JPH02309608A - Manufacture of magnetic fluid - Google Patents

Manufacture of magnetic fluid

Info

Publication number
JPH02309608A
JPH02309608A JP13112589A JP13112589A JPH02309608A JP H02309608 A JPH02309608 A JP H02309608A JP 13112589 A JP13112589 A JP 13112589A JP 13112589 A JP13112589 A JP 13112589A JP H02309608 A JPH02309608 A JP H02309608A
Authority
JP
Japan
Prior art keywords
magnetic fluid
carbonyl compound
cobalt
active agent
cobalt carbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13112589A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
善秋 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13112589A priority Critical patent/JPH02309608A/en
Publication of JPH02309608A publication Critical patent/JPH02309608A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/442Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a metal or alloy, e.g. Fe

Abstract

PURPOSE:To obtain a magnetic fluid of metallic cobalt which is free from large particles produced by agglomeration and has a sharp particle size distribu tion by thermally decomposing a cobalt carbonyl compound to which organic phosphor is added in an organic solvent under the presence of a surface active agent. CONSTITUTION:After prescribed quantities of a cobalt carbonyl compound to which organic phosphor is added, surface active agent, and organic solvent are put in a reaction vessel provided with a poker, condenser, and inert gas leading-in port, the atmosphere in the vessel is replaced with an inert gas of argon, nitrogen, etc., and the temperature in the vessel is raised so as to allow the cobalt carbonyl compound to make thermal decomposition reaction. As a result, fine particles of metallic cobalt thus produced can be controlled in mean particle diameter to a prescribed range with a sharp particle size distribu tion and, at the same time, the particles can be dispersed uniformly without agglomeration, because each particle is coated with the surface active agent.

Description

【発明の詳細な説明】 〔発明の背景〕 (産業上の利用分野) 本発明は、改良された磁性流体の製造法に関する。[Detailed description of the invention] [Background of the invention] (Industrial application field) The present invention relates to an improved method of making magnetic fluids.

(従来の技術) 磁性流体は液体状の磁石であり、真空回転軸シール、イ
ンクジェットプリンター等の分野で利用されている。
(Prior Art) A magnetic fluid is a liquid magnet and is used in fields such as vacuum rotary shaft seals and inkjet printers.

磁性流体としては、酸化物磁性材料の微粒子を表面活性
剤で処理して、有機溶剤の中にコロイド状に分散された
ものが既に実用化されている。しかし、酸化物磁性材料
は飽和磁化が小さい為、磁性流体としての飽和磁化が最
高でも600G程度のものしか得られず、その応用範囲
が限定されている。
As a magnetic fluid, one in which fine particles of oxide magnetic material are treated with a surfactant and dispersed in a colloidal state in an organic solvent has already been put into practical use. However, since the oxide magnetic material has a small saturation magnetization, the maximum saturation magnetization as a magnetic fluid is only about 600 G, which limits its range of applications.

そこで、飽和磁化の大きい金属コバルトを磁性材料とし
て磁性流体を製造する方法が提案されており、例えば米
国特許第322881号および同第322882号、特
開昭節61−69905号および同61−65406号
各明細書他において、コバルトカルボニル化合物を有機
溶剤中、界面活性剤の存在下に熱分解することによる、
金属コバルト微粒子が均一に分散した磁性流体の製造法
が提案されている。
Therefore, methods for manufacturing magnetic fluids using metal cobalt, which has a large saturation magnetization, as a magnetic material have been proposed, such as U.S. Pat. No. 322,881 and U.S. Pat. In each specification and elsewhere, by thermally decomposing a cobalt carbonyl compound in an organic solvent in the presence of a surfactant,
A method for producing a magnetic fluid in which metallic cobalt fine particles are uniformly dispersed has been proposed.

しかしながら、この方法によって得られる磁性流体は、
飽和磁化が高くなるという長所をHするものの、磁性体
微粒子が凝集し、粗大粒子が生成し易いため分布が広い
ものとなりがちであり、また、コバルトカルボニル化合
物として通常用いられるCo  (Co) 8は、保存
時に空気中の水や酸素により変質し晶く、そのため得ら
れる磁性流体の再現性が悪い等の欠点があった。
However, the magnetic fluid obtained by this method is
Although it has the advantage of high saturation magnetization, the magnetic fine particles tend to aggregate and coarse particles tend to be formed, so the distribution tends to be wide. However, during storage, it is altered and crystallized by water and oxygen in the air, which has the disadvantage that the reproducibility of the obtained magnetic fluid is poor.

