JPH0233511A - Slanting horizontal type swirl flow melting method and its device - Google Patents

Slanting horizontal type swirl flow melting method and its device

Info

Publication number
JPH0233511A
JPH0233511A JP63183200A JP18320088A JPH0233511A JP H0233511 A JPH0233511 A JP H0233511A JP 63183200 A JP63183200 A JP 63183200A JP 18320088 A JP18320088 A JP 18320088A JP H0233511 A JPH0233511 A JP H0233511A
Authority
JP
Japan
Prior art keywords
furnace
combustion
air
swirling flow
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63183200A
Other languages
Japanese (ja)
Other versions
JP2769623B2 (en
Inventor
Takashi Ishida
敬 石田
Giichi Ueda
義一 上田
Teruji Kubota
久保田 輝二
Misao Igarashi
操 五十嵐
Norichika Tanaka
田中 法親
Yasuhiko Kamijo
上条 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIBASHI
Tsukishima Kikai Co Ltd
Original Assignee
CHIBASHI
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIBASHI, Tsukishima Kikai Co Ltd filed Critical CHIBASHI
Priority to JP63183200A priority Critical patent/JP2769623B2/en
Publication of JPH0233511A publication Critical patent/JPH0233511A/en
Application granted granted Critical
Publication of JP2769623B2 publication Critical patent/JP2769623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To protect a furnace casing and stabilize furnace action by burning dried sludge primarily under a rotating flow state after said dried sludge is mixed with combustion air, supplying a generated fluid mixture into a secondary combustion atmosphere under a rotating flow state, supplying dispersively combustion air to said atmosphere so as to melt said mixture. CONSTITUTION:Sludge C dried by a dryer 1 is mixed with combustion air A which is heat exchanged with exhaust air D and turned into 400 to 600 deg.C in a mixing device and supplied to a primary burner 2. It is subjected to combustion by an auxiliary burner 22 under a rotating flow state so as to generate a fluid mixture which comprises sludge M at a temperature ranging from 1000 to 1200 deg.C and the air A. In a secondary burner 3 is burnt the mixture K supplied from the primary burner 2 in a rotating manner at a temperature from 1350 to 1450 deg.C. The mixture K is separated into a gas and molten slug. The molten slug J drops to a slug cooling section 5 while cooled cooling slug G is discharged outside the burner. The exhaust air discharged from the secondary burner 3 is discharged by way of a floating particle elimination device 6 and an air preheater 7. The aforesaid construction minimizes disturbance factors in the furnace high temperature atmosphere and facilitates the operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、乾燥下水汚泥や石炭等の不燃物を含む粉状可
燃物を燃焼させ、該粉状可燃物に含まれる不燃物を熱効
率良く溶融しスラグ化して系外に取出すことができる傾
斜横置形旋回流溶融方法J6よびその装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention burns powdery combustible materials containing noncombustible materials such as dried sewage sludge and coal, and thermally efficiently removes the noncombustible materials contained in the powdery combustible materials. This invention relates to an inclined horizontal swirling flow melting method J6 that can be melted into slag and taken out of the system, and an apparatus therefor.

〔従来の技術〕[Conventional technology]

従来、乾燥下水汚泥や石炭のように不燃物を含む粉状可
燃物を、円筒状の炉体の端面あるいは側面から燃焼用空
気に乗せて、炉体の内部に強い旋回流が生じるように噴
射させつつ燃焼させ、その燃焼熱により焼却灰を溶融さ
せて、炉体出口から流出させるようにした旋回流溶融炉
は、一般に広く知られている(例えば、特開昭61−2
13408号公報〔以下「文献1」という。〕又は〕特
願昭62−4489号明細書以下「文献2」という。
Conventionally, powdered combustible materials such as dried sewage sludge and coal, including non-combustible materials, were placed on combustion air from the end or side of a cylindrical furnace body, and injected to create a strong swirling flow inside the furnace body. Swirling flow melting furnaces are generally known (for example, in Japanese Patent Laid-Open No. 61-2
No. 13408 (hereinafter referred to as "Document 1"). [or] The specification of Japanese Patent Application No. 62-4489 is hereinafter referred to as "Document 2."

〕参照)。〕reference).

文献1に記載された旋回溶融炉は、円筒状の炉体が所定
角度傾斜して配置され、この炉体の一側端面部(上流側
端面部)に、重油供給管及び重油燃焼用の空気供給管を
有する補助バーナーが設置され、かつ炉体の他側端面部
(下流側端面部)に、廃ガス出口と溶融物薄口とを上下
に備えた排出用筒体が連結されると共に、上記炉体の一
側端寄りの外周面上部に、粉状可燃物供給口と燃焼用空
気口とが設けられたものである。そして、上記補助バー
ナーは、重油供給管と空気供給管とが二重構造とされ、
これらの先端部に、ノズル流を旋回させる案内羽根が付
設されたものである。
In the rotating melting furnace described in Document 1, a cylindrical furnace body is arranged inclined at a predetermined angle, and a heavy oil supply pipe and air for burning heavy oil are installed at one end face (upstream end face) of the furnace body. An auxiliary burner having a supply pipe is installed, and a discharge cylindrical body having a waste gas outlet and a melt thinner opening above and below is connected to the other end face (downstream end face) of the furnace body. A powdery combustible material supply port and a combustion air port are provided at the upper part of the outer peripheral surface near one end of the furnace body. The auxiliary burner has a double structure of a heavy oil supply pipe and an air supply pipe,
These tips are provided with guide vanes that swirl the nozzle flow.

文献2には、一次燃焼炉と二次燃焼炉から成る傾斜横行
形旋回流溶融炉が記載されている。そして、二次燃焼炉
の中間部に燃焼用空気供給口が記載され、該炉内へ酸素
補給が供給可能となっている。また、該炉にはオリフィ
ス状の邪魔板が図示される。そして、該邪魔板から上手
の炉内を上流側、中間部、下流側に三分してその実施結
果が説明されている。
Document 2 describes an inclined transverse swirl flow melting furnace consisting of a primary combustion furnace and a secondary combustion furnace. A combustion air supply port is provided in the middle of the secondary combustion furnace, so that supplementary oxygen can be supplied into the furnace. Additionally, an orifice-shaped baffle plate is illustrated in the furnace. Then, the inside of the furnace above the baffle plate is divided into three parts: the upstream side, the middle part, and the downstream side, and the implementation results are explained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の旋回流溶融炉にあっては。 However, in the conventional swirl flow melting furnace described above.

その炉内を高温に保持して、溶融を行なう炉であって、
その炉の高温性から、炉体の保護、炉内作用の安定、炉
体熱の処理法など、当該溶融炉自身の解決すべき問題点
と、本発明の適用すべき産業の公共性、すなわち、廃棄
物処理、排熱利用などの省エネルギー処理、メンテナン
ス、フリーなど、溶融炉運転系統全体を有機的にして解
決すべき問題点とを合せて、綜合的に解決する運転方法
が確立されなければならなかった。以下にそれらの問題
点を列挙する。
A furnace that maintains the inside of the furnace at a high temperature and performs melting,
Problems to be solved by the melting furnace itself, such as the high-temperature nature of the furnace, protection of the furnace body, stability of the furnace internal action, and method for processing heat from the furnace body, as well as the public nature of the industry to which the present invention is applicable, We need to establish an operation method that comprehensively solves problems such as waste treatment, energy saving processing such as exhaust heat utilization, maintenance, and free operation, which should be solved by making the entire melting furnace operation system organic. did not become. These problems are listed below.

(イ)比較的低温の乾燥汚泥を一次燃焼炉又は二次燃焼
炉へ直接投入するので、汚泥と燃焼用空気とからなる流
動混合体をできるだけ効率よく生成させなければ当該炉
での昇温の立上りないし保持が悪い。そのため、使用空
気を高温にして取出していたが炉体の冷却効果が充分で
はな(、その結果炉体内壁を構成する耐火物の温度が反
応溶融温度以上に達するため損傷が激しく、約3カ月に
1回程度交換を行なわなければならなかった。
(b) Since relatively low-temperature dry sludge is directly charged into the primary combustion furnace or secondary combustion furnace, a fluidized mixture of sludge and combustion air must be generated as efficiently as possible to prevent temperature rise in the furnace. Does not stand up and holds poorly. Therefore, the air used was brought out at a high temperature, but the cooling effect of the furnace body was not sufficient (as a result, the temperature of the refractories that made up the walls of the furnace body reached above the reaction melting temperature, causing severe damage, and it took about 3 months. I had to replace it about once every year.

