JP2769623B2 - Inclined horizontal circulation melting method and apparatus - Google Patents

Inclined horizontal circulation melting method and apparatus

Info

Publication number
JP2769623B2
JP2769623B2 JP63183200A JP18320088A JP2769623B2 JP 2769623 B2 JP2769623 B2 JP 2769623B2 JP 63183200 A JP63183200 A JP 63183200A JP 18320088 A JP18320088 A JP 18320088A JP 2769623 B2 JP2769623 B2 JP 2769623B2
Authority
JP
Japan
Prior art keywords
furnace
combustion
slag
air
swirling flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63183200A
Other languages
Japanese (ja)
Other versions
JPH0233511A (en
Inventor
敬 石田
義一 上田
輝二 久保田
操 五十嵐
法親 田中
泰彦 上条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP63183200A priority Critical patent/JP2769623B2/en
Publication of JPH0233511A publication Critical patent/JPH0233511A/en
Application granted granted Critical
Publication of JP2769623B2 publication Critical patent/JP2769623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、乾燥下水汚泥や石炭等の不燃物を含む粉状
可燃物を燃焼させ、該粉状可燃物に含まれる不燃物を熱
効率良く溶融しスラグ化して系外に取出すことができる
傾斜横置形旋回流溶融方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention burns powdered combustibles including incombustibles such as dry sewage sludge and coal, and efficiently removes incombustibles contained in the powdery combustibles. The present invention relates to an inclined horizontal swirling flow melting method and an apparatus thereof that can be melted, turned into slag, and taken out of the system.

〔従来の技術〕[Conventional technology]

従来、乾燥下水汚泥や石炭のように不燃物を含む粉状
可燃物を、円筒状の炉体の端面あるいは側面から燃焼用
空気に乗せて、炉体の内部に強い旋回流が生じるように
噴射させつつ燃焼させ、その燃焼熱により焼却灰を溶融
させて、炉体出口から流出させるようにした旋回流溶融
炉は、一般に広く知られている(例えば、特開昭61−21
3408号公報〔以下「文献1」という。〕又は特願昭62−
4489号明細書〔以下「文献2」という。〕参照)。
Conventionally, powdery combustibles including incombustibles such as dry sewage sludge and coal are put on combustion air from the end face or side face of a cylindrical furnace body, and injected so that a strong swirling flow is generated inside the furnace body. A swirling-flow melting furnace in which incineration ash is melted by the heat of combustion and discharged from the furnace body outlet is generally known (for example, see Japanese Patent Application Laid-Open No. 61-21).
No. 3408 [hereinafter referred to as “Document 1”. Or Japanese Patent Application No. 62-
No. 4489 [hereinafter referred to as “Document 2”. 〕reference).

文献1に記載された旋回溶融炉は、円筒状の炉体が所
定角度傾斜して配置され、この炉体の一側端面部(上流
側端面部)に、重油供給管及び重油燃焼用の空気供給管
を有する補助バーナーが設置され、かつ炉体の他側端面
部(下流側端面部)に、廃ガス出口と溶融物落口とを上
下に備えた排出用筒体が連結されると共に、上記炉体の
一側端寄りの外周面上部に、粉状可燃物供給口と燃焼用
空気口とが設けられたものである。そして、上記補助バ
ーナーは、重油供給管と空気供給管とが二重構造とさ
れ、これらの先端部に、ノズル流を旋回させる案内羽根
が付設されたものである。
In the swirling melting furnace described in Document 1, a cylindrical furnace body is arranged at a predetermined angle and inclined, and a heavy oil supply pipe and air for fuel oil combustion are provided at one end surface (upstream end surface) of the furnace body. An auxiliary burner having a supply pipe is installed, and a discharge cylinder having a waste gas outlet and a melt outlet vertically connected to the other end surface (downstream end surface) of the furnace body, A powdered combustible material supply port and a combustion air port are provided on an upper portion of an outer peripheral surface near one end of the furnace body. The auxiliary burner has a dual structure of a heavy oil supply pipe and an air supply pipe, and a guide vane for turning the nozzle flow is attached to the tip of these pipes.

文献2には、一次燃焼炉と二次燃焼炉から成る傾斜横
置形旋回流溶融炉が記載されている。そして、二次燃焼
炉の中間部に燃焼用空気供給口が記載され、該炉内へ酸
素補給が供給可能となつている。また、該炉にはオリフ
イス状の邪魔板が図示される。そして、該邪魔板から上
手の炉内を上流側、中間部、下流側に三分してその実施
結果が説明されている。
Literature 2 describes an inclined horizontal swirling flow melting furnace including a primary combustion furnace and a secondary combustion furnace. In addition, a combustion air supply port is described in an intermediate portion of the secondary combustion furnace, so that oxygen supply can be supplied into the furnace. Also shown in the furnace is an orifice-shaped baffle. The result of the operation is described by dividing the inside of the good furnace from the baffle plate into an upstream side, an intermediate portion, and a downstream side.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記従来の旋回流溶融炉にあつては、その炉
内を高温に保持して、溶融を行なう炉であつて、その炉
の高温性から、炉体の保護、炉内作用の安定、炉体熱の
処理法など、当該溶融炉自身の解決すべき問題点と、本
発明の適用すべき産業の公共性、すなわち、廃棄物処
理、排熱利用などの省エネルギー処理、メンテナンス・
フリーなど、溶融炉運転系統全体を有機的にして解決す
べき問題点とを合せて、総合的に解決する運転方法が確
立されなければならなかつた。以下にそれらの問題点を
列挙する。
However, the conventional swirling flow melting furnace described above is a furnace that melts while maintaining the inside of the furnace at a high temperature, and because of the high temperature of the furnace, protects the furnace body, stabilizes the operation in the furnace, The problems to be solved by the melting furnace itself, such as the method of treating the furnace body heat, and the public nature of the industry to which the present invention should be applied, that is, waste treatment, energy saving treatment such as waste heat utilization, maintenance,
It has been necessary to establish an operating method that can solve the problem comprehensively, including the problems that must be solved by making the entire melting furnace operation system organic, such as free. The problems are listed below.

(イ) 比較的低温の乾燥汚泥を一次燃焼炉又は二次燃
焼炉へ直接投入するので、汚泥と燃焼用空気とからなる
流動混合体をできるだけ効率よく生成させなければ当該
炉での昇温の立上りないし保持が悪い。
(B) Since the relatively low-temperature dry sludge is directly introduced into the primary combustion furnace or the secondary combustion furnace, if the fluid mixture composed of the sludge and the combustion air is not generated as efficiently as possible, the temperature in the furnace may be increased. Poor rise or retention.

(ロ) 従来、炉体熱を空冷により除去するか、あるい
は復水を供給して蒸気として排熱することが行なわれて
いた。そのため、炉体ジヤケツト部がボイラー仕様とな
るために缶体形状に設計上の制約を受けることが多かつ
た。
(B) Conventionally, furnace body heat has been removed by air cooling, or condensate has been supplied to exhaust heat as steam. For this reason, the furnace body is often subjected to design restrictions on the shape of the can body because the furnace jacket part has boiler specifications.

(ハ) 炉内の旋回流作用の安定化について次の問題点
がある。第1に、二次燃焼炉内の邪魔板についてである
が、炉内反応部分と排出部分とを仕切る邪魔板は、被処
理汚泥の滞留時間、排気量および溶融スラグ排出量との
関数で、その形状は決まる。邪魔板ないしオリフイスの
開口面積は、炉断面積との比によつて、その比が小であ
れば該滞留時間は大きく、溶融スラグ排出量は小さくな
るかまたは阻害される。該比を大きくしてスラグ排出量
を取り出し易くすれば、滞留時間が短かくなる。両要素
の釣合には困難がつきまとう。
(C) Stabilization of the swirling flow action in the furnace has the following problems. First, regarding the baffle plate in the secondary combustion furnace, the baffle plate separating the reaction part and the discharge part in the furnace is a function of the residence time of the sludge to be treated, the amount of exhaust, and the amount of molten slag discharged, Its shape is determined. Depending on the ratio of the opening area of the baffle or orifice to the sectional area of the furnace, if the ratio is small, the residence time is long and the amount of molten slag discharged is reduced or hindered. If the slag discharge amount is easily taken out by increasing the ratio, the residence time is shortened. Difficulty comes with balancing both elements.

