactor. The amount of catalyst to be used cannot be defined uniformly depending on the performance of the catalyst, but considering economy, the total supply amount of toluene and acetic acid per unit time (LHSV) per unit catalyst volume is 0.1 to 30 h. A catalyst amount in the range of -1 is preferred. The material of the reactor is not particularly limited as long as it has sufficient corrosion resistance. For example, when stainless steel is used in consideration of economy, it is preferable to use steel with excellent corrosion resistance of SUS316 or higher.
[0015]
As a form of the oxyacetoxylation reaction, for example, a fixed bed continuous flow reaction system in which raw material toluene, acetic acid and oxygen of a predetermined concentration are continuously supplied to and contacted with a fixed bed catalyst is used. The type of the oxyacetoxylation reactor is not particularly limited, and may be, for example, a single tube type or a multi-tube type reactor type. In addition, this reaction is an oxidation reaction and is a reaction accompanied by heat generation, but there is no particular limitation on the heat control method, a heat insulation type, a type of removing heat of reaction using a multi-tubular reactor, or It is possible to adopt a divided supply format of raw materials.
[0016]
With respect to the composition of the raw material solution, acetic acid can be reacted at an arbitrary mixing ratio in the range of 0.1 to 10 (molar ratio) based on toluene.
[0017]
In the method of the present invention, oxygen is used as an oxidizing agent. Oxygen may be diluted with an inert gas such as nitrogen, and air is preferably used in consideration of practicality.
[0018]
The supply amount of oxygen cannot be limited in general because the optimum amount varies depending on the reaction conditions, the amount of catalyst, etc., but the concentration of toluene, acetic acid and benzyl acetate in the gas composition is at least at the outlet of the oxyacetoxylation reactor. It does not matter if the supply amount is out of the explosion range. The unit catalyst volume and the oxygen supply amount (GHSV) per unit time are preferably 5000 h −1 or less in terms of 0 ° C. and 1 atmosphere volume.
[0019]
Reaction by the method of this invention is normally implemented under a heating and pressurization. The reaction temperature is 80 to 230 ° C, preferably 120 to 200 ° C. Even higher than this will only increase the progress of side reactions, and lowering this will be disadvantageous in terms of reaction rate. Moreover, the pressure should just maintain the catalyst surface in a liquid phase at reaction temperature, and 3-100 kg / cm < 2 > G, Preferably 5-50 kg / cm < 2 > G is chosen. The reaction time is preferably 0.03 to 10 hours as the residence time of the liquid in the reactor.
[0020]
The effluent from the oxyacetoxylation reactor is supplied to a gas-liquid separator which is a gas-liquid separator.
[0021]
As a gas-liquid separator, in addition to an independent gas-liquid separator, a gas-liquid separation operation is possible depending on the method of taking out the effluent at the outlet of the oxyacetoxylation reactor. It can be regarded as a gas-liquid separator and operation, and such a form may be used.
[0022]
The liquid phase part from the gas-liquid separator is a mixed liquid mainly composed of toluene, acetic acid and benzyl acetate, and these are supplied to the raw material recovery tower. Distillation is performed in the raw material recovery tower, and a mixed liquid mainly composed of toluene and acetic acid, which are unreacted raw materials, is collected as a fraction from the top of the tower, and benzyl acetate, which is the target product, is mainly contained in the bottom of the tower. To obtain a mixed solution. The top fraction mainly composed of toluene and acetic acid recovered in the raw material recovery tower is circulated to the oxyacetoxylation reactor.
[0023]
The bottom liquid mainly composed of benzyl acetate recovered in the raw material recovery tower is supplied to the low boiling point removal tower as it is or after adjusting the temperature and pressure. Distillation is performed in the low-boiler removal column, and it is separated into a column top liquid mainly composed of benzaldehyde and a column bottom liquid mainly composed of benzyl acetate. The distillation conditions of the low-boiler removal column are not particularly limited as long as components having a lower boiling point than benzyl acetate such as benzaldehyde can be removed from the column top.
[0024]
The column bottom liquid mainly composed of benzyl acetate recovered in the low-boiler removal tower is supplied to the high-boiler removal tower as it is or after adjusting the temperature and pressure. Distillation is carried out in the high boiler removal column, and product purity benzyl acetate is obtained from the top of the column. In addition, components having higher boiling points than benzyl acetate such as benzoic acid and benzyl benzoate are removed from the bottom of the high-boiler removal tower. The distillation conditions for the high-boiler removal column are not particularly limited, and any distillation condition is selected according to the purity of the product benzyl acetate. Furthermore, when producing a high quality benzyl acetate, it is also possible to distill and purify benzyl acetate using another distillation tower.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. Various embodiments of the present invention are conceivable and are not limited to examples of the embodiments shown in the drawings.