従って、本発明の目的は、従来法の欠点を解消し、60
0G以上の高飽和磁化をHし、かつ凝集による粗大粒子
がなくシャープな粒子径分糸を白゛する金属コバルトの
磁性流体を提供することにある。
Therefore, it is an object of the present invention to overcome the drawbacks of the conventional method and to
The object of the present invention is to provide a metallic cobalt magnetic fluid that has a high saturation magnetization of 0 G or more and has no coarse particles due to agglomeration and has a sharp particle diameter distribution.

〔発明の概要〕[Summary of the invention]

本発明者等は、上記の欠点を解消すべく鋭意検討の結果
、コバルトカルボニル化合物を有機溶剤中、界面活性剤
の存在下に熱分解することにより磁性流体を製造する方
法において、コバルトカルボニル化合物として有機リン
付加コバルトカルボニル化合物を用いることにより、磁
性体の粒子径が制御し易く、凝集に対して安定で、しか
も粒子が細かくシャープな粒径分布のコバルト金属磁性
流体が得られることを見出し、本発明をなし得た。
As a result of intensive studies to solve the above-mentioned drawbacks, the present inventors have developed a method for producing a magnetic fluid by thermally decomposing a cobalt carbonyl compound in an organic solvent in the presence of a surfactant. We discovered that by using an organic phosphorus-adducted cobalt carbonyl compound, it is possible to easily control the particle size of the magnetic material, to obtain a cobalt metal magnetic fluid that is stable against agglomeration and has fine particles and a sharp particle size distribution. I was able to invent something.

即ち、本発明による磁性流体の製造法は、有機溶剤中、
界面活性剤の存在下に有機リン付加コバルトカルボニル
化合物を熱分解することを特徴とするものである。
That is, the method for producing a magnetic fluid according to the present invention comprises: in an organic solvent;
This method is characterized by thermally decomposing an organic phosphorus-added cobalt carbonyl compound in the presence of a surfactant.

〔発明の詳細な説明〕[Detailed description of the invention]

有機リン付加コバルト化合物 本発明において使用される有機リン付加コバルトカルボ
ニル化合物とは、コバルトカルボニル化合物のカルボニ
ル基が有機リン化合物で置換したもので、例えば、 Co2(CO)7PR3、Co2(CO)6(PH1)
2、Co4(CO)1o(PH1)2、 co (CO)8(PH1)4 (ここでRは、炭素数1〜40の炭化水素基)等の化合
物であり、中でも熱安定性の高いCo2(CO)6(P
H1)2が好ましい。
Organophosphorus-adducted cobalt compound The organophosphorus-adducted cobalt carbonyl compound used in the present invention is a cobalt carbonyl compound in which the carbonyl group is substituted with an organophosphorus compound, such as Co2(CO)7PR3, Co2(CO)6( PH1)
2, Co4(CO)1o(PH1)2, co(CO)8(PH1)4 (here, R is a hydrocarbon group having 1 to 40 carbon atoms), among others Co2 has high thermal stability. (CO)6(P
H1)2 is preferred.

有機溶媒 本発明に使用される有機溶媒としては、炭化水素油、シ
リコン油、フロロカーボン油等が用いられるが、中でも
炭素数7〜22のパラフィン類、オレフィン類が好まし
く用いられる。
Organic Solvent The organic solvent used in the present invention includes hydrocarbon oil, silicone oil, fluorocarbon oil, etc. Among them, paraffins and olefins having 7 to 22 carbon atoms are preferably used.

界面活性剤 本発明に使用される界面活性剤としては、非イオン性界
面活性剤、イオン性界面活性剤、両性界面活性剤、高級
脂肪酸及びその誘導体等が挙げられる。
Surfactant Examples of the surfactant used in the present invention include nonionic surfactants, ionic surfactants, amphoteric surfactants, higher fatty acids and derivatives thereof.

イオン性界面活性剤としては、カルボン酸型、硫酸エス
テル型、スルホン酸型、アミン型の界面活性剤が使用で
きる。非イオン性界面活性剤としては、アクリル酸系、
尿素系、ポリビニルアルコール系の界面活性剤が使用で
きる。
As the ionic surfactant, carboxylic acid type, sulfuric acid ester type, sulfonic acid type, and amine type surfactants can be used. Examples of nonionic surfactants include acrylic acid,
Urea-based and polyvinyl alcohol-based surfactants can be used.