第2に、二次燃焼炉内の安定温度領域の拡大の問題で
あるが、前記邪魔板の形状の選定とも関連するが、該炉
内の高温状態が安定することは、燃焼反応を良好に保持
し、生成する溶融スラグの流動性を確保することでもあ
る。すなわち、該スラグの排出を効果的にし、炉の継続
運転を効果的にする。
Secondly, the problem of the expansion of the stable temperature range in the secondary combustion furnace is related to the selection of the shape of the baffle plate. It is also to maintain and maintain the fluidity of the generated molten slag. That is, the slag is effectively discharged, and the continuous operation of the furnace is effectively performed.

第3に、溶融スラグ排出に伴なうスラグ排出部閉塞予
防対策の問題であるが、溶融スラグが燃焼反応領域外
で、排出に当つて生じる障害は、第5図に示す例のよう
に、上方から下方にスラグを排出部4へ案内するとき、
炉壁を濡らして降下する溶融スラグが、壁面に固着し
て、排気の漏洩を少くし、溶融スラグを通過させる狹搾
部を遂には閉塞することである。この狹搾部の開口が図
示の大きさより広くても、炉壁を濡らしながら溶融スラ
グを排出するときに宿命的に生ずる炉運転停止原因であ
る。
Thirdly, there is a problem of preventing the slag discharge portion from being clogged due to the discharge of the molten slag, and a problem that occurs in the discharge of the molten slag outside the combustion reaction zone, as in the example shown in FIG. When guiding the slag from the upper part to the lower part to the discharge part 4,
The molten slag that wets the furnace wall and descends adheres to the wall surface, reduces the leakage of exhaust gas, and finally blocks the narrowing portion through which the molten slag passes. Even if the opening of the constricted portion is wider than the size shown in the figure, it is a cause of the furnace shutdown that is fatally caused when the molten slag is discharged while the furnace wall is being wetted.

第4に、二次燃焼炉への燃焼用空気の供給が、該炉の
旋回流雰囲気を阻害しないようにすることが必要であ
る。該炉内高温雰囲気を補助空気で補給することによつ
て酸素供給の目的に果せる。そのために旋回流を阻害で
きない。
Fourth, it is necessary that the supply of combustion air to the secondary combustion furnace does not disturb the swirling atmosphere of the furnace. By supplementing the high temperature atmosphere in the furnace with auxiliary air, the purpose of oxygen supply can be achieved. Therefore, the swirling flow cannot be inhibited.

(ニ) 運転系統全体の有機性に係わる問題であるが、
炉の排気熱をどのように燃焼用空気に熱交換し、転換し
た該空気の保有熱とその供給量とを有効に管理する方法
が確立されなければならないし、また炉とその前処理施
設である乾燥機との有効熱利用法が確立されなければな
らない。
(D) This is a problem related to the organic nature of the entire operation system.
A method must be established for how the heat of the exhaust gas from the furnace is exchanged with the combustion air, and how the retained heat of the converted air and its supply are effectively managed. Effective heat utilization with some dryers must be established.

本発明は、上記事情に鑑みてなされたもので、その目
的とするところは、粉状可燃物を効率良く燃焼させるこ
とができ、かつ炉体内の温度を一定にかつ高温に保持す
ることができ、粉状可燃物に含まれる不燃物を完全に溶
融させて、円滑に炉外に排出させることができる旋回流
溶融炉を提供することにあり、かつ、その運転方法を本
技術分野の要部全体を考慮して管理可能の有効で効果的
なものとして提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to efficiently burn powdery combustibles and to maintain a constant and high temperature in a furnace. The object of the present invention is to provide a swirling flow melting furnace capable of completely melting incombustibles contained in powdery combustibles and smoothly discharging the same out of the furnace. It is to provide a manageable, effective and effective one that takes into account the whole.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明は、以下の特徴を有
する。
To achieve the above object, the present invention has the following features.

本発明方法は、(1)被処理汚泥を乾燥した後,該汚
泥を旋回流雰囲気中で高温処理して溶融スラグを生成さ
せ、該溶融スラグを冷却する廃棄物の旋回流溶融方法に
おいて、乾燥汚泥を400〜600℃の燃焼用空気に混入した
後、旋回流状態にて1000〜1200℃で一次燃焼炉内で一次
燃焼させ、その一次燃焼で生成した流動混合体を旋回流
状態で、1350〜1450℃の二次燃焼炉内に供給して二次燃
焼させするとともに、該二次燃焼雰囲気中で上流側から
下流側にかけて、燃焼用空気を分散供給可能とする前記
流動混合体の昇温手段を配設して、溶融スラグを完全溶
融して炉排出部へ移送した後、冷却スラグとして取り出
し、燃焼済み排気は、含有する浮遊塵を除去した後、そ
の保有熱を別途に取入れる空気と熱交換して、前記燃焼
用空気として、前記一次ないし二次燃焼用の昇温手段用
に供給する燃焼用空気分割供給系を有し、前記二次燃焼
炉の側壁に配置する復水加熱ジャケットへ前記乾燥の際
に発生する約90℃以下の復水を供給して180〜190℃の高
温水を得、前記取入れる空気と熱交換した後の排気とと
もに該高温水をボイラーへ供給し加熱して蒸気とし、該
蒸気を適圧に減圧して該乾燥の加熱媒体とすることを特
徴とする傾斜横置形旋回流溶融方法である。
The method of the present invention is characterized in that (1) a method for drying a sludge to be treated, wherein the sludge is dried and then subjected to a high-temperature treatment in a swirling flow atmosphere to generate molten slag, and the molten slag is cooled. After mixing the sludge into the combustion air at 400 to 600 ° C, it is subjected to primary combustion in a primary combustion furnace at 1000 to 1200 ° C in a swirling flow state, and the fluid mixture produced by the primary combustion is swirled at 1350 ° C. The temperature of the fluid mixture is increased by supplying into a secondary combustion furnace at ~ 1450 ° C. to perform secondary combustion, and also to allow the combustion air to be dispersed and supplied in the secondary combustion atmosphere from upstream to downstream. Arrange the means, completely melt the molten slag, transfer it to the furnace discharge, take it out as cooling slag, remove the suspended dust contained in the burned exhaust, and then take in the retained heat separately. Heat exchange with the primary air as the combustion air And a combustion air split supply system for supplying to the temperature raising means for secondary combustion, and the condensate heating jacket disposed on the side wall of the secondary combustion furnace has a temperature of about 90 ° C. or less generated during the drying. By supplying condensed water to obtain high-temperature water of 180 to 190 ° C, supplying the high-temperature water to the boiler together with the exhaust air after heat exchange with the intake air and heating it to steam, and reducing the steam to an appropriate pressure. And a heating medium for the drying.

また、(2)各燃焼用空気は、それらを供給する燃焼
用雰囲気に対し旋回流生成可能に供給することを特徴と
する前記(1)に記載の傾斜横置形旋回流溶融方法であ
る。
(2) The inclined horizontal swirling flow melting method according to (1), wherein each of the combustion air is supplied so as to generate a swirling flow with respect to a combustion atmosphere for supplying the combustion air.

また、(3)被処理汚泥を乾燥した後,該汚泥を旋回
流雰囲気中で高温処理して溶融スラグを生成させて廃棄
物処理する旋回流溶融方法において、旋回流溶融炉の側
壁に配置する復水加熱ジャケットへ前記乾燥の際に発生
する約90℃以下の復水を供給して180〜190℃の高温水を
得、該旋回流溶融炉より排出して、その保有熱を、取入
れ空気へ熱交換した後の排気とともに該高温水をボイラ
ーへ供給し加熱して蒸気とし、該蒸気を適圧に減圧して
該乾燥の加熱媒体とすることを特徴とする旋回流溶融炉
の炉体熱の循環有効利用法である。。
(3) In the swirling flow melting method in which the sludge to be treated is dried and then treated at a high temperature in a swirling flow atmosphere to generate a molten slag and dispose of the waste, the sludge is disposed on a side wall of the swirling flow melting furnace. The condensate of about 90 ° C. or less generated during the drying is supplied to the condensate heating jacket to obtain high-temperature water of 180 to 190 ° C., discharged from the swirling-flow melting furnace, and the retained heat is taken into the intake air. The high-temperature water is supplied to a boiler together with the exhaust gas after the heat exchange, and heated to form a steam, and the steam is reduced to an appropriate pressure to be used as a heating medium for drying. It is a method of effectively utilizing heat circulation. .

本発明装置は、(4)乾燥機を経た被処理汚泥を、予
熱され燃焼用空気とともに供給する一次燃焼炉と該一次
燃焼炉を炉体の断面接線方向に沿って連接する二次燃焼
炉とで構成する旋回流溶融炉において、二次燃焼炉の上
流側を上方に、下流側を下方に、かつ、炉排出部に連接
して該炉本体を横置し、該下流側の入口を下方に逆U字
状開口を有する邪魔板で仕切るとともに、該上流側に一
次燃焼炉を、前記上流側と前記下流側との中間部に昇温
手段を連設し、該昇温手段は、燃焼用空気供給口または
燃焼用空気供給口を伴なう補助バーナーが配設され、前
記乾燥機の復水を前記二次燃焼炉の側壁に配置された復
水加熱ジャケットへ供給し加熱された高温水をボイラー
へ供給し蒸気として該乾燥機へ循環可能としたこと特徴
とする傾斜横置形旋回流溶融炉である。
The apparatus of the present invention comprises: (4) a primary combustion furnace that supplies sludge to be treated that has passed through a dryer together with combustion air, and a secondary combustion furnace that connects the primary combustion furnace along a tangential direction of a cross section of the furnace body. In the swirling flow melting furnace, the upstream side of the secondary combustion furnace is located upward, the downstream side is located downward, and the furnace body is laid laterally in connection with the furnace discharge portion, and the downstream inlet is located downward. A primary combustion furnace is connected upstream of the baffle plate, and a temperature increasing means is connected to an intermediate portion between the upstream side and the downstream side. An auxiliary burner having an air supply port for combustion or an air supply port for combustion is provided, and the condensate of the dryer is supplied to a condensate heating jacket arranged on the side wall of the secondary combustion furnace to be heated to a high temperature. Characterized in that water can be supplied to a boiler and circulated as steam to the dryer. Flow is a melting furnace.

また、(5)炉排出部には二次燃焼炉の炉底に沿って
該炉の下流端に延在する舌端状に、かつ、凹状に形成す
るスラグ排出路を有し、該スラグ排出路の排出端の下方
にスクレーパーと回転するスラグ冷却機とよりなる冷却
部を有し該排出端より落下したスラグを該スラグ冷却機
から脱離可能としたこと特徴とする前記(4)に記載の
傾斜横置形旋回流溶融炉である。
(5) The furnace discharge section has a tongue-shaped and concave-shaped slag discharge path extending along the furnace bottom of the secondary combustion furnace to the downstream end of the furnace, and the slag discharge path is provided. The method according to (4), wherein a cooling unit including a scraper and a rotating slag cooler is provided below a discharge end of the path, and slag dropped from the discharge end can be detached from the slag cooler. Is an inclined horizontal swirling flow melting furnace.

〔作用〕[Action]

(1) 本発明の燃焼用空気分割供給系は、二次燃焼炉
の排気熱を常温の燃焼用空気へ熱交換(ガス−ガス)し
て該空気を昇温し、その昇温した空気を一次燃焼炉と二
次燃焼炉へ分割供給することによつて、空気の全供給量
と温度(または熱量)を総合管理可能とする。また、 (2) 乾燥機の熱源を蒸気とし、その復水を旋回流溶
融炉の二次燃焼炉の炉外壁ジヤケツトへ供給して、高圧
高温水として取出し、該高温水を用いることによつて、
空気より大きな潜熱を利用することができる。その結
果、除熱媒体を空気や蒸気とする従来例に比べ、比較的
低温で流量少なく炉体熱を炉外へ取り出すことができる
作用がある。この得られた高温水を別途ボイラーで加熱
処理し、その処理した蒸気を乾燥機の熱源に、減圧に調
節する減圧弁を介して供給する。この循環系を形成する
ことによつて、有効熱利用が得られる。この循環系に要
部に高温水を用いることにより、炉体壁の保全を従来例
(キャスタブル交換が約4〜5回/年)より向上すると
いう作用が生れる。(キヤスタブル交換は年に1〜2回
である。) (3) 一次燃焼量と二次燃焼用とにほぼ等分に供給す
るとともに、二次燃焼用としてほぼ等分に分割供給する
ように燃焼用空気を案分することにより、二次燃焼炉内
の温度を広い領域にわたつて高温状態で安定化できると
いう作用がある。そして、該炉内中間域を長く安全確保
できるとともに、適当数に分割増加させる該供給口によ
つて中間域の長短に対応し得るという作用が生れた。
(1) The combustion air split supply system of the present invention heat-exchanges (gas-gas) the exhaust heat of the secondary combustion furnace to normal-temperature combustion air to raise the temperature of the air. By dividing and supplying the air to the primary combustion furnace and the secondary combustion furnace, the total supply amount of air and the temperature (or heat amount) can be comprehensively controlled. (2) The steam is used as the heat source of the dryer, and the condensate is supplied to the outer jacket of the secondary combustion furnace of the swirling flow melting furnace, taken out as high-pressure high-temperature water, and the high-temperature water is used. ,
Greater latent heat than air can be used. As a result, there is an effect that the furnace body heat can be taken out of the furnace at a relatively low temperature and with a small flow rate as compared with the conventional example in which the heat removal medium is air or steam. The obtained high-temperature water is separately heat-treated by a boiler, and the treated steam is supplied to a heat source of a dryer through a pressure-reducing valve that adjusts to a reduced pressure. By forming this circulation system, effective heat utilization can be obtained. By using high-temperature water in the main part of this circulation system, the effect of improving the maintenance of the furnace body wall is improved as compared with the conventional example (castable replacement is about 4 to 5 times / year). (Castable replacement is performed once or twice a year.) (3) Combustion so that the primary combustion amount and the secondary combustion are supplied almost equally, and the secondary combustion is almost equally divided and supplied. Proportionation of the working air has the effect of stabilizing the temperature in the secondary combustion furnace at a high temperature over a wide area. In addition, the middle area in the furnace can be secured for a long time, and the length of the middle area can be controlled by the supply ports divided and increased by an appropriate number.

(4) 燃焼用空気を供給するに当つて、どの供給も旋
回流生成可能に行なうので、炉内旋回流は助長するこそ
すれ、阻害作用は生じない。
(4) In supplying the combustion air, any supply is performed so that a swirl flow can be generated, so that the swirl flow in the furnace can be promoted but no obstructive action occurs.

(5) 二次燃焼炉の中間部に複数の燃焼用空気の供給
口を適宜配設可能であつて、それらを、必要に応じて補
助バーナーを併設する該炉内の昇温手段としているの
で、該中間部の設計に対応した該炉内雰囲気の適温の安
定化が行ない得る。
(5) Since a plurality of combustion air supply ports can be appropriately arranged in the middle part of the secondary combustion furnace, and these are used as a means for increasing the temperature in the furnace, an auxiliary burner is additionally provided as necessary. In addition, it is possible to stabilize the atmosphere in the furnace at an appropriate temperature corresponding to the design of the intermediate portion.

(6) 二次燃焼炉が傾斜していることによつて(適度
な傾斜度を与えることによつて)、溶融スラグの性状に
対応して、その排出に有効に対処可能である。また、二
次燃焼炉の熱反応領域と炉排出側を、下方に逆U字状開
口を有する邪魔板で仕切るものなので、溶融スラグ流の
多少を、その流動性を有するスラグ自身が堰を形成する
作用が生じてスラグ排出路への適量移送制御作用が併行
して生ずるとともに、これら溶融スラグの作用が旋回流
雰囲気での被処理汚泥の滞留時間の邪魔板への影響力を
小さくし、事実上、溶融スラグの排出と該滞留時間との
関連性阻害要因を除去する作用がある。
(6) Due to the inclination of the secondary combustion furnace (by providing an appropriate degree of inclination), it is possible to effectively deal with the discharge of molten slag in accordance with the properties of the molten slag. In addition, since the thermal reaction region of the secondary combustion furnace and the furnace discharge side are separated by a baffle plate having an inverted U-shaped opening at the bottom, some of the molten slag flow forms a weir with the fluidity of the slag itself. In addition to the effect of controlling the transfer of an appropriate amount to the slag discharge path, the effect of the molten slag reduces the effect of the residence time of the sludge to be treated in the swirling atmosphere on the baffle plate, In addition, it has an effect of removing a factor that hinders the relation between the discharge of the molten slag and the residence time.

(7) 二次燃焼炉の溶融スラグ路の排出端を立ダクト
状の下部に「溶融スラグ受け」を有するスラグ排出部を
配設して、そこへ落下可能に舌端状かつ凹状に形成する
スラグ排出路としているので、溶融状スラグの流下距離
を最短にし、該炉にならう傾斜はスラグを効果的に案内
し、かつ、スラグ排出路以外のその他の炉壁を濡らすこ
となく、直接、該溶融スラグを「溶融スラグ受け」(図
示せず)へ移送できるという作用が生ずる。
(7) The discharge end of the molten slag path of the secondary combustion furnace is provided with a slag discharge portion having a “molten slag receiver” at the lower part of a vertical duct shape, and is formed in a tongue-shaped and concave shape so that it can drop there. Since it is a slag discharge path, the flow distance of the molten slag is minimized, the slope following the furnace effectively guides the slag, and directly without wetting other furnace walls other than the slag discharge path, There is an effect that the molten slag can be transferred to a “molten slag receiver” (not shown).

〔実施例〕〔Example〕

以下、第1図ないし第14図に基づいて本発明の一実施
例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 14.

第1図は本発明の装置を含む要部のフローシート、第
2図は本発明の方法の燃焼用空気供給方法の説明図、第
3図は二次燃焼炉内温度の説明図、第4図は一次燃焼
炉、二次燃焼炉およびスラグ冷却部の概略断面図、第5
図は縦形旋回流溶融炉の二次燃焼炉とスラグ冷却期間の
排出部のスラグ移動状態を示す説明用断面図、第6図は
二次燃焼炉内の邪魔板(バツフルプレート)部の断面図
で第4図中のA−A線矢視図、第7図は二次燃焼炉のス
ラグ排出路の説明用斜視図、第8図(a)はスラグ冷却
機の平面図、第8図(b)はその側面断面図、第9図な
いし第14図は特許請求の範囲記載の技術的手段の図解説
明図で、第9図は第1項、第10図は第2項、第11図は第
3項および第4項、第12図(a)、(b)は第5項、第
13図は第6項、第14図は第7項をそれぞれ示す。第12図
(a)は第11図中のA矢視図、第12図(b)は第12図
(a)中のB矢視図、第14図は第4図中のC矢視図であ
る。
FIG. 1 is a flow sheet of a main part including the apparatus of the present invention, FIG. 2 is an explanatory view of a combustion air supply method of the method of the present invention, FIG. 3 is an explanatory view of a temperature in a secondary combustion furnace, FIG. The figure is a schematic sectional view of the primary combustion furnace, the secondary combustion furnace, and the slag cooling section, and FIG.
The figure is a cross-sectional view for explaining the secondary combustion furnace of the vertical swirling flow melting furnace and the slag moving state of the discharge part during the slag cooling period, and FIG. 6 is a cross-section of a baffle plate part in the secondary combustion furnace. FIG. 7 is a view taken along the line AA in FIG. 4, FIG. 7 is a perspective view for explaining a slag discharge path of the secondary combustion furnace, FIG. 8 (a) is a plan view of a slag cooler, FIG. 9 (b) is a side sectional view thereof, and FIGS. 9 to 14 are illustrative illustrations of technical means described in the claims. FIG. 9 is the first term, FIG. 10 is the second term, FIG. Figures are the third and fourth terms, FIGS. 12 (a) and (b) are the fifth and fourth terms.
FIG. 13 shows the sixth term, and FIG. 14 shows the seventh term. FIG. 12 (a) is a view as viewed in the direction of arrow A in FIG. 11, FIG. 12 (b) is a view as viewed in the direction of arrow B in FIG. 12 (a), and FIG. 14 is a view as viewed in the direction of arrow C in FIG. It is.

乾燥機1で乾燥された被熱処理原料(以下「汚泥」と
いう。)Mは常温空気Aを圧送する送風機8によつて二
次燃焼炉3より排出され、その排気Dの保有熱によつて
熱交換されて400〜600℃に昇温された燃焼用空気Aと混
合装置13で混合され、供給口21を介して一次燃料炉2へ
供給される。ここで初期に補助バーナー22の運転で旋回
流雰囲気で、燃焼し、1000〜1200℃の汚泥Mと該空気A
とからなる流動混合体Kを生成したのち、適宜に補助バ
ーナー22は運転休止される。
The raw material to be heat-treated (hereinafter referred to as “sludge”) M dried in the dryer 1 is discharged from the secondary combustion furnace 3 by a blower 8 for feeding air at normal temperature A, and is heated by the retained heat of the exhaust D. The air is exchanged and mixed with the combustion air A heated to 400 to 600 ° C. by the mixing device 13 and supplied to the primary fuel furnace 2 through the supply port 21. Here, initially, the auxiliary burner 22 is operated to burn in a swirling atmosphere, and the sludge M at 1000 to 1200 ° C. and the air A are burned.
After the formation of the fluid mixture K consisting of

ちなみに、混合装置13に該空気Aと混合する汚泥Mは
図に記載しない手段によつて原則的に微砕化されたもの
である。この一次燃焼炉2にあつては、汚泥Mは専ら部
分燃焼する。
Incidentally, the sludge M to be mixed with the air A in the mixing device 13 is basically pulverized by means not shown in the figure. In the primary combustion furnace 2, the sludge M is partially burned.

なお、排気Dは空気予熱器(熱交換器)7へ供給する
前に浮遊物除去装置6で処理される。この排気は、1000
〜1300℃であり、熱交換時にあつても、ほぼ1000℃は確
保されている。燃焼炉の一次炉から二次炉へは、二次炉
において旋回流生成可能に前記流動混合体Kが供給され
る。該二次炉は、第13図に示すように、傾斜度θが水平
に対し10〜45゜角に横置され、その上流側は、流動混合
体供給口23を含む領域aであり、下流側は邪魔板33の上
流側の側面を含む領域cであつて、それら領域aとcと
の間に、二次炉の大きさによつて炉軸芯方向に沿う長短
に対応して認識可能の領域bが中間部として存在する。
この中間部には、昇温手段として適宜間隔を設けて、炉
壁に炉内雰囲気に対し旋回流生成ないし助成可能に配設
する補助の燃焼用空気の供給入口31、32および必要に応
じて併設する補助バーナーが供給入口31に設けられる。
該二次炉の燃焼用空気Aは、前記一次炉への燃焼用空気
Aの同一系統Pより分岐されるもので、一次炉への空気
供給量と二次炉への空気供給量との比はほぼ50:50とす
る。二次炉用複数の該供給入口31,32に前記50を25:25に
分割供給する(第11図参照)。これら配分比は、配分原
則を示すもので、ケースバイケースでそれぞれ約±20%
の偏差にて調整される。この空気供給量は、三次空気と
原料の流動混合体供給口23に40〜60%、供給入口31、32
に各20〜30%の割合に配分される。
The exhaust D is treated by the suspended matter removing device 6 before being supplied to the air preheater (heat exchanger) 7. This exhaust is 1000
~ 1300 ° C, and almost 1000 ° C is secured even during heat exchange. The fluid mixture K is supplied from the primary furnace of the combustion furnace to the secondary furnace so that a swirl flow can be generated in the secondary furnace. As shown in FIG. 13, the secondary furnace is laid horizontally at an angle of inclination of 10 to 45 ° with respect to the horizontal, and the upstream side is a region a including the fluid mixture supply port 23, The side is a region c including the upstream side surface of the baffle plate 33, and can be recognized between these regions a and c according to the length of the secondary furnace along the axial direction of the furnace depending on the size of the secondary furnace. Region b exists as an intermediate portion.
In this intermediate portion, an appropriate interval is provided as a temperature raising means, and auxiliary combustion air supply inlets 31 and 32 arranged on the furnace wall so as to generate or assist a swirling flow with respect to the atmosphere in the furnace, and as necessary, An auxiliary burner to be provided is provided at the supply inlet 31.
The combustion air A of the secondary furnace is branched from the same system P of the combustion air A to the primary furnace, and is a ratio of the air supply amount to the primary furnace to the air supply amount to the secondary furnace. Is approximately 50:50. The 50 is divided and supplied to the plurality of supply inlets 31 and 32 for the secondary furnace at a ratio of 25:25 (see FIG. 11). These allocation ratios indicate the allocation principle, and are approximately ± 20% on a case-by-case basis.
Is adjusted by the deviation of This air supply amount is 40-60% to the tertiary air and raw material fluid mixture supply port 23, and the supply inlets 31, 32
20-30% each.

第2図は2つの分割された場合を示しているが、中間
部bが長い場合は、供給入口31、32は増加し、必要に応
じ、補助バーナーも増加する。そして、以上の燃焼用空
気Aの配分は、温度検知手段及び供給量制御手段(図示
せず)により供給酸素量および配分比かつ熱量調整の各
手段が調整可能である。
FIG. 2 shows a case where two parts are divided. When the intermediate part b is long, the supply inlets 31 and 32 are increased, and the auxiliary burners are increased if necessary. The above distribution of the combustion air A can be adjusted by the temperature detecting means and the supply amount control means (not shown) by means of the supply oxygen amount, the distribution ratio and the heat amount adjustment means.

二次燃焼炉においては、一次燃焼炉より供給される流
動混合体が常時1350〜1450℃にて燃焼反応が継続するよ
うに管理する。その結果該流動混合体はガスと最終生成
物である溶融スラグとに分離する。該溶融スラグは該炉
体内壁を濡らしながら流下して、漸次下方へ移動する。
ここにおいて、溶融スラグ温度は約1450℃前後にあつて
流動性を有している。
In the secondary combustion furnace, the fluid mixture supplied from the primary combustion furnace is controlled so that the combustion reaction is always continued at 1350 to 1450 ° C. As a result, the fluidized mixture separates into a gas and a final product, molten slag. The molten slag flows down while wetting the inner wall of the furnace, and gradually moves downward.
Here, the molten slag temperature is about 1450 ° C. and has fluidity.

二次炉2内で生成した溶融スラグJは邪魔板33を流下
して二次炉3の下流端にあつて炉排出部4の内方へほぼ
二次炉の内壁が示す円弧と同形状の截片をした舌端状
で、かつ、凹状の溶融スラグ排出路34が突出している。
該排出路34まで流下する溶融スラグJはスラグ冷却部5
に直接落下し、そこで流動性を冷却によつて失なわれた
冷却スラグGは、その冷却速度の調整によつて、スラグ
形状が調整され、炉外へ排出される。スラグ排出路34の
上方、炉排出部4には、溶融スラグJの流動性を保持す
るための補助バーナー42が配設されて運転可能となつて
いる。
The molten slag J generated in the secondary furnace 2 flows down the baffle plate 33 and is directed to the downstream end of the secondary furnace 3 toward the inside of the furnace discharge section 4. The molten slag J has substantially the same shape as the arc shown by the inner wall of the secondary furnace. A cut-out tongue-shaped and concave molten slag discharge passage 34 protrudes.
The molten slag J flowing down to the discharge passage 34 is supplied to the slag cooling section 5.
The cooling slag G, which has dropped directly due to cooling, loses its fluidity by cooling, and the cooling slag G is adjusted in its cooling rate so that the slag shape is adjusted and discharged out of the furnace. An auxiliary burner 42 for maintaining the flowability of the molten slag J is disposed above the slag discharge path 34 and in the furnace discharge section 4 so that the furnace can be operated.

スラグ冷却部5には、常温(15℃)の冷却水H1によつ
て冷却されるスラグ冷却機18が回転するように設けら
れ、冷却機18に付着したスラグJはスクレーパー17によ
り脱離し、冷却スラグ出口51より排出する。排出冷却水
H2の温度は約80℃である。(第4図および第8図
(a)、(b)参照) 二次炉3よりの排気は溶融スラグ排出路34に対向する
炉排出部4の側壁に設けられた排気出口41から炉外へ排
出される。二次炉3の炉体壁に耐圧状に形成した復水加
熱ジヤケツト36を形成し、その一端復水入口37より乾燥
機1よりの復水F(約90℃以下)を受け入れ、炉体熱を
吸熱して、ジヤケツト36他端高温水出口38より高圧高温
水(180〜190℃)として取り出す。この高温水はボイラ
ー9へ熱交換器7を経た炉排気Dとともに熱処理され、
高圧蒸気とされ、途中減圧弁16によつて一定の適圧とし
たのち、乾燥機1の加熱源(蒸気温度約140℃)とす
る。
The slag cooling section 5, the slag cooler 18 which is by connexion cooled coolant H 1 cold (15 ° C.) is provided so as to rotate, slag J adhering to the cooler 18 is eliminated by a scraper 17, It is discharged from the cooling slag outlet 51. Discharge cooling water
The temperature of H 2 is about 80 ° C. (Refer to FIG. 4 and FIGS. 8 (a) and 8 (b).) Exhaust gas from the secondary furnace 3 goes out of the furnace through an exhaust outlet 41 provided on a side wall of the furnace discharge section 4 facing the molten slag discharge path 34. Is discharged. A condensate heating jacket 36 is formed on the furnace wall of the secondary furnace 3 in a pressure-resistant manner, and condensed water F (about 90 ° C. or less) from the dryer 1 is received at one end of the condensate inlet 37 and the furnace heat is Is absorbed and taken out as high-pressure high-temperature water (180 to 190 ° C.) from the high-temperature water outlet 38 at the other end of the jacket 36. This high-temperature water is heat-treated to the boiler 9 together with the furnace exhaust D passing through the heat exchanger 7,
The steam is converted into high-pressure steam, and after being adjusted to a constant appropriate pressure by the pressure reducing valve 16 on the way, it is used as a heating source (steam temperature of about 140 ° C.) of the dryer 1.

ちなみに二次炉3の邪魔板33は、炉断面積に対し、20
〜40%(平均値25〜30%)の開口比 が与えられ、被熱処理原料が定まれば、一度設定した開
口比はその開口比によつて実質上断続して実施して特に
問題とはならない。また、溶融スラグ排出路34の幅員は
該二次炉3の中心より仰角120゜以内で定まる大きさで
設けられている。(第14図参照) また、燃焼用空気供給系、二次炉ジヤケツト排気系、
高圧高温水系など、保温を必要とする装置・配管系には
全て充分な保温が施行される。
By the way, the baffle plate 33 of the secondary furnace 3 is 20
Aperture ratio of ~ 40% (average value 25-30%) When the raw material to be heat-treated is determined, the aperture ratio once set is substantially intermittently implemented according to the aperture ratio, and there is no particular problem. The width of the molten slag discharge passage 34 is set to a size determined within an elevation angle of 120 ° from the center of the secondary furnace 3. (Refer to Fig. 14.) Also, a combustion air supply system, a secondary furnace jacket exhaust system,
All devices and piping systems that require heat retention, such as high-pressure and high-temperature water systems, are sufficiently warmed.

なお、炉外壁ジヤケツトは生成高圧高温水を収容可能
な耐圧性構造物で製作される。
The outer jacket of the furnace is made of a pressure-resistant structure capable of storing generated high-pressure high-temperature water.

図面中、11は原料供給口、12は乾燥原料排出口、13は
原料と一次空気の混合装置、14は加熱蒸気供給口、15は
復水出口、16は減圧弁、17はスラグ冷却機のスクレーパ
ー、18はスラグ冷却機、19は補助燃料入口、21は一次燃
焼炉の原料と空気の供給口、22は一次燃焼炉の補助バー
ナー、23は一次燃焼炉の三次空気と原料の流動混合体供
給口、31は二次燃焼炉の空気供給入口(補助バーナーを
併設してもよい。)、32は二次燃焼炉の補助空気入口、
33は第6図に示すように、下方に逆U字状開口を有する
邪魔板(バツフルプレート、34は第7図に示すように、
二次燃焼炉の炉底に沿つて炉の下流端に延在する舌端状
に、かつ、凹状に形成するスラグ排出路、35は二次燃焼
炉の補助空気の分岐装置、36は二次燃焼炉の復水加熱ジ
ヤケツト、37は二次燃焼炉の復水入口、38は高温水出
口、4は炉排出部、41は炉排出部の排気出口、42は炉排
出部の補助バーナー、51は冷却スラグ出口、6は浮遊物
除去装置、7は空気予熱器、8は送風機、9はボイラ
ー、10はスクラバー、Aは燃焼用空気(O2)、Bは燃料
(油)、Cは汚泥(被熱処理原料)、Dは排気、Eは排
出生成高温水(蒸気混り熱水)系統路、Fは復水(系統
路)、Gは冷却スラグ、H1は冷却水、H2は排出冷却水、
Jは溶融スラグ、K流動混合体、Lは被熱処理原料(汚
泥)系統路、Mは乾燥原料系統路、Nは燃焼用空気(常
温)系統路、Pは燃焼用空気(予熱済)(保温付)系統
路、Qは燃料(油)系統路、Sは加熱蒸気系統路、Tは
排気系統路、Uはスラグ(冷却)系統路、Vは冷却水系
統路をそれぞれ示す。
In the drawing, 11 is a raw material supply port, 12 is a dry raw material discharge port, 13 is a mixing device for raw material and primary air, 14 is a heated steam supply port, 15 is a condensate outlet, 16 is a pressure reducing valve, and 17 is a slag cooler. Scraper, 18 is a slag cooler, 19 is an auxiliary fuel inlet, 21 is an inlet for raw material and air for the primary combustion furnace, 22 is an auxiliary burner for the primary combustion furnace, 23 is a fluid mixture of tertiary air and raw material for the primary combustion furnace A supply port, 31 is an air supply inlet of the secondary combustion furnace (an auxiliary burner may be provided), 32 is an auxiliary air inlet of the secondary combustion furnace,
33 is a baffle plate having an inverted U-shaped opening below (baffle plate; 34 is a baffle plate as shown in FIG.
A slag discharge path formed in a tongue-like and concave shape extending to the downstream end of the furnace along the bottom of the secondary combustion furnace, 35 is a branching device for auxiliary air of the secondary combustion furnace, and 36 is a secondary Combustion furnace condensing heating jacket, 37 is a secondary combustion furnace condensing inlet, 38 is a high temperature water outlet, 4 is a furnace discharge part, 41 is a furnace discharge part exhaust outlet, 42 is a furnace discharge part auxiliary burner, 51 Is a cooling slag outlet, 6 is a suspended matter removal device, 7 is an air preheater, 8 is a blower, 9 is a boiler, 10 is a scrubber, A is combustion air (O 2 ), B is fuel (oil), and C is sludge. (Raw material to be heat-treated), D is exhaust gas, E is emission generated high temperature water (hot water mixed with steam) system path, F is condensed water (system path), G is cooling slag, H 1 is cooling water, H 2 is discharge Cooling water,
J is a molten slag, K fluid mixture, L is a raw material (sludge) system line, M is a dry material system line, N is a combustion air (normal temperature) system line, and P is combustion air (preheated) (heat insulation). A) System path, Q is a fuel (oil) system path, S is a heating steam system path, T is an exhaust system path, U is a slag (cooling) system path, and V is a cooling water system path.

次に、上述した旋回流溶融炉を実際に運転した場合の
結果を、従来例(文献2の旋回流溶融炉)の運転結果と
あわせて説明する。
Next, the results when the above-described swirling flow melting furnace is actually operated will be described together with the operation results of the conventional example (the swirling flow melting furnace of Reference 2).

一次燃焼炉の補助燃料を定常的に使用しない場合 処理した乾燥下水汚泥の物性及び運転条件は以下の通
りである。
When the auxiliary fuel of the primary combustion furnace is not used regularly The physical properties and operating conditions of the treated dry sewage sludge are as follows.

乾燥下水汚泥(共通) 水分 1.5% 灰分 35.8% 可燃分 62.7% 総発熱量 3890kcal/kg・乾物 平均粒径 180μm 供給量 120kg/H 補助燃焼用空気供給管数 2(本発明のみ) (二次燃焼炉中間部に設置) 上記の条件で運転した結果を第1表に示す。Dry sewage sludge (common) Moisture 1.5% Ash 35.8% Flammable 62.7% Total calorific value 3890kcal / kg ・ Dry matter Average particle size 180μm Supply amount 120kg / H Number of air supply pipes for auxiliary combustion 2 (only for the present invention) (Installed in the middle of the furnace) Table 1 shows the results of operation under the above conditions.

補助燃料を定常的に使用した場合 使用した乾燥下水汚泥の物性及び運転条件は以下の通
りである。
When auxiliary fuel is used regularly The properties and operating conditions of the used dry sewage sludge are as follows.

乾燥下水汚泥(共通) 水分 2.0% 灰分 55.0% 可燃分 42.5% 総発熱量 2900kcal/kg・乾物 平均粒径 180μm 供給量 120Kg/H 補助燃焼用空気供給管数 2 (二次燃焼炉中間部に設置。中間部上手の該空気供
給管側に補助バーナー併設) 従来例(文献2)の補助燃焼用空気管数1 上記の条件で運転した結果を第2表に示す。
Dry sewage sludge (common) Moisture 2.0% Ash 55.0% Combustible 42.5% Total calorific value 2900kcal / kg ・ Dry matter Average particle size 180μm Supply amount 120Kg / H Number of auxiliary combustion air supply pipes 2 (Installed in the middle part of secondary combustion furnace (Auxiliary burner is provided on the side of the air supply pipe above the middle part.) The number of auxiliary combustion air pipes is 1 in the conventional example (Reference 2). Table 2 shows the results of operation under the above conditions.

上記2例から明らかなように、本発明にかかる旋回粒
溶融炉によつて効率の良い高負荷燃焼を長時間連続運転
することが可能になつた。
As is evident from the above two examples, the swirling particle melting furnace according to the present invention has made it possible to continuously perform efficient high-load combustion for a long time.

なお、第3図に温度調節した状態Iと温度調節しない
状態IIの炉内位置と温度の関係を上流側a、中間部b、
下流側cの区画、邪魔板33位置の関係において示してあ
る。状態Iでは温度が安定している。
FIG. 3 shows the relationship between the temperature in the furnace and the temperature in the state I in which the temperature is adjusted and the state II in which the temperature is not adjusted.
The section on the downstream side c and the position of the baffle plate 33 are shown. In state I, the temperature is stable.

〔発明の効果〕〔The invention's effect〕

本発明は、前記した構成を有し、かつ操作されるの
で、以下のような発明の効果を発揮する。
The present invention has the above-described configuration and is operated, so that the following effects of the present invention are exhibited.

(1) 廃棄物が一次燃焼炉2に投入する該炉と混合載
置13との間で、燃焼用空気Aの保有熱により充分昇温さ
れ、該炉内に投入した際の炉内高温雰囲気の阻害要因は
少ない。
(1) Between the furnace where the waste is put into the primary combustion furnace 2 and the mixing and mounting 13, the temperature is sufficiently raised by the heat retained in the combustion air A, and the high-temperature atmosphere inside the furnace when the waste is put into the furnace. There are few hindrance factors.

(2) 炉壁ジヤケツト36の除熱媒体を高圧高温水に選
定したので、該炉体キヤスタブルの温度は、該キヤスタ
ブルの材質を著しく阻害しない一定温度以下に抑えら
れ、該キヤスタブルの交換頻度は前記従来方式の1/4程
度に減じた。
(2) Since the heat removal medium of the furnace wall jacket 36 is selected to be high-pressure and high-temperature water, the temperature of the furnace body castable is suppressed to a certain temperature or less that does not significantly impede the material of the castable, and the frequency of replacement of the castable is as described above. Reduced to about 1/4 of the conventional method.

(3) 二次燃焼炉の邪魔板33の開口形状を、下向きU
字形とし、溶融スラグのスラグ自身により自己堰形成効
果を利用するものとしたので、汚泥の旋回流内の滞留時
間との相関を小さくさせた。
(3) The opening shape of the baffle plate 33 of the secondary combustion furnace is
Since the slag of the molten slag itself utilizes the self-weir forming effect, the correlation with the residence time of the sludge in the swirling flow is reduced.

(4) 炉内安定域を燃焼用空気の総合管理しながら補
助空気入口とその数を自由に選定し得るので、炉の設計
に対応して溶融炉の操作が容易にかつ自動化し易くなつ
た。
(4) Auxiliary air inlets and the number of auxiliary air inlets can be freely selected while comprehensively managing the combustion air in the stable area in the furnace, so that the operation of the melting furnace can be easily and automatically adapted to the furnace design. .

(5) 溶融スラグ排出に伴なう排出路の該スラグの冷
却による閉塞が決して起らなくなつた。
(5) Blockage of the discharge passage due to cooling of the slag, which accompanies discharge of the molten slag, never occurred.

(6) どの炉に対しても、燃焼用空気の供給を旋回流
生成可能に、炉に対し、その接線方向に供給するように
したので、炉への酸素供給と旋回流の阻害予防とを同時
に解決した。
(6) Since the supply of combustion air can be generated to any furnace in a tangential direction so that a swirl flow can be generated, supply of oxygen to the furnace and prevention of hindrance of the swirl flow can be achieved. Solved at the same time.

(7) 炉より排熱、炉体の除熱、燃焼用空気の熱転
換、乾燥機への熱供給とを、熱媒体の状態変化を適切に
綜合的に選択しているので、省エネルギー処理の適切な
管理体制を得るとともに該管理体制によつて、媒体の流
量、圧力、温度の調節、ひいては、メンテナンスフリー
を確保可能とした。
(7) Since the change in the state of the heat medium is appropriately selected for exhaust heat from the furnace, heat removal from the furnace body, heat conversion of combustion air, and heat supply to the dryer, energy saving processing An appropriate management system was obtained, and the control system enabled adjustment of the flow rate, pressure, and temperature of the medium, and maintenance-free operation.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の一実施例を示すもので、第1図は本発明
の装置を含む要部のフローシート、第2図は本発明の方
法の燃焼用空気供給方法の説明図、第3図は二次燃焼炉
内温度の説明図、第4図は一次燃焼炉、二次燃焼炉およ
びスラグ冷却部の断面図、第5図は縦形旋回流溶融炉の
二次燃焼炉とスラグ冷却部間の排出部のスラグ移動状態
を示す断面図、第6図は二次燃焼炉の邪魔板(バツフル
プレート)部の断面図で第4図中のA−A線矢視図、第
7図は二次燃焼炉のスラグ排出炉の説明用斜視図、第8
図(a)はスラグ冷却機のスクレーパー部の平面図、第
8図(b)はその側面断面図、第9図ないし第14図は特
許請求の範囲記載の技術的手段の図解説明図で、第9図
は第1項、第10図は第2項、第11図は第3項および第4
項、第12図は第5項、第13図は第6項、第14図は第7項
をそれぞれ示す。第12図(a)は第11図中のA矢視図、
第12図(b)は第12図(a)中のB矢視図、第14図は第
4図中のC矢視図である。 1……乾燥機、2……一次燃焼炉 3……二次燃焼炉、6……浮遊物除去装置 7……空気予熱器、9……ボイラー 13……原料と一次空気の混合装置 14……加熱蒸気供給口 21……原料と一次空気の供給口 22……補助バーナー 23……三次空気と原料の流動混合体供給口 31……補助空気入口、32……補助空気入口 33……邪魔板、34……スラグ排出路 36……復水外部加熱ジヤケツト 38……高温水出口、A……燃焼用空気 C……汚泥(被熱処理原料) D……排気、E……高温水系統路 G……冷却スラグ、J……溶融スラグ K……流動混合体、M……汚泥(乾燥された被熱処理原
料)
FIG. 1 shows an embodiment of the present invention. FIG. 1 is a flow sheet of a main part including an apparatus of the present invention, FIG. 2 is an explanatory view of a combustion air supply method of a method of the present invention, and FIG. Is an explanatory view of the temperature in the secondary combustion furnace, FIG. 4 is a sectional view of the primary combustion furnace, the secondary combustion furnace and the slag cooling section, and FIG. 5 is a section between the secondary combustion furnace and the slag cooling section of the vertical swirling flow melting furnace. FIG. 6 is a cross-sectional view of a baffle plate (baffle plate) portion of the secondary combustion furnace, showing a slag moving state of the discharge portion of FIG. Perspective view for explaining a slag discharge furnace of a secondary combustion furnace, FIG.
Fig. (A) is a plan view of a scraper part of a slag cooler, Fig. 8 (b) is a side sectional view thereof, and Figs. 9 to 14 are schematic illustrations of technical means described in the claims. 9 is the first term, FIG. 10 is the second term, FIG. 11 is the third term and the fourth term.
Item, FIG. 12 shows item 5, FIG. 13 shows item 6, and FIG. 14 shows item 7. FIG. 12 (a) is a view taken in the direction of arrow A in FIG. 11,
FIG. 12 (b) is a view as viewed in the direction of arrow B in FIG. 12 (a), and FIG. 14 is a view as viewed in the direction of arrow C in FIG. DESCRIPTION OF SYMBOLS 1 ... Dryer, 2 ... Primary combustion furnace 3 ... Secondary combustion furnace, 6 ... Floating matter removal device 7 ... Air preheater, 9 ... Boiler 13 ... Mixing device of raw material and primary air 14 ... … Heated steam supply port 21… Raw material and primary air supply port 22… Auxiliary burner 23… Tertiary air and raw material fluid mixture supply port 31… Auxiliary air inlet 32… Auxiliary air inlet 33… Plate, 34 Slag discharge passage 36 Condensing external heating jacket 38 High temperature water outlet, A Combustion air C Sludge (raw material to be heat treated) D Exhaust, E High temperature water system passage G: cooling slag, J: molten slag K: fluid mixture, M: sludge (dried raw material to be heat-treated)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23G 7/00 ZAB F23G 7/00 ZAB 104 104A (72)発明者 久保田 輝二 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 五十嵐 操 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 田中 法親 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 上条 泰彦 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (56)参考文献 特開 昭63−172808(JP,A) 特開 昭58−13916(JP,A) 特開 昭49−116874(JP,A) 特開 昭61−70314(JP,A) 特開 昭56−66613(JP,A) 特開 昭49−98070(JP,A) 実開 昭55−100834(JP,U) (58)調査した分野(Int.Cl.6,DB名) F23G 5/00 F23G 5/32 F23G 5/16 F23G 1/00 F23G 7/00──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F23G 7/00 ZAB F23G 7/00 ZAB 104 104A (72) Inventor Teruji Kubota 2-17-15 Tsukushima Tsukushima 2-chome, Chuo-ku, Tokyo Inside Machine Co., Ltd. (72) Inventor Misao Igarashi 2--17-15 Tsukuda, Chuo-ku, Tokyo Inside Tsukishima Machine Co., Ltd. (72) Inventor Hochika 2-17-15 Tsukuda, Chuo-ku, Tokyo Tsukishima Machine Inside Machine Co., Ltd. (72) Inventor Yasuhiko Kamijo 2-17-15 Tsukuda, Chuo-ku, Tokyo Inside Tsukishima Machine Co., Ltd. (56) References JP-A-63-172808 (JP, A) JP-A-58- 13916 (JP, A) JP-A-49-116874 (JP, A) JP-A-61-70314 (JP, A) JP-A-56-66613 (JP, A) JP-A-49-98070 (JP, A) Actual development 1980-100834 (JP, U) (58) Field surveyed ( Int.Cl. 6 , DB name) F23G 5/00 F23G 5/32 F23G 5/16 F23G 1/00 F23G 7/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被処理汚泥を乾燥した後,該汚泥を旋回流
雰囲気中で高温処理して溶融スラグを生成させ、該溶融
スラグを冷却する廃棄物の旋回流溶融方法において、乾
燥汚泥を400〜600℃の燃焼用空気に混入した後、旋回流
状態にて1000〜1200℃で一次燃焼炉内で一次燃焼させ、
その一次燃焼で生成した流動混合体を旋回流状態で、13
50〜1450℃の二次燃焼炉内に供給して二次燃焼させする
とともに、該二次燃焼炉雰囲気中の上流側から下流側に
かけて、燃焼用空気を分散供給可能とする前記流動混合
体の昇温手段を配設して、溶融スラグを完全溶融して炉
排出部へ移送した後、冷却スラグとして取り出し、燃焼
済み排気は、含有する浮遊塵を除去した後、その保有熱
を別途に取入れる空気と熱交換して、前記燃焼用空気と
して、前記一次ないし二次燃焼用の昇温手段用に供給す
る燃焼用空気分割供給系を有し、前記二次燃焼炉の側壁
に配置する復水加熱ジャケットへ前記乾燥の際に発生す
る約90℃以下の復水を供給して180〜190℃の高温水を
得、前記取入れる空気と熱交換した後の排気とともに該
高温水をボイラーへ供給し加熱して蒸気とし、該蒸気を
適圧に減圧して該乾燥の加熱媒体とすることを特徴とす
る傾斜横置形旋回流溶融方法。
1. A method for drying molten sludge, comprising: drying the sludge to be treated; treating the sludge at a high temperature in a swirling flow atmosphere to generate molten slag; After mixing in combustion air at ~ 600 ° C, primary combustion is performed in a primary combustion furnace at 1000-1200 ° C in a swirling flow state,
The fluid mixture produced by the primary combustion is swirled,
The fluid mixture is supplied into a secondary combustion furnace at 50 to 1450 ° C. to perform secondary combustion, and from the upstream side to the downstream side in the secondary combustion furnace atmosphere, the combustion mixture can be dispersed and supplied. A heating means is provided to completely melt the molten slag, transfer it to the furnace discharge section, take it out as cooling slag, remove the suspended dust contained in the burned exhaust gas, and separately collect the retained heat. A split air supply system for combustion which supplies heat to the primary or secondary combustion temperature raising means by exchanging heat with air to be supplied, and which is disposed on a side wall of the secondary combustion furnace. The condensate of about 90 ° C. or less generated during the drying is supplied to the water heating jacket to obtain high-temperature water of 180 to 190 ° C., and the high-temperature water is discharged to the boiler together with the exhaust air after the heat exchange with the intake air. Supply and heat to steam, depressurize the steam to an appropriate pressure and dry the steam. Tilting cross-standing swirling flow melting method characterized in that a heating medium.
【請求項2】各燃焼用空気は、それらの供給する燃焼用
雰囲気に対し旋回流生成可能に供給することを特徴とす
る特許請求の範囲第1項に記載の傾斜横置形旋回流溶融
方法。
2. The inclined horizontal swirling flow melting method according to claim 1, wherein each combustion air is supplied so as to generate a swirling flow with respect to the supplied combustion atmosphere.
【請求項3】被処理汚泥を乾燥した後,該汚泥を旋回流
雰囲気中で高温処理して溶融スラグを生成させて廃棄物
処理する旋回流溶融方法において、旋回流溶融炉の側壁
に配置する復水加熱ジャケットへ前記乾燥の際に発生す
る約90℃以下の復水を供給して180〜190℃の高温水を
得、該旋回流溶融炉より排出して、その保有熱を、取入
れ空気へ熱交換した後の排気とともに該高温水をボイラ
ーへ供給し加熱して蒸気とし、該蒸気を適圧に減圧して
該乾燥の加熱媒体とすることを特徴とする旋回流溶融炉
の炉体熱の循環有効利用法。
3. A swirling flow melting method in which sludge to be treated is dried and then treated at a high temperature in a swirling flow atmosphere to generate molten slag and dispose of waste, is disposed on a side wall of a swirling flow melting furnace. The condensate of about 90 ° C. or less generated during the drying is supplied to the condensate heating jacket to obtain high-temperature water of 180 to 190 ° C., discharged from the swirling-flow melting furnace, and the retained heat is taken into the intake air. The high-temperature water is supplied to a boiler together with the exhaust gas after the heat exchange, and heated to form a steam, and the steam is reduced to an appropriate pressure to be used as a heating medium for drying. Effective use of heat circulation.
【請求項4】乾燥機を経た被処理汚泥を、予熱された燃
焼用空気とともに供給する一次燃焼炉と該一次燃焼炉を
炉体の断面接線方向に沿って連接する二次燃焼炉とで構
成する旋回流溶融炉において、二次燃焼炉の上流側を上
方に、下流側を下方に、かつ、炉排出部に連接して該炉
本体を横置し、該下流側の入口を下方に逆U字状開口を
有する邪魔板で仕切るとともに、該上流側に一次燃焼炉
を、前記上流側と前記下流側との中間部に昇温手段を連
設し、該昇温手段は、燃焼用空気供給口または燃焼用空
気供給口を伴なう補助バーナーが配設され、前記乾燥機
の復水を前記二次燃焼炉の側壁に配置された復水加熱ジ
ャケットへ供給し加熱された高温水をボイラーへ供給し
蒸気として該乾燥機へ循環可能としたこと特徴とする傾
斜横置形旋回流溶融炉。
4. A primary combustion furnace for supplying sludge to be treated which has passed through a dryer together with preheated combustion air, and a secondary combustion furnace for connecting the primary combustion furnace along a sectional tangential direction of the furnace body. In the swirling flow melting furnace, the upstream side of the secondary combustion furnace is located upward, the downstream side is located downward, and the furnace body is laid horizontally in connection with the furnace discharge portion, and the downstream inlet is inverted downward. A partition is provided by a baffle plate having a U-shaped opening, a primary combustion furnace is provided on the upstream side, and a temperature increasing means is connected to an intermediate portion between the upstream side and the downstream side. An auxiliary burner having a supply port or a combustion air supply port is provided, and condensate of the dryer is supplied to a condensate heating jacket disposed on a side wall of the secondary combustion furnace to supply heated high-temperature water. Slant horizontal swirling flow melting characterized by being supplied to a boiler and circulating as steam to the dryer The furnace.
【請求項5】炉排出部には二次燃焼炉の炉底に沿って該
炉の下流端に延在する舌端状に、かつ、凹状に形成する
スラグ排出路を有し、該スラグ排出路の排出端の下方に
スクレーパーと回転するスラグ冷却機とよりなる冷却部
を有し該排出端より落下したスラグを該スラグ冷却機か
ら脱離可能としたこと特徴とする特許請求の範囲第4項
に記載の傾斜横置形旋回流溶融炉。
5. A furnace discharge portion having a slag discharge passage formed along a furnace bottom of a secondary combustion furnace at a downstream end of the furnace and formed in a tongue shape and in a concave shape. 5. A cooling unit comprising a scraper and a rotating slag cooler below a discharge end of a path, and slag dropped from said discharge end can be detached from said slag cooler. Item 4. The inclined horizontal swirling flow melting furnace according to item 2.
JP63183200A 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus Expired - Lifetime JP2769623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183200A JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183200A JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Publications (2)

Publication Number Publication Date
JPH0233511A JPH0233511A (en) 1990-02-02
JP2769623B2 true JP2769623B2 (en) 1998-06-25

Family

ID=16131521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183200A Expired - Lifetime JP2769623B2 (en) 1988-07-22 1988-07-22 Inclined horizontal circulation melting method and apparatus

Country Status (1)

Country Link
JP (1) JP2769623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654736B2 (en) * 1992-05-20 1997-09-17 株式会社荏原製作所 Dry sludge melting furnace equipment
US11396121B2 (en) 2018-08-20 2022-07-26 N.E.W. Plastics Corp. Extruded variegated plastic profile and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801082A (en) * 1972-12-29 1974-04-02 Union Carbide Corp Oxygen refuse converter
JPS49116874A (en) * 1973-03-09 1974-11-08
JPS5666613A (en) * 1979-11-06 1981-06-05 Kurita Water Ind Ltd Waste incinerating device
JPS55100834U (en) * 1980-01-09 1980-07-14
JPS5813916A (en) * 1981-07-20 1983-01-26 Osaka Gas Co Ltd Melting method for waste
JPS6170314A (en) * 1984-09-11 1986-04-11 Ngk Insulators Ltd Whirling stream type fired melting furnace
JPH0833190B2 (en) * 1987-01-12 1996-03-29 月島機械株式会社 Swirl melting furnace

Also Published As

Publication number Publication date
JPH0233511A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
US5081937A (en) System for treating waste material in a molten state
RU2459659C1 (en) Boiler with circulating fluid bed
CA2013010C (en) Sludge incineration in single-stage combustor with gas scrubbing followed by afterburning and heat recovery
JP2769623B2 (en) Inclined horizontal circulation melting method and apparatus
US5564632A (en) Secondary air nozzle and starting burner furnace apparatus
RU2172890C2 (en) Hot gas generating method and apparatus
TW323328B (en)
KR100379153B1 (en) Furnace for sludge incineration
JPH054565B2 (en)
JP2005226970A (en) Fire grate type waste incinerator and its operation method
JP2000055303A (en) Waste heat recovering facility for melt reducing furnace and method for operating the same
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
JPH08121735A (en) Sludge drying, incinerating and melting treatment system and combustion and melting treatment method thereof and differential pressure control system
JP2001108220A (en) Waste incinerator
JP3857107B2 (en) Pyrolysis gas reburning equipment for waste incineration
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2004003766A (en) Cooling method and apparatus for combustion gas extracted from stoker type incinerator
KR960001002B1 (en) Device for heat treatment of cement
JPH09303736A (en) Fluidized bed heat recovering device and its operation method
JPS62196522A (en) Heat recovery method from fluidized bed and its equipment
JPH1061929A (en) Control method for supplying secondary combustion air in combustion device
JPS62116809A (en) Fluidized bed boiler
CN108392960A (en) SNCR spray gun devices and garbage combustion device
JPH03260504A (en) Fluidized bed type combustion device and combustion method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11