[0026]
In FIG. 1, an oxyacetoxylation reactor 1 has a circulating liquid mainly composed of toluene, acetic acid and air supplied as raw materials, and toluene and acetic acid circulated from a raw material recovery tower 3 and a water removal tower 7. In addition, a circulating gas phase portion mainly composed of oxygen and nitrogen at least partially circulated from the condenser 6 is supplied.
[0027]
The raw material supply method is not particularly limited, but it is sufficient that the surface of the catalyst is covered with the raw material liquid in order to carry out the reaction in the liquid phase, and it may be gas-liquid cocurrent or countercurrent, The gas-liquid flow direction may be a downward flow or an upward flow. Further, the raw material liquid and / or air may be dividedly supplied to the oxyacetoxylation reactor 1.
[0028]
The reactor effluent that has become the gas-liquid mixed phase flow of the oxyacetoxylation reactor 1 is supplied to the gas-liquid separator 2.
[0029]
The gas phase portion taken out from the gas-liquid separator 2 is supplied to a condenser 6 which is a condensing device, and a liquid phase portion mainly composed of toluene, acetic acid, water and benzyl acetate, and oxygen and nitrogen as main components. The gas phase is separated.
[0030]
At least a part of the liquid phase part separated by the condenser 6 is mixed with the liquid phase part from the gas-liquid separator 2 and supplied to the raw material recovery tower 3, and the remaining liquid phase part is supplied to the water removal tower 7. Is done. In addition, at least a part of the gas phase portion separated by the condenser 6 is circulated to the oxyacetoxylation reactor 1, and the remaining gas phase portion is purged out of the system. The amount of circulation in the gas phase portion that is at least partially circulated in the oxyacetoxylation reactor 1 is preferably the oxygen concentration in the entire gas phase portion when mixed with the air supplied to the oxyacetoxylation reactor 1. It is controlled so as to be a concentration of.
[0031]
Condensing devices and operations are known and various condensing devices and operations can be used in the present invention. It is also possible to carry out the condensation operation a plurality of times. For example, a condensate containing a higher amount of benzaldehyde or benzyl acetate having a higher boiling point is taken out by the first condensation operation, and after supplying them to the raw material recovery tower 3, toluene is removed from the remaining gas phase by the second condensation operation. It is also possible to take out condensate containing acetic acid and water as main components and supply them to the water removal tower 7.
[0032]
By adopting this method, the load on the raw material recovery tower 3 can be reduced, and the amount of benzyl acetate circulated to the oxyacetoxylation reactor 1 is reduced, so that the reaction yield of the target product benzyl acetate is reduced. In addition, there is an effect of reducing the circulation amount of benzaldehyde, which is a side reaction product, to the oxyacetoxylation reactor 1. Most of the liquid phase portion from the condenser 6 supplied to the water removal tower 7 is mainly composed of toluene, acetic acid and water, distilled in the water removal tower 7 and from the top of the water removal tower 7. Toluene and water are obtained as main fractions. The top fraction mainly composed of toluene and water is subjected to liquid-liquid two-phase separation in a static bath 8 and the upper phase mainly composed of toluene is circulated to the oxyacetoxylation reactor 1 as it is, mainly composed of water. The lower phase is removed. Acetic acid is obtained from the bottom of the water removal tower 7 and is circulated to the oxyacetoxylation reactor 1 as it is.
[0033]
The liquid phase part from the gas-liquid separator 2 is mixed with at least a part of the liquid phase part separated by the condenser 6 and supplied to the raw material recovery tower 3. Non-condensable gas components such as oxygen and nitrogen are dissolved in the liquid mixture of the liquid phase part from the gas-liquid separator 2 and at least a part of the liquid phase part separated by the condenser 6, and the raw material recovery Before supplying to the column 3, it is preferable to remove the non-condensed gas components dissolved by a known apparatus and operation such as a flash evaporator and a vacuum deaerator. If this method is adopted, the raw material recovery tower 3 can be reduced in size, and a special condensing device or the like attached to the raw material recovery tower 3 for suppressing the loss of the active component released simultaneously with the non-condensable gas component. Equipment and operation become unnecessary.
[0034]