(ロ)従来、炉体熱を空冷により除去するか、あるいは
復水を供給して蒸気として排熱することが行なわれてい
た。そのため、炉体ジャケット部がボイラー仕様となる
ために缶体形状に設計上の制約を受けることが多かった
(b) Conventionally, heat from the furnace body was removed by air cooling, or condensate was supplied and the heat was exhausted as steam. For this reason, the furnace jacket was designed to be a boiler, and the shape of the can was often subject to design constraints.

(ハ)炉内の旋回流作用の安定化について次の問題点が
ある。第1に、二次燃焼炉内の邪魔板釦ついてであるが
、炉内反応部分と排出部分とを仕切る邪魔板は、被処理
汚泥の滞留時間、排気量および溶融スラグ排出量との関
数で、その形状は決まる。邪魔板ないしオリフィスの開
口面積は、炉断面積との比によって、その比が小であれ
ば該滞留時間は大きく、溶融スラグ排出量は小さ(なる
かまたは阻害される。核比を大きくしてスラグ排出量を
取り出し易くすれば、滞留時間が短か(なる。
(c) There are the following problems with stabilizing the swirling flow effect in the furnace. First, regarding the baffle plate button in the secondary combustion furnace, the baffle plate that partitions the reactor section and discharge section in the furnace is a function of the residence time of the sludge to be treated, the exhaust volume, and the amount of molten slag discharged. , its shape is determined. The opening area of the baffle plate or orifice depends on the ratio to the furnace cross-sectional area. If the ratio is small, the residence time will be large and the amount of molten slag discharge will be small (or inhibited). If the amount of slag discharged is made easier to take out, the residence time will be shortened.

両要素の釣合には困難がつきまとう。Balancing these two factors is fraught with difficulties.

第2に、二次燃焼炉内の安定温度領域の拡大の問題であ
るが、前記邪魔板の形状の選定とも関連するが、該炉内
の高温状態が安定することは、燃焼反応を良好に保持し
、生成する溶融スラグの流動性を確保することでもある
。すなわち、核スラグの排出を効果的にし、炉の継続運
転を効果的にする。
Second, there is the issue of expanding the stable temperature range inside the secondary combustion furnace.This is also related to the selection of the shape of the baffle plate, but stabilizing the high temperature state inside the furnace will improve the combustion reaction. It is also important to maintain the fluidity of the molten slag produced. That is, the nuclear slag is effectively discharged and the continued operation of the furnace is made effective.

第3に、溶融スラグ排出に伴なうスラグ排出部閉塞予防
対策の問題であるが、溶融スラグが燃焼反応領域外で、
排出に当って生ずる障害は、第5図に示す例のように、
上方から下方にスラグを排出部4へ案内するとき、炉壁
な濡らして降下する溶融スラグが、壁面に固着して、排
気の漏洩を少くし、溶融スラグを通過させる狭窄部を遂
には閉塞することである。この狭窄部の開口が図示の大
きさより広くても、炉壁を濡らしながら溶融スラグを排
出するときに宿命的に生ずる炉運転停止原因である。
Thirdly, there is the issue of measures to prevent clogging of the slag discharge port due to molten slag discharge.
Obstacles that occur during discharge are as shown in the example shown in Figure 5.
When the slag is guided from the top to the bottom to the discharge section 4, the molten slag that wets the furnace wall and descends sticks to the wall surface, reducing the leakage of exhaust gas and finally closing the narrow part through which the molten slag passes. That's true. Even if the opening of this constricted portion is wider than the size shown in the drawings, this is a cause of furnace operation failure which will inevitably occur when molten slag is discharged while wetting the furnace wall.

第4に、二次燃焼炉への燃焼用空気の供給が、該炉の旋
回流雰囲気を阻害しないようにすることが必要である。
Fourthly, it is necessary to ensure that the supply of combustion air to the secondary combustion furnace does not disturb the swirling flow atmosphere of the furnace.

該炉内高温雰囲気を補助空気で補給することKよって酸
素供給の目的に果せる。そのために旋回流を阻害できな
い。
By replenishing the high temperature atmosphere inside the furnace with auxiliary air, the purpose of oxygen supply can be achieved. Therefore, the swirling flow cannot be obstructed.

に)運転系統全体の有機性に係わる問題であるが、炉の
排気熱をどのように燃焼用空気に熱交換17、転換した
該空気の保有熱とその供給量とを有効に管理する方法が
確立されなげればならないし、また炉とその前処理施設
である乾燥機との有効熱利用法が確立されなければなら
ない。
2) This is a problem related to the organic nature of the entire operating system, but how to exchange heat from the furnace exhaust heat to combustion air17, and how to effectively manage the retained heat of the converted air and its supply amount. In addition, effective heat utilization methods must be established between the furnace and its pretreatment facility, the dryer.

本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、粉状可燃物を効率良く燃焼させること
ができ、かつ炉体内の温度を一定にかつ高温に保持する
ことができ、粉状可燃物に含まれる不燃物を完全に溶融
させて、円滑に炉外に排出させることができる旋回流溶
融炉を提供することにあり、かつ、その運転方法を本技
術分野の要部全体を考慮して管理可能の有効で効果的な
ものとして提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to be able to efficiently burn powdery combustible materials and to maintain the temperature inside the furnace at a constant and high temperature. The object of the present invention is to provide a swirling flow melting furnace that can completely melt noncombustible materials contained in powdery combustible materials and smoothly discharge them out of the furnace, and to describe its operating method as an important part of this technical field. The goal is to consider the whole and provide it as a manageable, valid, and effective solution.

〔課題を消失するための手段〕[Means to eliminate the issue]

上記目的を達成するために本発明は、以下の特徴を有す
る。
In order to achieve the above object, the present invention has the following features.

本発明方法は、(1)被処理′汚泥を乾燥した後、該汚
泥を旋回流雰囲気中で高温処理して溶融スラグを生成さ
せ、該溶融スラグを冷却する廃棄物の旋回流溶融方法に
おいて、乾燥汚泥を400〜600’Cの燃焼用空気に
混入した後、旋回流状態にて1000〜1200℃で一
次燃焼させ、その一次燃焼で生成した流動混合体を旋回
流状態で、1350−1450 ℃にて二次燃焼雰囲気
中に供給するとともに、該二次燃焼雰囲気中の上流側か
ら下流側にかけて、燃焼用空気を分散供給可能とする前
記流動混合体の昇温手段を配設して、溶融スラグを完全
溶融して炉排出部へ移送した後、冷却スラグとして取り
出し、燃焼済み排気は、含有する浮遊塵を除去した後、
その保有熱を別途に取入れる空気に熱交換して、前記燃
焼用空気として、前記一次燃焼用ないし前記二次燃焼用
の昇温手段用に供給することを特徴とする。また、 (2)被処理汚泥を乾燥した後、該汚泥を旋回流雰囲気
中で高温処理して溶融スラグな生成させて廃棄物処理す
る旋回流溶融方法において、旋回流溶融炉の側壁に配設
する復水加熱ジャケットへ乾燥機より80〜90℃の復
水を供給して180〜190℃の高温水を得、該旋回流
溶融炉より排出して、その保有熱を、取り入れ空気へ熱
交換した後の排気とともに該高温水をボイラーへ供給し
加熱して蒸気とし、該蒸気を適圧に減圧して前記乾燥機
の加熱媒体とすることを特徴とする。また、(3)燃焼
用空気分割供給の方法を一次燃焼用と二次燃焼用にほぼ
等分に供給することを特徴とする。また、 (4)二次燃焼用の空気分割供給の方法は、前記空気供
給の分割数に対応して、均等に案分するものであること
を特徴とする。また、 (5)燃焼用空気は、それらを供給する燃焼用雰気に対
し旋回流生成可能に供給することを特徴とする。
The method of the present invention includes (1) a swirling flow melting method for waste in which after drying the sludge to be treated, the sludge is treated at high temperature in a swirling flow atmosphere to generate molten slag, and the molten slag is cooled; After mixing the dried sludge with combustion air at 400-600'C, primary combustion is performed at 1000-1200°C in a swirling flow state, and the fluid mixture generated by the primary combustion is heated at 1350-1450°C in a swirling flow state. At the same time, a means for raising the temperature of the fluidized mixture is disposed to supply combustion air in a distributed manner from the upstream side to the downstream side of the secondary combustion atmosphere. After completely melting the slag and transferring it to the furnace discharge section, it is taken out as cooling slag, and after removing the floating dust contained in the burned exhaust gas,
The present invention is characterized in that the retained heat is heat-exchanged with separately taken in air and supplied as the combustion air to the temperature raising means for the primary combustion or the secondary combustion. (2) In a swirling flow melting method in which, after drying the sludge to be treated, the sludge is treated at high temperature in a swirling flow atmosphere to generate molten slag and dispose of waste, High-temperature water of 180-190°C is obtained by supplying condensate at 80 to 90°C from a dryer to the condensate heating jacket, which is then discharged from the swirling flow melting furnace, and the retained heat is exchanged with the intake air. The high-temperature water is supplied to a boiler together with the exhausted air after drying and heated to produce steam, and the steam is reduced to an appropriate pressure and used as a heating medium for the dryer. Further, (3) the method of dividing combustion air supply is characterized in that the combustion air is supplied almost equally for primary combustion and for secondary combustion. Further, (4) the method of dividing air supply for secondary combustion is characterized in that the air supply is equally divided according to the number of divisions of the air supply. Further, (5) the combustion air is supplied to the combustion atmosphere to which it is supplied so as to be able to generate a swirling flow.