磁性流体の製造 本発明の磁性流体の製造に於ける仕込組成は、前記有機
リン付加コバルトカルボニル化合物の金属コバルト換算
1重量部当たり、有機溶媒10〜5000重量部、好ま
しくは100〜4000!fi量部、界面活性剤0.0
1〜50重量部、好ましくは0.1〜20重量部である
Production of magnetic fluid The charging composition for producing the magnetic fluid of the present invention is 10 to 5,000 parts by weight, preferably 100 to 4,000 parts by weight of organic solvent per 1 part by weight of the organophosphorus-adducted cobalt carbonyl compound in terms of metal cobalt. fi amount part, surfactant 0.0
The amount is 1 to 50 parts by weight, preferably 0.1 to 20 parts by weight.

本発明によれば、例えば、撹拌棒、コンデンサー、不活
性ガス導入口の付いた反応容器に所定量の前記コバルト
カルボニル化合物、界面活性剤及び有機溶剤を仕込んだ
後、アルゴン、窒素等の不活性ガスで反応容器内を置換
後昇温し、コバルトカルボニル化合物の熱分解反応を行
なうことにより、磁性流体を製造することができる。反
応温度は、一般に110〜200℃が好ましい。110
℃より低いと反応が遅いため実際的でなく、200℃超
過では反応速度が大き過ぎるため一定の粒径制御ができ
ない。反応は一酸化炭素の発生が認められなくなるまで
行えばよい。
According to the present invention, for example, after charging a predetermined amount of the cobalt carbonyl compound, surfactant, and organic solvent into a reaction vessel equipped with a stirring bar, a condenser, and an inert gas inlet, an inert gas such as argon, nitrogen, etc. A magnetic fluid can be produced by replacing the inside of the reaction vessel with a gas, raising the temperature, and carrying out a thermal decomposition reaction of the cobalt carbonyl compound. The reaction temperature is generally preferably 110 to 200°C. 110
If the temperature is lower than 200°C, the reaction will be slow, which is impractical; if the temperature is higher than 200°C, the reaction rate will be too high, making it impossible to control the particle size to a certain degree. The reaction may be carried out until the generation of carbon monoxide is no longer observed.

上記反応で得られる金属コバルト微粒子は、50〜50
0人の範囲で平均粒子径を制御でき、しかもシャープな
粒径分布を有する。粒子表面は前記界面活性剤でコーテ
ィングされているため、粒子は凝集することなく、均一
に分散する。
The metal cobalt fine particles obtained by the above reaction have a particle size of 50 to 50
The average particle size can be controlled within the range of 0, and has a sharp particle size distribution. Since the particle surfaces are coated with the surfactant, the particles do not aggregate and are uniformly dispersed.

上記反応において、有機リン付加コバルトカルボニル化
合物は、通常使用されるCo2(CO)8に比較して、
高い溶解性と熱安定性を有するため、熱分解時の粒径制
御性が極めて良好であり、また、空気中の水や酸素に対
して化学的に安定であるので貯蔵時の変質も少ないため
、再現性も良好である。
In the above reaction, the organic phosphorus-added cobalt carbonyl compound has a
Because it has high solubility and thermal stability, particle size control during thermal decomposition is extremely good, and because it is chemically stable against water and oxygen in the air, there is little deterioration during storage. , reproducibility is also good.

かくして得られる磁性流体は、飽和磁化600〜100
OGを有し、酸化物磁性材料系の磁性流体に比較して高
い飽和磁化を何する。
The magnetic fluid thus obtained has a saturation magnetization of 600 to 100
It has OG and has high saturation magnetization compared to magnetic fluids based on oxide magnetic materials.

実施例−1 撹拌棒、コンデンサー、ガス導入口の付いた内容積10
0m1反応容器に Co2(CO)6〔P(C6H5)3〕225g1ヘキ
サデカン15g1界面活性剤としてセチルアルコールの
酸化エチレン20モル付加物9gを仕込み、反応容器内
を窒素ガスで置換後昇温し、攪拌下150℃で反応を行
なった。−酸化炭素の発生が認められなくなった時点(
反応時間5時間)で反応を終了し、放冷した。
Example-1 Internal volume 10 with stirring bar, condenser, and gas inlet
225 g of Co2(CO)6[P(C6H5)3] 1 15 g of hexadecane 1 9 g of a 20 mole adduct of cetyl alcohol with ethylene oxide as a surfactant was charged into a 0 ml reaction vessel, and after purging the inside of the reaction vessel with nitrogen gas, the temperature was raised and stirred. The reaction was carried out at 150°C. −When the generation of carbon oxide is no longer observed (
The reaction was completed after a reaction time of 5 hours, and the mixture was allowed to cool.

得られた磁性流体中の透過型電子顕微鏡で測定した超微
粒子金属コバルトの平均粒子径は12OAであり、50
OA以上の粗大粒子は認められなかった。
The average particle diameter of the ultrafine metal cobalt particles in the obtained magnetic fluid measured with a transmission electron microscope was 12OA, and 50
No coarse particles larger than OA were observed.

得られた磁性流体の比重は、1430、飽和磁化は63
3Gであった。
The specific gravity of the obtained magnetic fluid was 1430, and the saturation magnetization was 63.
It was 3G.

また、この磁性流体を600rpmで1時間遠心分離を
行っても、分離沈降は認められなかった。
Further, even when this magnetic fluid was centrifuged at 600 rpm for 1 hour, no separated sedimentation was observed.

比較例−1 実施例−1において、 Co  (Co)   CP (C6H5)3:+ 2
の代わりにCo  (Co) 8(米国、5prcII
IChci、Ine社製)17gを反応容器に投入した
他は、実施例−1と全く同様にして磁性流体の製造反応
を行なった。−酸化炭素の発生が認められなくなった時
点(反応時間45分)で反応を終了し、放冷した。
Comparative Example-1 In Example-1, Co (Co) CP (C6H5)3:+2
Co (Co) 8 (USA, 5prcII) instead of
A magnetic fluid production reaction was carried out in exactly the same manner as in Example 1, except that 17 g of IChci (manufactured by Ine) was put into the reaction vessel. - The reaction was terminated when no carbon oxide generation was observed (reaction time: 45 minutes), and the mixture was allowed to cool.

得られた磁性流体の飽和磁化は620Gで実施例−1と
同様であったが、透過型電子顕微鏡で観察される金属コ
バルトの粒径分布は実施例−1に比べ非常にブロードで
、500Å以上の粗大粒子が認められた。この磁性流体
を600rpmで1時間遠心分離を行なったところ、分
離沈降が認められた。
The saturation magnetization of the obtained magnetic fluid was 620G, which was the same as in Example-1, but the particle size distribution of metallic cobalt observed with a transmission electron microscope was much broader than in Example-1, and was 500 Å or more. Coarse particles were observed. When this magnetic fluid was centrifuged at 600 rpm for 1 hour, separated sedimentation was observed.

手続補正口 特許庁長官  吉 1)文 毅  殿 1 事件の表示 平成 1年特許願第131125号 2 発明の名称 磁性流体の製造法 3 補正をする者 事件との関係    特許出願人 (605)  三菱油化株式会社 5 補正により  する請求項の数 6 補正の対象 明細書の「発明の詳細な説明」の橢 7 補正の内容 (1)  明細書第4頁第11行のr CO4(CO)
   (PR)  Jの後に「、CO2(CO)  〔
P(OR)3〕2」を挿入する。
Proceeding amendment Director General of the Japan Patent Office Yoshi 1) Takeshi Moon 1 Display of the case 1999 Patent Application No. 131125 2 Name of the invention Method for manufacturing magnetic fluid 3 Person making the amendment Relationship with the case Patent applicant (605) Mitsubishi Oil KA Co., Ltd. 5 Number of claims made by amendment 6 Definition of "Detailed Description of the Invention" of the specification to be amended 7 Contents of the amendment (1) r on page 4, line 11 of the specification CO4 (CO)
(PR) After J “, CO2 (CO) [
Insert "P(OR)3]2".

(2)  同頁第14行の「が好ましい。」の前に「、
co (CO)  〔P(OR)3〕2」を挿人する。
(2) On the 14th line of the same page, before “is preferable.”
Insert "co (CO) [P(OR)3]2".

(3)  第7頁第2行のrloooGJをr1500
GJと訂正する。
(3) rloooGJ on page 7, line 2 to r1500
I corrected it with GJ.

(4)  同頁第7行のrCo  (Co) 6(P(
C6H5)3〕2」を「C02(CO)6〔P(C6H
工、)3〕2」と訂正する。
(4) rCo (Co) 6(P(
C6H5)3]2” to “C02(CO)6[P(C6H
Correct it as "Eng.,) 3] 2".

(5)  第8頁最下行の後に下記を挿入する。(5) Insert the following after the bottom line of page 8.

「実施例−2 実施例−1において、有機リン付加コバルトカルボニル
化合物としてCo  (CO) b (P(OC2H5
)3〕223gを用いた他は、実施例−1と同様にして
磁性流体を製造した。
“Example-2 In Example-1, Co (CO) b (P(OC2H5
)3] A magnetic fluid was produced in the same manner as in Example-1, except that 223 g was used.

得られた磁性流体の比重は1.410.飽和磁化は62
0Gであった。」
The specific gravity of the obtained magnetic fluid was 1.410. Saturation magnetization is 62
It was 0G. ”

Claims (1)

【特許請求の範囲】[Claims]  有機溶剤中、界面活性剤の存在下に有機リン付加コバ
ルトカルボニル化合物を熱分解することを特徴とする磁
性流体の製造法。
A method for producing a magnetic fluid, which comprises thermally decomposing an organophosphorus-added cobalt carbonyl compound in an organic solvent in the presence of a surfactant.
JP13112589A 1989-05-24 1989-05-24 Manufacture of magnetic fluid Pending JPH02309608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13112589A JPH02309608A (en) 1989-05-24 1989-05-24 Manufacture of magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13112589A JPH02309608A (en) 1989-05-24 1989-05-24 Manufacture of magnetic fluid

Publications (1)

Publication Number Publication Date
JPH02309608A true JPH02309608A (en) 1990-12-25

Family

ID=15050571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13112589A Pending JPH02309608A (en) 1989-05-24 1989-05-24 Manufacture of magnetic fluid

Country Status (1)

Country Link
JP (1) JPH02309608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG83738A1 (en) * 1998-07-31 2001-10-16 Ibm Method for producing nanoparticles of transition metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG83738A1 (en) * 1998-07-31 2001-10-16 Ibm Method for producing nanoparticles of transition metals

Similar Documents

Publication Publication Date Title
US6562403B2 (en) Synthesis of substantially monodispersed colloids
Jun et al. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes
CN1243775A (en) Method for producing nano-size particles from transition metals
US20060094860A1 (en) InSb nanoparticle
US10392559B2 (en) Preparation method of nanocrystals coated with metal-surfactant layers
KR20140146695A (en) Manufacturing methods of carbon quantum dots using emulsion
JPS6252119A (en) Production of silica particle
CN110586115A (en) High-rate carbon nanotube catalyst, carbon nanotube and preparation method thereof
WO2020134194A1 (en) Method for purifying quantum dot
JPH02309608A (en) Manufacture of magnetic fluid
Wang et al. Shape-control of CeF 3 nanocrystals by doping polyoxometalates: syntheses, characterization and tunable photoluminescence
JP5446052B2 (en) Zinc oxide ultrafine particle dispersion solution, method for producing the zinc oxide ultrafine particle dispersion solution, and zinc oxide thin film
Wells et al. Preparation of a novel gallium arsenide single-source precursor having the empirical formula AsCl3Ga2
EP0343796B1 (en) Pigment dispersions
US4645619A (en) Process for the preparation of colloidal dispersions of chalcogens and chalcogenide alloys
JPS6169906A (en) Production of ultrafine particulate metallic
JP2009057609A (en) Nanoparticle of magnetic substance and its manufacturing method
JP2009161414A (en) Method for manufacturing magnetic material
JPH0314205A (en) Production of magnetic fluid
JP3412189B2 (en) Method for producing iron nitride particles
JPH0912581A (en) Dimethylaluminum hydride composition, its production and viscosity adjustment of dimethylaluminum hydride
JP2017160072A (en) Method for producing CdSe colloidal particles
JPS636806A (en) Manufacture of hexagonal crystal cobalt magnetic powder
JP3146558B2 (en) Manufacturing method of iron nitride magnetic fluid
JPH01194937A (en) Ultra-fine grain colloidal dispersion