The top fraction of the raw material recovery tower 3 is mainly composed of toluene and acetic acid and is directly circulated to the oxyacetoxylation reactor 1.
[0035]
According to the method of the present invention, the circulating liquid phase portion mainly composed of toluene and acetic acid which are unreacted raw materials circulated to the oxyacetoxylation reactor 1 contains a small amount of water. When the concentration of water increases, the activity and selectivity of the catalyst may be adversely affected. In this case, the raw material toluene and acetic acid supplied to the oxyacetoxylation reactor 1 and the recycled toluene and acetic acid are recycled. The gas-liquid separation conditions of the gas-liquid separator 2, the condensation conditions of the condenser 6, and the raw material recovery so that the concentration of water in the total mixed liquid with the circulating liquid phase portion containing as a main component is 5 wt% or less It is preferable to control the distillation conditions of the tower 3 or the water removal tower 7.
[0036]
【The invention's effect】
As described above, according to the method of the present invention, toluene, acetic acid and oxygen are oxyacetoxylated in the presence of a catalyst having an oxyacetoxylation ability, and a reaction such as benzyl acetate and water obtained by this one-step reaction. High purity benzyl acetate can be economically produced from a mixture of the product with unreacted toluene and acetic acid.
[0037]
In addition, by efficiently combining gas-liquid separation operation and condensation operation, unreacted raw material from the gas-liquid mixed phase reactor effluent can be easily recovered and purified, and the load on the raw material recovery tower can be reduced. This makes it possible to reduce equipment costs and save energy, and is extremely useful both economically and industrially.
[0038]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, it cannot be overemphasized that this invention is not limited only to the following Examples. In this embodiment, all weight percents are abbreviated as%.
[0039]
Example 1
An embodiment will be described with reference to FIG.
[0040]
The oxyacetoxylation reactor 1 was charged with 100 ml of a spherical silica-supported palladium-bismuth catalyst as a catalyst. In this reactor 1, a liquid raw material 200.5 g / h (toluene: 59.7%, acetic acid: 39.3%) consisting of a circulating liquid recovered by distillation separation operation of toluene, acetic acid and the raw material recovery tower 3 and the water removal tower 7 was added. 0%, water: 1.2%), gas raw material consisting of air 14.4 g / h and circulating gas 9.9 g / h (oxygen: 3.9%, nitrogen: 92.6%) The reaction was carried out at a layer inlet temperature of 170 ° C. and a pressure of 14 kg / cm 2 G.
[0041]
As a result, the gas-liquid mixed phase effluent having the following composition was 224.8 g / h (toluene: 47.4%, acetic acid: 31.4%, benzyl acetate: 8.3%, water: 2.2%, benzaldehyde: 0.3%, benzoic acid: 0.6%, benzyl benzoate: 0.2%, oxygen: 0.3%, nitrogen: 9.0%). The temperature at the outlet of the reactor at this time was 190 ° C.
[0042]
After this gas-liquid mixed phase effluent was supplied to the gas-liquid separator 2 and gas-liquid separation operation was performed, the gas phase part was partially condensed, and this condensate was mixed with the liquid phase part. The obtained liquid phase part was flash-evaporated at normal pressure, the gas phase part generated at that time was cooled to 98 ° C. to obtain a condensate, and mixed with the liquid phase part after flash evaporation, and 117.2 g / h. (Toluene: 46.2%, acetic acid: 36.1%, benzyl acetate: 15.2%, water: 0.3%, benzaldehyde: 0.6%, benzoic acid: 1.1%, benzyl benzoate: 0 .4%) effluent was obtained.
[0043]
When this effluent was continuously supplied to the raw material recovery tower 3 having a tower top pressure of 130 Torr, 95.6 g / h (toluene: 56.1%, acetic acid: 43.6%, water: 0.4 from the top of the tower). %), 21.6 g / h from the column bottom (acetic acid: 1.4%, benzyl acetate: 86.0%, benzaldehyde: 3.2%, benzoic acid: 6.5%, benzyl benzoate: 2.3 %) Of each fraction.
[0044]
The liquid at the bottom of the raw material recovery tower 3 was stored in a temporary container, and 107.9 g / h was continuously supplied to the low boiling point removal tower 4 at a tower top pressure of 40 Torr. Toluene: 1.7%, acetic acid: 20.9%, benzaldehyde: 77.3%), 103.6 g / h from the bottom of the column (benzyl acetate: 90.2%, benzoic acid: 6.8%, benzyl benzoate) : 2.4%).
[0045]
Furthermore, when the bottom liquid of this low boiling point removal column 4 was continuously supplied to the high boiling point removal column 5 having a top pressure of 20 Torr, 93.3 g / h of benzyl acetate having a purity of 99.8% was obtained from the top of the column. Obtained.
[Brief description of the drawings]
FIG. 1 is a process diagram specifically showing an example when a method of the present invention is carried out.
[Explanation of symbols]
1 Oxyacetoxylation reactor 2 Gas-liquid separator 3 Raw material recovery tower 4 Low-boiler removal tower 5 High-boiler removal tower 6 Condenser 7 Water removal tower 8 Static tank