本発明装置は、(6)被処理汚泥を、乾燥機を経て予熱
された燃焼用空気とともに供給する一次燃焼炉と該一次
燃焼炉を炉体の断面接線方向に沿って連接する二次燃焼
炉とで構成する旋回流溶融炉において、二次燃焼炉の上
流側を上方に、下流側を下方に、かつ、炉排出部に連接
して該炉本体を横置し、該下流側の入口を下方に逆U字
状開口を有する邪魔板で仕切るとともに、該上流側に一
次燃焼炉を、前記上流側と前記下流側との中間部に昇温
手段を連設し、該昇温手段は、燃焼用空気供給口または
燃焼用空気供給口を伴なう補助・く−ナーが配設するこ
とを特徴とする。また、 (力 炉排出部には、二次燃焼炉の炉底に沿って該炉の
下流端に延在する、舌端状にかつ凹状に形成するスラグ
排出路を有することを特徴とするものである。また、 (8)二次燃焼炉の傾斜度θを水平に対し、10゜〜4
5°の角度に横置した傾斜横置形旋回流溶融炉であるこ
とも特徴である。
The apparatus of the present invention comprises (6) a primary combustion furnace in which the sludge to be treated is supplied together with preheated combustion air through a dryer, and a secondary combustion furnace in which the primary combustion furnace is connected along the cross-sectional line direction of the furnace body. In a swirling flow melting furnace consisting of a secondary combustion furnace, the upstream side of the secondary combustion furnace is placed upward, the downstream side is placed downward, and the furnace body is placed horizontally, connected to the furnace discharge part, and the downstream inlet is placed downwardly. It is partitioned by a baffle plate having an inverted U-shaped opening at the bottom, and a primary combustion furnace is provided on the upstream side, and a temperature raising means is provided in succession at an intermediate portion between the upstream side and the downstream side, and the temperature raising means includes: It is characterized in that a combustion air supply port or an auxiliary cooler with a combustion air supply port is provided. Furthermore, the furnace discharge section is characterized by having a slag discharge path formed in a tongue-like and concave shape and extending along the bottom of the secondary combustion furnace to the downstream end of the furnace. (8) The angle of inclination θ of the secondary combustion furnace is 10° to 4° with respect to the horizontal.
Another feature is that it is a tilted horizontal swirl flow melting furnace that is horizontally installed at an angle of 5°.

〔作用〕[Effect]

(1)本発明の燃焼用空気分割供給系は、二次燃焼炉の
排気熱を常温の燃焼用空気へ熱交換(ガス−ガス)して
該空気を昇温し、その昇温した空気を一次燃焼炉と二次
燃焼炉へ分割供給することによって、空気の全供給量と
温度(または熱量)を総合管理可能とする。また、 (2)乾燥機の熱源を蒸気とし、その復水を旋回流溶融
炉の二次燃焼炉の炉外壁ジャケットへ供給して、高圧高
温水として取出し、該高温水を用いることによって、空
気より大きな潜熱を利用することができる。その結果、
比較的低温で炉体熱を炉外へ取り出す作用がある。この
得られた高温水を別途ボイラーで加熱処理し、その処理
した蒸気を乾燥機の熱源に、適圧に調節する減圧弁を介
して供給する。この循環系を形成することによって。
(1) The combustion air split supply system of the present invention heat-exchanges (gas-gas) the exhaust heat of the secondary combustion furnace to the room-temperature combustion air, raises the temperature of the air, and then uses the heated air to By dividing the supply to the primary combustion furnace and the secondary combustion furnace, the total amount of air supplied and the temperature (or amount of heat) can be managed comprehensively. (2) The heat source of the dryer is steam, the condensate is supplied to the furnace outer wall jacket of the secondary combustion furnace of the swirling flow melting furnace, and taken out as high-pressure high-temperature water. Greater latent heat can be utilized. the result,
It has the effect of extracting the heat from the furnace body to the outside of the furnace at a relatively low temperature. The obtained high-temperature water is heated separately in a boiler, and the treated steam is supplied to the heat source of the dryer via a pressure reducing valve that adjusts the pressure to an appropriate level. By forming this circulatory system.

有効熱利用が得られる。この循環系に要部に高温水を用
いることにより、炉体壁の保全を従来例より向上すると
いう作用が生れる。(キャスタブル交換は年に1〜2回
である。) (3)一次燃焼用と二次燃焼用とにほぼ等分に供給する
とともに、二次燃焼用としてほぼ等分に分割供給するよ
うに燃焼用空気を案分することにより、二次燃焼炉内の
温度を広い領域にわたって高温状態で安定化できるとい
う作用がある。そして、該炉内中間域を長く安定確保で
きるとともに、適当数に分割増加させる該供給口によっ
て中間域の長短に対応し得るという作用が生れた。
Effective heat utilization can be obtained. By using high-temperature water in the main parts of this circulation system, there is an effect that the maintenance of the furnace wall is improved compared to the conventional example. (Castable replacement is done once or twice a year.) (3) In addition to supplying primary combustion and secondary combustion in approximately equal parts, combustion is performed so that the secondary combustion is divided into approximately equal parts. By distributing the air, the temperature inside the secondary combustion furnace can be stabilized at a high temperature over a wide area. In addition, the intermediate region in the furnace can be stably maintained for a long time, and the supply ports can be divided into an appropriate number to accommodate the length of the intermediate region.

(4)燃焼用空気を供給するに当って、どの供給も旋回
流生成可能に行なうので、炉内旋回流は助長するこそす
れ、阻害作用は生じない。
(4) When supplying combustion air, any supply is performed in such a way as to generate a swirling flow, so that the swirling flow in the furnace is only promoted and no inhibition occurs.

(5)二次燃焼炉の中間部に複数の燃焼用空気の供給口
を適宜配役可能であって、それらを、必要に応じて補助
バーナーを併設する該炉内の昇温手段としているので、
該中間部の設計に対応した該炉内雰囲気の適温の安定化
が行ない得る。
(5) A plurality of combustion air supply ports can be appropriately arranged in the middle part of the secondary combustion furnace, and these can be used as temperature raising means in the furnace, which is equipped with an auxiliary burner as necessary.
The temperature of the atmosphere in the furnace can be stabilized at an appropriate temperature corresponding to the design of the intermediate section.