Claims (4)

オキシアセトキシル化能を有する触媒の存在下に、トルエンと酢酸及び酸素を液相でオキシアセトキシル化して酢酸ベンジルを製造する方法において、
a)トルエン、酢酸及び酸素を、オキシアセトキシル化能を有する触媒を充填したオキシアセトキシル化反応器に供給し反応させて反応器流出物を得、反応器流出物を気液分離器に供給して、酸素と窒素を主成分とする気相部と、トルエン、酢酸及び酢酸ベンジルを主成分とする液相部に分離し、気液分離器から取り出した液相部を原料回収塔に供給して蒸留し、トルエン及び酢酸を主成分とする塔頂留分と酢酸ベンジルを主成分とする塔底液とに分離し、原料回収塔の塔頂留分をオキシアセトキシル化反応器に循環させ、
b)原料回収塔の塔底液を低沸物除去塔に供給して蒸留し、ベンズアルデヒドを主成分とする塔頂液と酢酸ベンジルを主成分とする塔底液とに分離し、低沸物除去塔の塔底液を高沸物除去塔に供給して蒸留し、塔頂より酢酸ベンジルを得ることを特徴とする酢酸ベンジルの製造方法。
In the method for producing benzyl acetate by oxyacetoxylation of toluene, acetic acid and oxygen in the liquid phase in the presence of a catalyst having oxyacetoxylation ability,
a) Toluene, acetic acid and oxygen are supplied to and reacted with an oxyacetoxylation reactor packed with a catalyst having oxyacetoxylation ability to obtain a reactor effluent, and the reactor effluent is supplied to a gas-liquid separator. Then, the gas phase part mainly composed of oxygen and nitrogen and the liquid phase part mainly composed of toluene, acetic acid and benzyl acetate are separated, and the liquid phase part taken out from the gas-liquid separator is supplied to the raw material recovery tower. And then distilling into a tower top fraction mainly composed of toluene and acetic acid and a tower bottom liquid mainly composed of benzyl acetate, and the top fraction of the raw material recovery tower is circulated to the oxyacetoxylation reactor. Let
b) The bottom liquid of the raw material recovery tower is fed to a low boiling point removal tower and distilled, and separated into a top liquid mainly composed of benzaldehyde and a bottom liquid mainly composed of benzyl acetate. A method for producing benzyl acetate, wherein the bottom liquid of a removal tower is fed to a high boiling point removal tower and distilled to obtain benzyl acetate from the top of the tower.
請求項1に記載の製造方法において、酸素として空気を、オキシアセトキシル化反応器として固定床のオキシアセトキシル化反応器を使用することを特徴とする酢酸ベンジルの製造方法。2. The method for producing benzyl acetate according to claim 1, wherein air is used as oxygen, and a fixed bed oxyacetoxylation reactor is used as the oxyacetoxylation reactor. 請求項1又は請求項2に記載の製造方法において、
c)気液分離器から取り出した気相部を凝縮器に供給し、トルエン、酢酸、水及び酢酸ベンジルを主成分とする液相部と酸素と窒素を主成分とする気相部に分離した後、少なくとも一部の液相部は原料回収塔に供給し、少なくとも一部の気相部はオキシアセトキシル化反応器に循環させることを特徴とする酢酸ベンジルの製造方法。
In the manufacturing method of Claim 1 or Claim 2,
c) The gas phase part taken out from the gas-liquid separator was supplied to the condenser and separated into a liquid phase part mainly composed of toluene, acetic acid, water and benzyl acetate and a gas phase part mainly composed of oxygen and nitrogen. Thereafter, at least a part of the liquid phase part is supplied to the raw material recovery tower, and at least a part of the gas phase part is circulated to the oxyacetoxylation reactor.
請求項3に記載の製造方法において、
d)凝縮器から取り出した液相部は水除去塔に供給して蒸留し、大部分の水を除去した後、オキシアセトキシル化反応器に循環させることを特徴とする酢酸ベンジルの製造方法。
In the manufacturing method of Claim 3,
d) A method for producing benzyl acetate, wherein the liquid phase portion taken out from the condenser is fed to a water removal tower and distilled to remove most of the water and then circulated through the oxyacetoxylation reactor.
JP32319496A 1996-07-24 1996-12-03 Method for producing benzyl acetate Expired - Fee Related JP3915152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32319496A JP3915152B2 (en) 1996-07-24 1996-12-03 Method for producing benzyl acetate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-194808 1996-07-24
JP19480896 1996-07-24
JP32319496A JP3915152B2 (en) 1996-07-24 1996-12-03 Method for producing benzyl acetate