(6)二次燃焼炉が傾斜していることによって(適度な
傾斜度を与えることによって)、溶融スラグの性状に対
応して、その排出に有効に対処可能である。また、二次
燃焼炉の熱反応領域と炉排出側を、下方に逆U字状開口
を有する邪魔板で仕切るものなので、溶融スラグ流の多
少を、その流動性を有するスラグ自身が堰を形成する作
用が生じてスラグ排出路への適量移送制御作用が併行し
て生ずるとともに、これら溶融スラグの作用が旋回流雰
囲気での被処理汚泥の滞留時間の邪魔板への影響力を小
さくし、事実上、溶融スラグの排出と該滞留時間との関
連性阻害要因を除去する作用がある。
(6) By sloping the secondary combustion furnace (by giving it an appropriate degree of inclination), it is possible to effectively deal with the discharge of molten slag in accordance with the properties of the molten slag. In addition, since the thermal reaction area of the secondary combustion furnace and the furnace discharge side are separated by a baffle plate having an inverted U-shaped opening at the bottom, the fluidized slag itself forms a dam to prevent some of the flow of molten slag. At the same time, the action of controlling the transfer of an appropriate amount to the slag discharge path occurs, and the action of these molten slags reduces the influence of the residence time of the sludge to be treated on the baffle plate in the swirling flow atmosphere. Moreover, it has the effect of removing factors that inhibit the relationship between the discharge of molten slag and the residence time.

(カ 二次燃焼炉の溶融スラグ路の排出端を立ダクト状
の下部に「溶融スラグ受け」を有するスラグ排出部を配
設して、そこへ落下可能に舌端状かつ凹状に形成するス
ラグ排出路としているので、溶融状スラグの流下距離を
最短にし、該炉にならう傾斜はスラグな効果的に案内し
、かつ、スラグ排出路以外のその他の炉壁を濡らすこと
なく、直接、該溶融スラグを「溶融スラグ受け」(図示
せず)へ移送できるという作用が生ずる。
(f) A slag discharge section having a "molten slag receiver" is provided at the bottom of the vertical duct at the discharge end of the molten slag path of the secondary combustion furnace, and the slag is formed into a tongue-like and concave shape so that it can fall there. Since the slag discharge path is used as a discharge path, the flow distance of the molten slag is minimized, and the slope that follows the furnace effectively guides the slag. The effect is that the molten slag can be transferred to a "molten slag receiver" (not shown).

〔実施例〕〔Example〕

以下、第1図ないし第14図に基づいて本発明の一実施
例を説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 14.

第1図は本発明の装置を含む要部のフローシート、第2
図は本発明の方法の燃焼用空気供給方法の説明図、第3
図は二次燃焼炉内温度の説明図、第4図は一次燃焼炉、
二次燃焼炉およびスラグ冷却部の概略断面図 手宙才で→、第5図は縦形旋回流溶融炉の二次燃焼炉と
スラグ冷却機間の排出部のスラグ移動状態を示す説明用
断面図、第6図は二次燃焼炉内の邪魔板(バックルプレ
ート)部の断面図で第4図中のA−A線矢視図、第7図
は二次燃焼炉のスラグ排出路の説明用斜視図、第8図(
a)はスラグ冷却機の平面図、第8図(b)はその側面
断面図、第9図ないし第14図は特許請求の範囲記載の
技術的手段の図解説明図で、第9図は第1項、第10図
は第2項、第11図は第3項および第4項、第12図(
a)、(b)は第5項、第13図は第6項、第14図は
第7項をそれぞれ示す。第12図(a)は第11図中の
A矢視図、第12図(b)は第12図(a)中のB矢視
図、第14図は第4図中のC矢視図である。
Fig. 1 is a flow sheet of the main part including the device of the present invention, Fig.
Figure 3 is an explanatory diagram of the method of supplying combustion air according to the method of the present invention.
The figure is an explanatory diagram of the temperature inside the secondary combustion furnace, Figure 4 is the primary combustion furnace,
Schematic sectional view of the secondary combustion furnace and slag cooling section. , Figure 6 is a cross-sectional view of the baffle plate (buckle plate) in the secondary combustion furnace, taken along the line A-A in Figure 4, and Figure 7 is for explaining the slag discharge path of the secondary combustion furnace. Perspective view, Figure 8 (
a) is a plan view of the slag cooler, FIG. 8(b) is a side sectional view thereof, FIGS. Item 1, Figure 10 refers to Item 2, Figure 11 refers to Items 3 and 4, Figure 12 (
a) and (b) show the fifth term, FIG. 13 shows the sixth term, and FIG. 14 shows the seventh term, respectively. Fig. 12(a) is a view in the direction of arrow A in Fig. 11, Fig. 12(b) is a view in the direction of arrow B in Fig. 12(a), and Fig. 14 is a view in the direction of arrow C in Fig. 4. It is.

乾燥機1で乾燥された被熱処理原料(以下「汚泥」とい
う。)Cは常温空気Aを圧送する送風機8によって二次
燃焼炉3より排出され、その排気りの保有熱によって熱
交換されて400〜600℃に昇温された燃焼用空気A
と混合装置13で混合され、供給口21を介して一次燃
焼炉2へ供給される。ここで初期に補助バーナー22の
運転で旋回流雰囲気で燃焼し、1000〜1200℃の
汚泥Cと該空気Aとからなる流動混合体Kを生成したの
ち、適宜に補助バーナー22は運転休止される。
The raw material to be heat treated (hereinafter referred to as "sludge") C dried in the dryer 1 is discharged from the secondary combustion furnace 3 by a blower 8 that pumps room-temperature air A, and is heat-exchanged by the heat retained in the exhaust gas. Combustion air A heated to ~600°C
and is mixed in the mixing device 13 and supplied to the primary combustion furnace 2 via the supply port 21. Here, the auxiliary burner 22 is initially operated to perform combustion in a swirling flow atmosphere to generate a fluid mixture K consisting of the sludge C at 1000 to 1200°C and the air A, and then the auxiliary burner 22 is stopped as appropriate. .

ちなみに、混合装置13に該空気Aと混合する汚泥Cは
図に記載しない手段によって原則的に微砕化されたもの
である。この一次燃焼炉2にあっては、汚泥Cは専ら部
分燃焼する。
Incidentally, the sludge C mixed with the air A in the mixing device 13 is basically pulverized by means not shown in the figure. In this primary combustion furnace 2, the sludge C is only partially combusted.

なお、排気りは空気予熱器(熱交換器)7へ供給する前
に浮遊物除去装置6で処理される。この排気は、100
0〜1300℃であり、熱交換時にあっても、はぼ10
00℃は確保されている。燃焼炉の一次炉から二次炉へ
は、二次炉において旋回流生成可能に前記流動混合体K
が供給される。該二次炉は、第13図に示すように、傾
斜度θが水平に対し10〜45°角に横置され、その上
流側は、流動混合体供給口23を含む領域aであり、下
流側は邪魔板33の上流側の側面を含む領域Cであって
、それら領域aとCとの間に、二次炉の大きさKよって
炉軸芯方向に沿う長短に対応して認識可能の領域すが中
間部として存在する。この中間部には、昇温手段として
適宜間隔を設けて、炉壁に炉内雰囲気に対し旋回流生成
ないし助成可能に配設する補助の燃焼用空気の供給人口
31.32および必要に応じて併設する補助バーナーが
供給人口31に設けられる。該二次炉の燃焼用空気Aは
、前記一次炉への燃焼用空気への同一系統Pより分岐さ
れるもので、一次炉への空気供給量と二次炉への空気供
給量との比はほぼ50 : 50とする。二次炉用複数
の該供給人口31.32に前記50を25 : 25に
分割供給する(第11図参照)。これら配分比は、配分
原則を示すもので、ケースバイケースでそれぞれ約±2
0%の偏差にて調整される。この空気供給量は、三次空
気と原料の流動混合体供給口23に40〜60 %、供
給人口31.32に各20〜30 %の割合に配分され
る。
Note that the exhaust gas is treated in a suspended matter removing device 6 before being supplied to an air preheater (heat exchanger) 7. This exhaust is 100
0 to 1300℃, even during heat exchange, the temperature is approximately 10℃.
00°C is ensured. The fluid mixture K is passed from the primary furnace to the secondary furnace in the combustion furnace so that a swirling flow can be generated in the secondary furnace.
is supplied. As shown in FIG. 13, the secondary furnace is placed horizontally at an angle of inclination θ of 10 to 45 degrees with respect to the horizontal. The side is a region C that includes the upstream side surface of the baffle plate 33, and between these regions a and C, there is a recognizable area corresponding to the length along the furnace axis direction depending on the size K of the secondary furnace. The area exists as an intermediate part. In this intermediate part, supplementary combustion air is provided at appropriate intervals as a temperature raising means, and is arranged on the furnace wall to generate or assist the swirling flow in the furnace atmosphere. An auxiliary burner will be installed at supply population 31. The combustion air A for the secondary furnace is branched from the same system P that supplies the combustion air to the primary furnace, and the ratio of the amount of air supplied to the primary furnace and the amount of air supplied to the secondary furnace is The ratio is approximately 50:50. The above 50 is divided and supplied at a ratio of 25:25 to a plurality of supply populations 31.32 for the secondary furnace (see FIG. 11). These allocation ratios indicate the allocation principle and vary by approximately ±2 on a case-by-case basis.
Adjusted with 0% deviation. This air supply amount is distributed at a rate of 40 to 60% to the tertiary air and raw material fluid mixture supply port 23, and 20 to 30% to the supply population 31.32.

第2図は2つに分割された場合を示しているが、中間部
すが長い場合は、供給人口31.32は増加し、必要に
応じ、補助バーナーも増加する。そして、以上の燃焼用
空気Aの配分は、温度検知手段及び供給量制御手段(図
示せず)により供給酸素量および配分比かつ熱量調整の
各手段が調整可能である。
Fig. 2 shows the case where it is divided into two parts, but if the middle part is long, the supply population 31.32 will increase, and the number of auxiliary burners will also increase as necessary. The above distribution of the combustion air A can be adjusted by means of the amount of oxygen supplied, the distribution ratio, and the amount of heat by means of a temperature detection means and a supply amount control means (not shown).

二次燃焼炉においては、一次燃焼炉より供給される流動
混合体が常時1350〜1450℃にて燃焼反応が継続
するように管理する。その結果該流動混合体はガスと最
終生成物である溶融スラグとに分離する。該溶融スラグ
は該炉体内壁を濡らしながら流下して、両次下方へ移動
する。ここにおいて、溶融スラグ温度は約1450℃前
後にあって流動性を有している。
In the secondary combustion furnace, the fluidized mixture supplied from the primary combustion furnace is controlled so that the combustion reaction continues at a constant temperature of 1350 to 1450°C. As a result, the fluid mixture separates into gas and the final product, molten slag. The molten slag flows down while wetting the inner wall of the furnace, and moves downward in both directions. Here, the molten slag temperature is around 1450° C. and has fluidity.

二次炉2内で生成した溶融スラグJは邪魔板33を流下
して二次炉2の下流端にあって炉排出部4の内方へほぼ
二次炉の内壁が示す円弧と同形状の截片をした舌端状で
、かつ、凹状の溶融スラグ排出路34が突出している。
The molten slag J generated in the secondary furnace 2 flows down the baffle plate 33 and is at the downstream end of the secondary furnace 2 toward the inside of the furnace discharge part 4. A molten slag discharge passage 34 protrudes in the form of a truncated tongue and a concave shape.

該排出路34まで流下する溶融スラグJはスラグ冷却部
5に直接落下し、そこで流動性を冷却によって失なわれ
た冷却スラグGは、その冷却速度の調整によって、スラ
グ形状が調整され、炉外へ排出される。スラグ排出路3
4の上方、炉排出部4には、溶融スラグJの流動性を保
持するための補助バーナー42が配設されて運転可能と
なっている。
The molten slag J flowing down to the discharge passage 34 falls directly into the slag cooling section 5, where the cooling slag G, which has lost its fluidity due to cooling, has its slag shape adjusted by adjusting its cooling rate and is removed from the furnace. is discharged to. Slag discharge path 3
An auxiliary burner 42 for maintaining the fluidity of the molten slag J is disposed above the furnace discharge section 4 and is operable.

スラグ冷却部5には、常温(15℃)の冷却水Htによ
って冷却されるスラグ冷却機18が回転するように設け
られ、冷却機18に付着したスラグJはスクレーバー1
7により脱離し、冷却スラグ出口51より排出する。排
出冷却水H2の温度は80℃である。
The slag cooling unit 5 is provided with a rotating slag cooler 18 that is cooled by cooling water Ht at room temperature (15° C.), and the slag J adhering to the cooler 18 is removed from the scraper 1.
7, and is discharged from the cooling slag outlet 51. The temperature of the discharged cooling water H2 is 80°C.

(第4図および第8図(a)、(b)参照)二次炉3よ
りの排気は溶融スラグ排出路34に対向する炉排出部4
の側壁に設けられた排気出口41かも炉外へ排出される
。二次炉3の炉体壁に耐圧状に形成した復水加熱ジャケ
ット36を形成し、その一端復水入口37より乾燥機1
よりの復水F(約90℃以下)を受は入れ、炉体熱を吸
熱して、ジャケット36他端高温水出口38より高圧高
温水(180〜190℃)として取り出す。この高温水
はボイラー9へ熱交換器7を経た炉排気りとともに熱処
理され、高圧蒸気とされ、途中減圧弁16によって一定
の適圧としたのち、乾燥機1の加熱源(蒸気温度的14
0℃)とする。
(See FIG. 4 and FIGS. 8(a) and (b)) The exhaust from the secondary furnace 3 is discharged from the furnace discharge section 4 facing the molten slag discharge path 34.
The exhaust outlet 41 provided on the side wall of the furnace is also exhausted to the outside of the furnace. A pressure-resistant condensate heating jacket 36 is formed on the wall of the furnace body of the secondary furnace 3, and one end of the condensate heating jacket 36 is connected to the dryer 1 through the condensate inlet 37.
Condensate F (approximately 90°C or less) is received, absorbs heat from the furnace body, and is taken out as high-pressure high-temperature water (180-190°C) from the high-temperature water outlet 38 at the other end of the jacket 36. This high-temperature water is heat-treated together with the furnace exhaust gas that has passed through the heat exchanger 7 to the boiler 9, and is made into high-pressure steam. On the way, the pressure is brought to a constant appropriate pressure by the pressure reducing valve 16, and then the heat source of the dryer 1 (steam temperature 14
0°C).

ちなみに二次炉3の邪魔板33は、炉断面積に対し、2
0〜40%(平均値25〜30%)の開口比が与えられ
、被熱処理原料が定まれば、−度設定した開口比はその
開口比によって実質上断続して実施して特に問題とはな
らない。また、該二次炉3の中心より仰角120°以内
で定まる大きさで設けられている。(第14図参照) また、燃焼用空気供給系、二次炉ジャケット排気系、高
圧高温水系など、保温を必要とする装置、配管系には全
て充分な保温が施工される。
Incidentally, the baffle plate 33 of the secondary furnace 3 has a ratio of 2 to the cross-sectional area of the furnace.
Once an aperture ratio of 0 to 40% (average value 25 to 30%) is given and the raw material to be heat treated is determined, the aperture ratio set at - degree can be carried out intermittently depending on the aperture ratio and there are no particular problems. It won't happen. Further, it is provided with a size determined within an elevation angle of 120° from the center of the secondary furnace 3. (See Figure 14) In addition, all equipment and piping systems that require heat insulation, such as the combustion air supply system, secondary furnace jacket exhaust system, and high-pressure, high-temperature water system, are provided with sufficient heat insulation.

なお、炉外壁ジャケットは生成高圧高温水を収容可能な
耐圧性構造物で製作される。
The outer wall jacket of the furnace is made of a pressure-resistant structure that can accommodate the high-pressure, high-temperature water produced.

図面中、11は原料供給口、12は乾燥原料排出口、1
3は原料と一次空気の混合装置、14は加熱蒸気供給口
、15は復水出口、16は減圧弁、17はスラグ冷却機
のスクレーパー、18はスラグ冷却機、19は補助燃料
入口、21は一次燃焼炉の原料と空気の供給口、22は
一次燃焼炉の補助バーナー、23は一次燃焼炉の三次空
気と原料の流動混合体供給口、31は二次燃焼炉の空気
供給入口(補助バーナーを併設してもよい。)、32は
二次燃焼炉の補助空気入口、33は第6図に示すように
、下方に逆U字状開口を有する邪魔板(バックルプレー
ト) 、 34は第7図に示すように、二次燃焼炉の炉
底に沿って炉の下流端に延在する舌端状に、かつ、凹状
に形成するスラグ排出路、35は二次燃焼炉の補助空気
の分岐装置、36は二次燃焼炉の復水加熱ジャケット、
37は二次燃焼炉の復水入口、38は高温水出口、4は
炉排出部、41は炉排出部の排気出口、42は炉排出部
の補助バーナー 、 51は冷却スラグ出口、6は浮遊
物除去装置、7は空気予熱器、8は送風機、9はボイラ
ー、10はスクラバー Aは燃焼用空気(02)、Bは
燃料(油)、Cは汚泥(被熱処理原料)、Dは排気、E
は排出生成高温水(蒸気温り熱水)系統路、Fは復水(
系統路)、Gは冷却スラグ、Hlは冷却水、Hlは排出
冷却水、Jは溶融スラグ、Kは流動混合体、Lは被熱処
理原料(汚泥)系統路、Mは乾燥原料系統路、Nは燃焼
用空気(常温)系統路、Pは燃焼用空気(予熱済)(保
温付)系統路、Qは燃料(油)系統路、Sは加熱蒸気系
統路、Tは排気系統路、Uはスラグ(冷却)系統路、■
は冷却水系統路をそれぞれ示す。
In the drawing, 11 is a raw material supply port, 12 is a dry raw material discharge port, 1
3 is a mixing device for raw material and primary air, 14 is a heating steam supply port, 15 is a condensate outlet, 16 is a pressure reducing valve, 17 is a scraper of a slag cooler, 18 is a slag cooler, 19 is an auxiliary fuel inlet, 21 is a 22 is the auxiliary burner of the primary combustion furnace, 23 is the fluid mixture supply port of tertiary air and raw materials of the primary combustion furnace, 31 is the air supply inlet of the secondary combustion furnace (auxiliary burner) ), 32 is an auxiliary air inlet for the secondary combustion furnace, 33 is a baffle plate (buckle plate) having an inverted U-shaped opening at the bottom, 34 is a seventh As shown in the figure, a slag discharge passage formed in a tongue-like and concave shape extends along the bottom of the secondary combustion furnace to the downstream end of the furnace, and 35 is a branch of the auxiliary air of the secondary combustion furnace. equipment, 36 is a condensate heating jacket of a secondary combustion furnace;
37 is the condensate inlet of the secondary combustion furnace, 38 is the high temperature water outlet, 4 is the furnace discharge part, 41 is the exhaust outlet of the furnace discharge part, 42 is the auxiliary burner of the furnace discharge part, 51 is the cooling slag outlet, 6 is the floating substance removal device, 7 is an air preheater, 8 is a blower, 9 is a boiler, 10 is a scrubber, A is combustion air (02), B is fuel (oil), C is sludge (raw material to be heat treated), D is exhaust, E
is the discharge generated high temperature water (steam heated hot water) system path, F is the condensate water (
G is cooling slag, Hl is cooling water, Hl is discharge cooling water, J is molten slag, K is fluid mixture, L is heat treated raw material (sludge) system route, M is dry raw material system route, N is the combustion air (normal temperature) system, P is the combustion air (preheated) (with insulation) system, Q is the fuel (oil) system, S is the heating steam system, T is the exhaust system, and U is the exhaust system. Slag (cooling) system path,■
indicate the cooling water system paths.

次に、上述した旋回流溶融炉を実際に運転した場合の結
果を、従来例(文献2の旋回流溶融炉)の運転結果とあ
わせて説明する。
Next, the results of actually operating the above-mentioned swirling flow melting furnace will be explained together with the operating results of the conventional example (the swirling flow melting furnace of Document 2).

■ 一次燃焼炉の補助燃料を定常的に使用しな平均粒径 供給量 μm 120 ’q/H 補助燃焼用空気供給管数 2(本発明のみ)(二次燃焼
炉中間部に設置) 燃焼用空気供給量(空気比) 上記の条件で運転した結果を第1表に示す。
■ Average particle diameter supply amount μm without regular use of auxiliary fuel in the primary combustion furnace 120'q/H Number of air supply pipes for auxiliary combustion 2 (only for the present invention) (installed in the middle of the secondary combustion furnace) For combustion Air supply amount (air ratio) Table 1 shows the results of operation under the above conditions.

第1表 通りである。Table 1 That's right.

乾燥下水汚泥 水分 灰分 可燃分 総発熱量 (共通) 1.5% 35.8% 627% 3890 kcal 7kg1乾物 ■ 補助燃料を定常的に使用した場合 使用した乾燥下水汚泥の物性及び運転条件は以下の通り
である。
Dried sewage sludge moisture ash content combustible content gross calorific value (common) 1.5% 35.8% 627% 3890 kcal 7kg1 dry matter■ When auxiliary fuel is used regularly, the physical properties and operating conditions of the dried sewage sludge used are as follows. That's right.

乾燥下水汚泥(共通) 水分     2.0チ 灰分     55.5チ 可燃分    42.54 総発熱量   2900 kcal 7kg、乾物平均
粒径   180μm 供給量    120 kg/H 補助燃焼用空気供給管数 2 (二次燃焼炉中間部に設置。中間部上手の該空気供給管
側に補助バーナー併設。) 従来例(文献2)の補助燃焼用空気供給管数1補助燃料
重油1.Ol/H 燃焼用空気供給量(空気比) (注) 上手側0.3、 下手側0.3 上記の条件で運転した結果を第2表に示す。
Dried sewage sludge (common) Moisture 2.0 ash 55.5 Installed in the middle part of the combustion furnace. An auxiliary burner is also installed on the air supply pipe side above the middle part.) The number of air supply pipes for auxiliary combustion in the conventional example (Reference 2): 1 Auxiliary fuel heavy oil 1. OL/H Combustion air supply amount (air ratio) (Note) Upstream side 0.3, downstream side 0.3 The results of operation under the above conditions are shown in Table 2.

第 表 −は補助燃料を使わない場合を示す。No. table - indicates the case where auxiliary fuel is not used.

上記2例から明らかなように、本発明にかかる旋回流溶
融炉によって効率の良い高負荷燃焼を長時間連続運転す
ることが可能になった。
As is clear from the above two examples, the swirling flow melting furnace according to the present invention makes it possible to continuously operate efficient high-load combustion for a long period of time.

なお、第3図に温度調節した状態■と温度調節しない状
態Hの炉内位置と温度の関係を上流側a。
In addition, FIG. 3 shows the relationship between the position in the furnace and the temperature in the state (2) where the temperature is adjusted and the state (H) where the temperature is not adjusted.

中間部b、下流側Cの区画、邪魔板33位置の関係にお
いて示しである。状態Iでは温度が安定している。
The relationship between the intermediate portion b, the downstream section C, and the position of the baffle plate 33 is shown. In state I, the temperature is stable.

〔発明の効果〕〔Effect of the invention〕

本発明は、前記した構成を有し、かつ操作されるので、
以下のような発明の効果を発揮する。
Since the present invention has the above-described configuration and operates,
The invention exhibits the following effects.

(1)廃棄物が一次燃焼炉2に投入する該炉と混合装置
13との間で、燃焼用空気Aの保有熱により充分昇温さ
れ、該炉内に投入した際の炉内高温雰囲気の阻害要因は
少ない。
(1) Waste is fed into the primary combustion furnace 2. Between the furnace and the mixing device 13, the temperature is sufficiently raised by the heat retained in the combustion air A, and the high temperature atmosphere inside the furnace when the waste is fed into the furnace. There are few inhibiting factors.

(2)炉壁ジャケット36の除熱媒体を高圧高温水に選
定したので、該炉体キャスタブルの温度は、該キャスタ
ブルの材質を著しく阻害しない一定温度以下に抑えられ
、該キャスタブルの交換頻度は前記従来方式の1/4程
度に減じた。
(2) Since high-pressure, high-temperature water is selected as the heat removal medium for the furnace wall jacket 36, the temperature of the furnace body castable can be suppressed to a certain temperature or lower that does not significantly impair the material of the castable, and the frequency of replacing the castable can be reduced as described above. It has been reduced to about 1/4 of the conventional method.

(3)二次燃焼炉の邪魔板33の開口形状を、下向きU
字形とし、溶融スラグのスラグ自身により自己層形成効
果を利用するものとしたので、汚泥の旋回流内の滞留時
間との相関を小さくさせた。
(3) The opening shape of the baffle plate 33 of the secondary combustion furnace is
Since the molten slag was designed to take advantage of the self-layer formation effect of the slag itself, the correlation with the residence time of the sludge in the swirling flow was reduced.

(4)炉内安定域を燃焼用空気の総合管理しながら補助
空気入口とその数を自由に選定し得るので、炉の設計に
対応して溶融炉の操作が容易にかつ自動化し易くなった
(4) The number and number of auxiliary air inlets can be freely selected while comprehensively managing combustion air within the furnace stability zone, making it easier to operate the melting furnace and automate it in accordance with the furnace design. .

(5)溶融スラグ排出に伴なう排出路の該スラグの冷却
による閉塞が決して起らなくなった。
(5) Blockage of the discharge path due to cooling of the molten slag during discharge never occurs.

(6)  どの炉に対しても、燃焼用空気の供給を旋回
流生成可能に、炉に対し、その接線方向に供給するよう
にしたので、炉への酸素供給と旋回流の阻害予防とを同
時に解決した。
(6) Combustion air is supplied to any furnace in a tangential direction to generate swirling flow, so that oxygen supply to the furnace and prevention of disturbance of swirling flow can be achieved. resolved at the same time.

(7)  炉よりの排熱、炉体の除熱、燃焼用空気の熱
転換、乾燥機への熱供給とを、熱媒体の状態変化を適切
に綜合的に選択しているので、省エネルギー処理の適切
な管理体制を得るとともに該管理体制によって、媒体の
流量、圧力、温度のfiII!節、ひいては、メンテナ
ンスフリーを確保可能とした。
(7) The exhaust heat from the furnace, the heat removal from the furnace body, the heat conversion of the combustion air, and the heat supply to the dryer are selected comprehensively according to changes in the state of the heat medium, resulting in energy-saving processing. In addition to obtaining an appropriate control system for the flow rate, pressure, and temperature of the medium, this control system can be used to control the flow rate, pressure, and temperature of the medium. This made it possible to ensure maintenance-free operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は本発明
の装置を含む要部のフローシート、第2図は本発明の方
法の燃焼用空気供給方法の説明図、第3図は二次燃焼炉
内温度の説明図、第4図は一次燃焼炉、二次燃焼炉およ
びスラグ冷却部の断面図              
                    第5図は縦
形旋回流溶融炉の二次燃焼炉とスラグ冷却部間の排出部
のスラグ移動状態を示す断面図、第6図は二次燃焼炉の
邪魔板(バックルプレート)部の断面図で第4図中のA
−A5矢視図、第7図は二次燃焼炉のスラグ排出路の説
明用斜視略図、第8図(a)はスラグ冷却機のスクレー
パ一部の平面図、第8図(b)はその側面断面図、第9
図ないし第14図は特許請求の範囲記載の技術的手段の
図解説明図で、第9図はWc1項、第10図は第2項、
第11図は第3項および第4項、第12図は第5項、第
13図は第6項、第14図は第7項をそれぞれ示す。第
12図(a)は第11図中のA矢視図、第12図(b)
は第12図(al中のB矢視図、第14図は第4図中の
C矢視図である。 10.、乾燥機   201.一次燃焼炉3、・・二次
燃焼炉 601.浮遊物除去装置7、・、空気予熱器 
 900.ボイラー13、・・原料と一次空気の混合装
置 14・・・加熱蒸気供給口 21・、・原料と一次空気の供給口 22・・・補助バーナー 23・・・三次空気と原料の流動混合体供給口31・、
・補助空気人口 32.、、補助空気人口33・・・邪
魔板    34.、、スラグ排出路36・・、復水外
部加熱ジャケット 38、・、高温水出口  A10.燃焼用空気C・・、
汚泥(被熱処理原料) D・・・排気     E・0.高温水系統路G・・・
冷却スラグ  Jlo、溶融スラグK・・・流動混合体
The drawings show one embodiment of the present invention, and FIG. 1 is a flow sheet of the main part including the apparatus of the present invention, FIG. 2 is an explanatory diagram of the combustion air supply method of the method of the present invention, and FIG. 3 is an explanatory diagram of the temperature inside the secondary combustion furnace, and Figure 4 is a cross-sectional view of the primary combustion furnace, secondary combustion furnace, and slag cooling section.
Figure 5 is a cross-sectional view showing the state of slag movement in the discharge section between the secondary combustion furnace and the slag cooling section of a vertical swirling flow melting furnace, and Figure 6 is a cross-sectional view of the baffle plate (buckle plate) of the secondary combustion furnace. So A in Figure 4
- A5 arrow view, Figure 7 is a schematic perspective view for explaining the slag discharge path of the secondary combustion furnace, Figure 8 (a) is a plan view of a part of the scraper of the slag cooler, and Figure 8 (b) is its Side sectional view, No. 9
14 to 14 are illustrated explanatory diagrams of the technical means described in the claims, FIG. 9 is Wc1 item, FIG. 10 is Wc1 item,
FIG. 11 shows the third and fourth terms, FIG. 12 shows the fifth term, FIG. 13 shows the sixth term, and FIG. 14 shows the seventh term. Figure 12 (a) is a view taken from arrow A in Figure 11, Figure 12 (b)
is a view in the direction of arrow B in Figure 12 (al), and Figure 14 is a view in the direction of arrow C in Figure 4. 10. Dryer 201. Primary combustion furnace 3, ... Secondary combustion furnace 601. Floating Material removal device 7... Air preheater
900. Boiler 13... Raw material and primary air mixing device 14... Heating steam supply port 21... Raw material and primary air supply port 22... Auxiliary burner 23... Fluid mixture supply of tertiary air and raw material Mouth 31・,
・Auxiliary air population 32. ,, Auxiliary air population 33... Baffle plate 34. ,, Slag discharge path 36..., Condensate external heating jacket 38,... High temperature water outlet A10. Combustion air C...
Sludge (raw material to be heat treated) D...Exhaust E.0. High temperature water system path G...
Cooling slag Jlo, molten slag K...fluid mixture

Claims (1)

【特許請求の範囲】 1、被処理汚泥を乾燥した後、該汚泥を旋回流雰囲気中
で高温処理して溶融スラグを生成させ、該溶融スラグを
冷却する廃棄物の旋回流溶融方法において、乾燥汚泥を
400〜600℃の燃焼用空気に混入した後、旋回流状
態にて1000〜1200℃で一次燃焼させ、その一次
燃焼で生成した流動混合体を旋回流状態で、 1350〜1450℃の二次燃焼雰囲気中に供給すると
ともに、該二次燃焼雰囲気中の上流側から下流側にかけ
て、燃焼用空気を分散供給可能とする前記流動混合体の
昇温手段を配設して、溶融スラグを完全溶融して炉排出
部へ移送した後冷却スラグとして取り出し、燃焼済み排
気は、含有する浮遊塵を除去した後、その保有熱を別途
に取入れる空気に熱交換して、前記燃焼用空気として、
前記一次燃焼用ないし前記二次燃焼用の昇温手段用に供
給することを特徴とする燃焼用空気分割供給系を有する
傾斜横置形旋回流溶融方法。 2、被処理汚泥を乾燥した後、該汚泥を旋回流雰囲気中
で高温処理して溶融スラグを生成させて廃棄物処理する
旋回流溶融方法において、旋回流溶融炉の側壁に配設す
る復水加熱ジャケットへ乾燥機より約90℃以下の復水
を供給して180〜190℃の高温水を得、該旋回流溶
融炉より排出して、その保有熱を、取り入れ空気へ熱交
換した後の排気とともに該高温水をボイラーへ供給し加
熱して蒸気とし、該蒸気を適圧に減圧して前記乾燥機の
加熱媒体とすることを特徴とする旋回流溶融炉の炉体熱
の循環有効利用法。 3、特許請求の範囲第1項記載の燃焼用空気分割供給の
方法を一次燃焼用と二次燃焼用にほぼ等分に供給するこ
とを特徴とする旋回流溶融炉の燃焼用空気供給方法。 4、特許請求の範囲第1項または第3項記載の二次燃焼
用の空気分割供給の方法は、前記空気供給の分割数に対
応して、均等に案分するものであることを特徴とする旋
回流溶融炉の燃焼用空気供給方法。 5、特許請求の範囲第1項または第3項記載の燃焼用空
気は、それらを供給する燃焼用雰囲気に対し旋回流生成
可能に供給することを特徴とする旋回流溶融炉の燃焼用
空気供給方法。 6、被処理汚泥を、乾燥機を経て予熱された燃焼用空気
とともに供給する一次燃焼炉と該一次燃焼炉を炉体の断
面接線方向に沿つて連接する二次燃焼炉とで構成する旋
回流溶融炉において、二次燃焼炉の上流側を上方に、下
流側を下方に、かつ、炉排出部に連接して該炉本体を横
置し、該下流側の入口を下方に逆U字状開口を有する邪
魔板で仕切るとともに、該上流側に一次燃焼炉を、前記
上流側と前記下流側との中間部に昇温手段を連設し、該
昇温手段は、燃焼用空気供給口または燃焼用空気供給口
を伴なう補助バーナーが配設されることを特徴とする傾
斜横置形旋回流溶融炉。 7、特許請求の範囲第6項記載の炉排出部には、二次燃
焼炉の炉底に沿つて該炉の下流端に延在する、舌端状に
、かつ、凹状に形成するスラグ排出路を有することを特
徴とする傾斜横置形旋回流溶融炉。
[Claims] 1. In a waste swirling flow melting method in which the sludge to be treated is dried, the sludge is treated at high temperature in a swirling flow atmosphere to generate molten slag, and the molten slag is cooled. After mixing the sludge with combustion air at 400 to 600°C, primary combustion is performed at 1000 to 1200°C in a swirling flow state, and the fluid mixture generated in the primary combustion is heated in a swirling flow state at 1350 to 1450°C. In addition to supplying the molten slag into the secondary combustion atmosphere, means for raising the temperature of the fluidized mixture is provided to enable supply of combustion air in a distributed manner from the upstream side to the downstream side of the secondary combustion atmosphere. After being melted and transferred to the furnace discharge section, it is taken out as a cooling slag, and after removing the floating dust contained in the burned exhaust gas, the retained heat is exchanged with air that is separately taken in, and the combustion air is used as the combustion air.
A tilted horizontal swirl flow melting method having a combustion air division supply system, characterized in that air is supplied to temperature raising means for the primary combustion and the secondary combustion. 2. In a swirling flow melting method in which the sludge to be treated is dried and then treated at high temperature in a swirling flow atmosphere to generate molten slag and then disposed of as waste, a condensate disposed on the side wall of the swirling flow melting furnace. Condensate at a temperature of about 90°C or less is supplied from a dryer to the heating jacket to obtain high-temperature water of 180 to 190°C, which is then discharged from the swirling flow melting furnace and the retained heat is exchanged with the intake air. Recycling and effective use of furnace body heat in a swirling flow melting furnace, characterized in that the high-temperature water is supplied to a boiler together with exhaust air, heated to become steam, and the steam is reduced to an appropriate pressure and used as a heating medium for the dryer. Law. 3. A method for supplying combustion air for a swirling flow melting furnace, characterized in that the method for supplying combustion air dividedly according to claim 1 is supplied almost equally for primary combustion and for secondary combustion. 4. The method of dividing air supply for secondary combustion according to claim 1 or 3 is characterized in that the air supply is divided equally according to the number of divisions of the air supply. A combustion air supply method for a swirl flow melting furnace. 5. Combustion air supply for a swirling flow melting furnace, characterized in that the combustion air according to claim 1 or 3 is supplied to the combustion atmosphere in which it is supplied so as to be able to generate a swirling flow. Method. 6. A swirl flow consisting of a primary combustion furnace that supplies the sludge to be treated together with preheated combustion air through a dryer, and a secondary combustion furnace that connects the primary combustion furnace along the cross-sectional line of the furnace body. In the melting furnace, the upstream side of the secondary combustion furnace is placed upward, the downstream side is placed downward, and the furnace main body is placed horizontally in connection with the furnace discharge part, and the inlet of the downstream side is placed downward in an inverted U shape. The primary combustion furnace is partitioned by a baffle plate having an opening, and a primary combustion furnace is provided on the upstream side, and a temperature raising means is provided in an intermediate portion between the upstream side and the downstream side, and the temperature raising means is connected to a combustion air supply port or A tilted horizontal swirl flow melting furnace characterized in that an auxiliary burner with a combustion air supply port is provided. 7. The furnace discharge section according to claim 6 includes a slag discharge section formed in a tongue-like and concave shape and extending along the bottom of the secondary combustion furnace to the downstream end of the furnace. 1. A tilted horizontal swirl flow melting furnace characterized by having a duct.
JP63183200A 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus Expired - Lifetime JP2769623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183200A JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183200A JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Publications (2)

Publication Number Publication Date
JPH0233511A true JPH0233511A (en) 1990-02-02
JP2769623B2 JP2769623B2 (en) 1998-06-25

Family

ID=16131521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183200A Expired - Lifetime JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Country Status (1)

Country Link
JP (1) JP2769623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357879A (en) * 1992-05-20 1994-10-25 Ebara-Infilco Co., Ltd. Dried sludge melting furnace
US11396121B2 (en) 2018-08-20 2022-07-26 N.E.W. Plastics Corp. Extruded variegated plastic profile and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998070A (en) * 1972-12-29 1974-09-17
JPS49116874A (en) * 1973-03-09 1974-11-08
JPS55100834U (en) * 1980-01-09 1980-07-14
JPS5666613A (en) * 1979-11-06 1981-06-05 Kurita Water Ind Ltd Waste incinerating device
JPS5813916A (en) * 1981-07-20 1983-01-26 Osaka Gas Co Ltd Melting method for waste
JPS6170314A (en) * 1984-09-11 1986-04-11 Ngk Insulators Ltd Whirling stream type fired melting furnace
JPS63172808A (en) * 1987-01-12 1988-07-16 Tsukishima Kikai Co Ltd Melting furnace of swirl air type

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998070A (en) * 1972-12-29 1974-09-17
JPS49116874A (en) * 1973-03-09 1974-11-08
JPS5666613A (en) * 1979-11-06 1981-06-05 Kurita Water Ind Ltd Waste incinerating device
JPS55100834U (en) * 1980-01-09 1980-07-14
JPS5813916A (en) * 1981-07-20 1983-01-26 Osaka Gas Co Ltd Melting method for waste
JPS6170314A (en) * 1984-09-11 1986-04-11 Ngk Insulators Ltd Whirling stream type fired melting furnace
JPS63172808A (en) * 1987-01-12 1988-07-16 Tsukishima Kikai Co Ltd Melting furnace of swirl air type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357879A (en) * 1992-05-20 1994-10-25 Ebara-Infilco Co., Ltd. Dried sludge melting furnace
US11396121B2 (en) 2018-08-20 2022-07-26 N.E.W. Plastics Corp. Extruded variegated plastic profile and method

Also Published As

Publication number Publication date
JP2769623B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPH0449164Y2 (en)
KR100325282B1 (en) Fuel and sorbent feed for circulating fluidized bed steam generator
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
US5081937A (en) System for treating waste material in a molten state
CN108753370A (en) A kind of manifold type gasification system and method
CN208776672U (en) A kind of manifold type gasification system
US4117786A (en) Inlet air preheating for pyrolysis system
JPS62236891A (en) Method and apparatus for gasification in coal gasification oven
US2509866A (en) Low-temperature combustion and apparatus therefor
JPH0233511A (en) Slanting horizontal type swirl flow melting method and its device
CN208814958U (en) A kind of dry coal powder airflow bed gasification system of low pressure
JPH054565B2 (en)
CZ284960B6 (en) Process and apparatus for cooling circulating material within a steam boiler with a fluidized bed furnace
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP2000055303A (en) Waste heat recovering facility for melt reducing furnace and method for operating the same
JPH0227290Y2 (en)
CA1319055C (en) Non-peripheral blowing of oxygen-containing gas in steam generating boilers
JP2641826B2 (en) Combustion method of liquid fuel in circulating fluidized bed
CN108795502A (en) A kind of dry coal powder airflow bed gasification system of low pressure and method
JPH075898B2 (en) Coal gasifier
CN116590056A (en) Preheating system and preheating method of gasifying agent for fluidized bed gasifier
CN107084386A (en) A kind of integrated gasification fired boiler system of biomass
JPH0619550Y2 (en) Coal gasifier
JP3857107B2 (en) Pyrolysis gas reburning equipment for waste incineration
CN105135424A (en) Boiler slag dump automation and cooling water treatment device and method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11