Publications (2)

Publication Number Publication Date
JPH1087564A JPH1087564A (en) 1998-04-07
JP3915152B2 true JP3915152B2 (en) 2007-05-16

Family

ID=26508744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32319496A Expired - Fee Related JP3915152B2 (en) 1996-07-24 1996-12-03 Method for producing benzyl acetate

Country Status (1)

Country Link
JP (1) JP3915152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445534B (en) * 2022-09-21 2024-01-26 上海应用技术大学 Device for continuously preparing penicillin G p-nitrobenzyl ester and application thereof

Also Published As

Publication number Publication date
JPH1087564A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
EP0890569B1 (en) Method for producing methyl methacrylate
US7576236B2 (en) Utilization of acetic acid reaction heat in other process plants
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
KR860001853B1 (en) Process for continuously preparing ethylene glycol
US5631396A (en) Process for continuously producing dimethyl carbonate
JP3681285B2 (en) Method for producing methyl methacrylate
US5534648A (en) Process for continuously producing dimethyl carbonate
JP3915152B2 (en) Method for producing benzyl acetate
EP0655432B1 (en) Process for continuously producing dimethyl carbonate
JP2000063319A (en) Acetic acid reactive distillation process based on carbonylation of dme/methanol
US6620965B1 (en) Process for vinyl acetate
JP2795360B2 (en) Continuous production of dimethyl carbonate
JP3890641B2 (en) Production method of high purity benzyl alcohol
JP3817801B2 (en) Method for producing high purity benzyl alcohol
JP4162883B2 (en) Method for recovering ethylene carbonate
JP2962454B2 (en) Continuous production method of dimethyl carbonate
WO2023099727A1 (en) Process for preparing isoprenal and/or prenal
JPH0234335B2 (en)
JPH11322671A (en) Production of 3-acetoxycyclohexene
JPH10168032A (en) Production of diacetoxybutene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees