JPS6169906A - Production of ultrafine particulate metallic - Google Patents
Production of ultrafine particulate metallicInfo
- Publication number
- JPS6169906A JPS6169906A JP19194284A JP19194284A JPS6169906A JP S6169906 A JPS6169906 A JP S6169906A JP 19194284 A JP19194284 A JP 19194284A JP 19194284 A JP19194284 A JP 19194284A JP S6169906 A JPS6169906 A JP S6169906A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- tetrafluoroethylene
- dispersion
- ultrafine metal
- ultrafine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、有a溶媒中のコバルトカルボニル化合物の熱
分解反応による超微粒子金属コバルト分散体の製造法に
於いて、不活性な反応器材質を使用する事を特徴とする
超微粒子金属コバルト分散体の製造法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention provides a method for producing ultrafine metal cobalt dispersion by thermal decomposition reaction of a cobalt carbonyl compound in an aqueous solvent. The present invention relates to a method for producing an ultrafine metal cobalt dispersion characterized by using the following materials.
更に詳しくは、生成超微粒子金属コバルト分散体中に鏡
状析出金属コバルトを含まず、且つ超微粒子金属コバル
ト表面にコバルト酸化物層及び有機高分子化合物の吸着
層が存在しない高純度の超微粒子金属コバルト分散体の
製造法に関するものである。More specifically, it is a high-purity ultrafine metal cobalt metal that does not contain mirror-precipitated metal cobalt in the generated ultrafine metal cobalt dispersion and does not have a cobalt oxide layer or an adsorption layer of an organic polymer compound on the surface of the ultrafine metal cobalt particles. The present invention relates to a method for producing a cobalt dispersion.
超微粒子金属コバルトは磁性材料、超電界材料、光及び
電磁波の吸収体、光感応体、半導体材料、粉末冶金原料
、触媒等多くの分野に利用価値が大きいものである。Ultrafine metal cobalt has great utility in many fields such as magnetic materials, superelectric field materials, light and electromagnetic wave absorbers, photosensitive materials, semiconductor materials, powder metallurgy raw materials, and catalysts.
(ロ)従来の技術
有R?g媒中に於けるコバルトカルボニル化合物の熱分
解反応により超微粒子金属コバルト分散体を得る方法は
公知であり、例えば持分昭和4〇−3415号公報が知
られている。(b) Does it have conventional technology? A method for obtaining an ultrafine metal cobalt dispersion by a thermal decomposition reaction of a cobalt carbonyl compound in a medium is known, for example, as disclosed in Chibun No. 3415/1970.
(ハ)発明が解決しようとする問題点
然し、特公昭40−3415号公報の方法は、 ゛超微
粒子金属コバルト分散体を得る為に一般に分子(340
00以上の有機高分子化合物を添加している。(c) Problems to be Solved by the Invention However, the method disclosed in Japanese Patent Publication No. 40-3415 generally uses molecules (340
00 or more organic polymer compounds are added.
従って、得られる分散体の粘度が高く超微粒子金属コバ
ルトに吸着した有機高分子化合物を除去する事が困難で
ある。この為、有機高分子化合物の存在を嫌う用途には
使用出来ない。Therefore, the resulting dispersion has a high viscosity and it is difficult to remove the organic polymer compound adsorbed onto the ultrafine metal cobalt particles. Therefore, it cannot be used in applications where the presence of organic polymer compounds is disliked.
更に、を機高分子化合物を添加しない場合、本発明者等
の知見によれば、撹拌棒、反応容器等の材質によっては
、金属コバルトがこれらに鏡状に析出する現象が起こる
。この様な現象はガラス材質を使用した場合に著しく、
超微粒子金属コバルトが生成しても鏡状に析出した金属
コバルトが剥離し、超微粒子金属コバルトと混合する為
、高純度の超微粒子金属コバルト分散体を得る事は容易
ではない。Furthermore, according to the findings of the present inventors, when no organic polymer compound is added, a phenomenon occurs in which metallic cobalt is precipitated in mirror-like shapes depending on the materials of the stirring rod, reaction vessel, etc. This phenomenon is particularly noticeable when glass materials are used.
Even if ultrafine metallic cobalt particles are produced, the mirror-shaped precipitated metallic cobalt peels off and mixes with the ultrafine metallic cobalt particles, so it is not easy to obtain a highly purified ultrafine metallic cobalt dispersion.
(ニ)問題点を解決する為の手段
本発明者等はかかる欠点を改良すべ(鋭意努力した結果
、驚くべき事に有機溶媒中でコバルトカルボニル化合物
の熱分解反応を行うに際して、反応器材質として表面に
極性基のない不活性な材質の撹拌棒、容器等を使用する
事により生成超微粒子金属コバルト中に鏡状析出金属コ
バルトを含まず、且つ超微粒子金属コバルト表面にコバ
ルト酸化物層及び有機高分子化合物の吸着層が存在しな
り
い高純度の超微粒子金属コバルト分散体の製造法を見出
し本発明を完成した。(d) Means for Solving the Problems The inventors of the present invention have tried to improve these drawbacks (as a result of their earnest efforts, they have surprisingly discovered that when performing a thermal decomposition reaction of a cobalt carbonyl compound in an organic solvent, it is possible to By using stirring rods, containers, etc. made of inert materials with no polar groups on the surface, the ultrafine metal cobalt particles produced do not contain mirror-like precipitated metal cobalt, and the surface of the ultrafine metal cobalt particles does not contain a cobalt oxide layer or organic The present invention was completed by discovering a method for producing a highly pure ultrafine metallic cobalt dispersion without the presence of an adsorption layer of a polymer compound.
本発明に於いて使用されるコバルトカルボニル化合物と
しては、ヒドリドテトラ力ルポニルコハル) HCo
(CO) a、オクタカルボニルジコバルトCoz(C
O)8、ドデカカルボニルテトラコバルトC04(CO
)、2、等が挙げられ単独で使用しても良く、混合して
使用しても良い。As the cobalt carbonyl compound used in the present invention, hydridotetrapowerponylcohal) HCo
(CO) a, octacarbonyl dicobalt Coz (C
O)8, dodecacarbonyltetracobalt C04 (CO
), 2, etc., and may be used alone or in combination.
本発明に使用される有機溶媒は、オクタン、ノナン、デ
カン、オクテン、ノネン、デセン等の低級脂肪族炭化水
素、トルエン、キシレン、メシチレン、エチルヘンゼン
、テトラリン等の低級アルキルヘンゼン、ブタノール、
ペンタノール、ヘキサノール、ヘプタツール、オクタツ
ール、デカノール、2−メトキシエタノール、2−エト
キシエタノール、オレイルアルコール、ベンジルアルコ
ール等の置換又は無置換低級脂肪族及びアラルキル第1
級アルコール、ブチルエーテル、アニソール等の低級脂
肪族及び芳香族エーテル、ジエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノン等の低級脂肪族及び脂
環式ケトン、酢酸プロピル、酢酸ブチル、酢酸ペンチル
等の酢酸エステル及びクロルベンゼン、ジクロルヘンゼ
ン等の上記有a熔媒のハロゲン置換体の1種又は2種以
上から選ばれる。The organic solvents used in the present invention include lower aliphatic hydrocarbons such as octane, nonane, decane, octene, nonene, and decene, lower alkylhenzenes such as toluene, xylene, mesitylene, ethylhenzene, and tetralin, butanol,
Substituted or unsubstituted lower aliphatic and aralkyl primary compounds such as pentanol, hexanol, heptatool, octatool, decanol, 2-methoxyethanol, 2-ethoxyethanol, oleyl alcohol, benzyl alcohol, etc.
lower aliphatic and aromatic ethers such as alcohol, butyl ether, anisole, lower aliphatic and cycloaliphatic ketones such as diethyl ketone, methyl isobutyl ketone, cyclohexanone, acetate esters such as propyl acetate, butyl acetate, pentyl acetate, and chlorobenzene , dichlorohenzene, and the like.
第2級アルコールは超微粒子金属コバルトにより脱水素
反応をうける為、好ましくない。Secondary alcohol is not preferred because it undergoes a dehydrogenation reaction due to ultrafine metallic cobalt particles.
本発明に使用される反応器材質は、四弗化エチレン樹脂
、三弗化塩化エチレン樹脂、四弗化エチレン・パーフル
オロアルキルビニールエーテル共重合樹脂、四弗化エチ
レン・六弗化プロピレン共重合樹脂、四弗化エチレン・
エチレン共重合樹脂、三弗化塩化エチレン・エチレン共
重合樹脂等の連続使用可能温度が100℃以上で極性の
低い樹脂又はこれら樹脂によるライニング材料及びアル
ミニウム、ステンレス、銅等の1種又は2種以上から選
ばれる。The reactor materials used in the present invention include tetrafluoroethylene resin, trifluorochloroethylene resin, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer resin, and tetrafluoroethylene/hexafluoropropylene copolymer resin. , ethylene tetrafluoride
Ethylene copolymer resin, trifluorochloroethylene/ethylene copolymer resin, etc., which can be used continuously at a temperature of 100°C or higher and has low polarity, or lining materials made of these resins, and one or more types of aluminum, stainless steel, copper, etc. selected from.
超微粒子金属コバルト分散体の製造に於ける仕込組成は
、コバルトカルボニル化合物の金属コバルト換算1重量
部当たり、有機溶媒5〜1000重量部である。The charging composition for producing the ultrafine metal cobalt dispersion is 5 to 1000 parts by weight of the organic solvent per 1 part by weight of the cobalt carbonyl compound in terms of metal cobalt.
コバルトカルボニル化合物の熱分解方法は不活性な材質
よりなる撹拌棒、コンデンサー、不活性ガス導入口の付
いた反応容器に所定量のコバルトカルボニル化合物及び
有JR溶媒を仕込んだ後、アルゴン、窒素等の不活性ガ
スで反応容器内を置換後昇温し、コバルトカルボニル化
合物の熱分解反応を行う。反応温度は一般に110〜2
00℃が好ましく、110″Cより低いと反応が遅く実
際的でない。従って、沸点が110°Cより低い有機溶
媒を使用する場合には熱分解反応を加圧下で行う必要が
ある。The method for thermally decomposing a cobalt carbonyl compound is to charge a predetermined amount of a cobalt carbonyl compound and a JR solvent into a reaction vessel equipped with a stirring bar made of an inert material, a condenser, and an inert gas inlet. After replacing the inside of the reaction vessel with an inert gas, the temperature is raised to perform a thermal decomposition reaction of the cobalt carbonyl compound. The reaction temperature is generally 110-2
The temperature is preferably 00°C, and if it is lower than 110°C, the reaction is slow and impractical. Therefore, when using an organic solvent with a boiling point lower than 110°C, it is necessary to carry out the thermal decomposition reaction under pressure.
反応は一酸化炭素の発生が認められなくなるまで行えば
良い。The reaction may be carried out until the generation of carbon monoxide is no longer observed.
尚、上述した方法の他にコバルトカルボニル化合物全量
を反応容器に添加せずに、コバルトカルボニル化合物溶
液或いはスラリーを加熱された有機溶媒中に添加して熱
分解する方法を採用する事も出来る。In addition to the above-mentioned method, it is also possible to adopt a method in which the cobalt carbonyl compound solution or slurry is added to a heated organic solvent and thermally decomposed without adding the entire amount of the cobalt carbonyl compound to the reaction vessel.
本発明の方法により得られる超微粒子金属コバルトは有
機溶媒中に沈降又は一部分数しており、震盪する事によ
り容易に均一な分散状態とする事か出来る。The ultrafine metallic cobalt particles obtained by the method of the present invention are precipitated or partially dispersed in an organic solvent, and can be easily dispersed into a uniform state by shaking.
超微粒子金属コバルト分散体中の超微粒千金、麿コバル
トの平均粒子径は、有機溶媒の種類及び熱分解条件によ
り異なるが、同一溶媒の場合熱分解温度が高い程粒子径
が小さくなる傾向にあり、一般に100〜5000人の
範囲にある。The average particle size of the ultrafine cobalt particles in the ultrafine metallic cobalt dispersion varies depending on the type of organic solvent and thermal decomposition conditions, but in the case of the same solvent, the higher the thermal decomposition temperature, the smaller the particle size tends to be. , generally ranging from 100 to 5,000 people.
(へ)実施例
実施例1
四弗化エチレン樹脂製撹拌棒、コンデンサー、ガス導入
口の付いた内容積1βの四弗化エチレン樹脂製反応容器
にオクタカルボニルジコバルトCot(Co)e 58
g、トルエン500gを仕込み、反応容器内を窒素ガ
スで置換後昇温し、攪拌下で還流(反応温度110°C
)を行った。−酸化炭素の発生が認められなくなった時
点(反応時間5 Hr )で反応を終了し、放冷した。(F) Examples Example 1 Octacarbonyl dicobalt Cot(Co)e 58 was placed in a tetrafluoroethylene resin reaction vessel with an internal volume of 1β equipped with a tetrafluoroethylene resin stirring rod, a condenser, and a gas inlet.
After purging the inside of the reaction vessel with nitrogen gas, the temperature was raised and refluxed under stirring (reaction temperature: 110°C).
) was carried out. - The reaction was terminated when no carbon oxide generation was observed (reaction time 5 hours), and the mixture was allowed to cool.
得られた超微粒子金属コバルト分散体中の超微粒子金属
コバルトの透過型電子顕微鏡でよみとった平均粒子径(
以下の実施例も同一)は1400人であった。実施例1
の透過型電子顕微鏡写真を図1に示す(倍率は5万倍)
。The average particle diameter (
(The same applies to the following examples) were 1400 people. Example 1
A transmission electron micrograph is shown in Figure 1 (magnification is 50,000x).
.
実施例2〜7
表1に示した条件の他は、実施例1と同様に反応を行い
超微粒子金属コバルト分散体を製造した。Examples 2 to 7 Except for the conditions shown in Table 1, reactions were carried out in the same manner as in Example 1 to produce ultrafine metal cobalt dispersions.
得られた超微粒子金属コバルト分散体中の超微粒子金属
コバルトの平均粒子径を表1に示した。叉、実施例2.
3.4に対応する透過型電子顕微鏡写真を各々図2.3
.4に示す(倍率は5万倍)。Table 1 shows the average particle diameter of the ultrafine metal cobalt particles in the obtained ultrafine metal cobalt dispersion. Also, Example 2.
Transmission electron micrographs corresponding to 3.4 are shown in Figure 2.3.
.. 4 (magnification is 50,000 times).
比較例1〜7
反応容器としてガラス製反応容器を使用し、表1に示し
た条件の他は実施例1と同様に反応を行い超微粒子金属
コバルト分散体を製造した。Comparative Examples 1 to 7 A glass reaction vessel was used as the reaction vessel, and the reaction was carried out in the same manner as in Example 1 except for the conditions shown in Table 1 to produce an ultrafine metal cobalt dispersion.
比較例1〜7の全てに於いて、ガラス製反応容器内壁に
金属コバルトが鏡状に析出し、剥離した金属コバルトが
混入し高純度の超微粒子金属コバルトを得る事は出来な
かった。In all of Comparative Examples 1 to 7, metallic cobalt was deposited in a mirror-like manner on the inner wall of the glass reaction vessel, and peeled metallic cobalt was mixed in, making it impossible to obtain highly pure ultrafine metallic cobalt particles.
実施例8
ステンレス製撹拌棒、コンデンサー、ガス導入口の付い
た内容積1xのステンレス製反応容器にオクタカルボニ
ルジコバルトcoz(co)g 58 g 1キシレン
500gを仕込み、反応容器内を窒素ガスで置換後昇温
し、攪拌下で還流(反応温度140’C)を行った。−
酸化炭素の発生が認められなくなった時点(反応時間4
Hr)で反応を終了し、放冷した。ステンレス製反応容
器内壁に金属コバルトが鏡状に析出する事もなく、透過
型電子顕微鏡の観察より得られた超微粒子金属コバルト
分散体中の超微粒子金属コバルトの平均粒子径は700
人であった。Example 8 500 g of octacarbonyl dicobalt coz (co) g 58 g 1 xylene was charged into a stainless steel reaction vessel with an internal volume of 1x equipped with a stainless steel stirring bar, a condenser, and a gas inlet, and the inside of the reaction vessel was replaced with nitrogen gas. Afterwards, the temperature was raised, and reflux was performed under stirring (reaction temperature: 140'C). −
When the generation of carbon oxide is no longer observed (reaction time 4)
The reaction was completed with Hr) and allowed to cool. There was no specular precipitation of metallic cobalt on the inner wall of the stainless steel reaction vessel, and the average particle diameter of the ultrafine metallic cobalt particles in the ultrafine metallic cobalt dispersion obtained from observation using a transmission electron microscope was 700.
It was a person.
(ト)発明の効果
反応機材質として表面に極性基を持たない不活性な材質
の反応容器等を使用する事により、鏡状析出金属コバル
トを含まない高純度の超微粒子金属コバルト分散体を得
る事が出来、且つ微粒子金属コバルト表面にコバルト酸
化物層及び有機高分子化合物の吸着層のない活性な超微
粒子金属コバルト分散体を得る事が出来る。(g) Effects of the invention By using a reaction vessel made of an inert material that does not have polar groups on the surface as a reactor material, a highly pure ultrafine metal cobalt dispersion that does not contain mirror-precipitated metal cobalt can be obtained. In addition, it is possible to obtain an active ultrafine metal cobalt dispersion without a cobalt oxide layer or an organic polymer compound adsorption layer on the surface of the fine metal cobalt particles.
叉、超微粒子金属コバルト分散体に分子量4000以下
のノニオン、両性、陰イオン等の界面活性剤、高級脂肪
酸、高級脂肪酸エステル、高級脂肪酸アミド、アマニ油
、桐油、大豆油、椰子油等の添加剤を添加し超微粒子金
属コバルト分散体の分散性を改良する事も出来る。Additionally, additives such as nonionic, amphoteric, and anionic surfactants with a molecular weight of 4000 or less, higher fatty acids, higher fatty acid esters, higher fatty acid amides, linseed oil, tung oil, soybean oil, and coconut oil are added to the ultrafine metallic cobalt dispersion. It is also possible to improve the dispersibility of the ultrafine metal cobalt dispersion by adding .
本発明の超微粒子金属コバルト分散体は、一旦製造して
から使用した有機溶媒を交換する事も可能である。Once the ultrafine metal cobalt dispersion of the present invention has been produced, it is also possible to replace the used organic solvent.
更に、超微粒子金属コバルト分散体より適当な手段で有
機溶媒を除去し高純度の超微粒子金属コバルトを製造す
る事も可能である。Furthermore, it is also possible to remove the organic solvent from the ultrafine metal cobalt dispersion by an appropriate means to produce highly pure ultrafine metal cobalt particles.
図1、図2、図3、図4は各々実施例1、実施例2、実
施例3、実施例4に於ける超微粒子金属コバルト分散体
の透過型電子顕微鏡写真(倍率5万倍)である。
特許出願人 日産化学工業株式会社
鴎 鬼
)ミA 3−
Z。
ΦFigures 1, 2, 3, and 4 are transmission electron micrographs (50,000x magnification) of ultrafine metal cobalt dispersions in Example 1, Example 2, Example 3, and Example 4, respectively. be. Patent applicant: Nissan Chemical Industries, Ltd. Φ
Claims (1)
応による超微粒子金属コバルト分散体の製造法に於いて
、不活性な反応器材質を使用する事を特徴とする超微粒
子金属コバルト分散体の製造法 2、不活性な反応器材質が四弗化エチレン樹脂、三弗化
塩化エチレン樹脂、四弗化エチレン・パーフルオロアル
キルビニールエーテル共重合樹脂、四弗化エチレン・六
弗化プロピレン共重合樹脂、四弗化エチレン・エチレン
共重合樹脂、三弗化塩化エチレン・エチレン共重合樹脂
、アルミニウム、ステンレス、銅の1種又は2種以上か
ら選ばれる事を特徴とする特許請求の範囲第1項記載の
製造法。 3、超微粒子金属コバルト分散体中の超微粒子金属コバ
ルトの平均粒子径が100〜5000Åである事を特徴
とする特許請求の範囲第1項記載の製造法。 4、有機溶媒が低級脂肪族炭化水素、低級アルキルベン
ゼン、置換又は無置換低級脂肪族及び芳香族第1級アル
コール、低級脂肪族及び芳香族エーテル、低級脂肪族及
び芳香族ケトン、酢酸エステル及びグリセリンエステル
並びにこれら化合物のハロゲン置換体の1種又は2種以
上から選ばれる事を特徴とする特許請求の範囲第1項記
載の製造法。[Claims] 1. An ultrafine metal cobalt particle dispersion manufacturing method by thermal decomposition reaction of a cobalt carbonyl compound in an organic solvent, characterized in that an inert reactor material is used. Cobalt dispersion manufacturing method 2, the inert reactor material is tetrafluoroethylene resin, trifluorochloride ethylene resin, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer resin, tetrafluoroethylene/hexafluoroethylene Claims characterized by one or more selected from propylene copolymer resin, tetrafluoroethylene/ethylene copolymer resin, trifluorochloroethylene/ethylene copolymer resin, aluminum, stainless steel, and copper. The manufacturing method described in paragraph 1. 3. The manufacturing method according to claim 1, wherein the average particle diameter of the ultrafine metal cobalt particles in the ultrafine metal cobalt dispersion is 100 to 5000 Å. 4. Organic solvent is lower aliphatic hydrocarbon, lower alkylbenzene, substituted or unsubstituted lower aliphatic and aromatic primary alcohol, lower aliphatic and aromatic ether, lower aliphatic and aromatic ketone, acetate ester and glycerin ester and one or more halogen-substituted products of these compounds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19194284A JPS6169906A (en) | 1984-09-13 | 1984-09-13 | Production of ultrafine particulate metallic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19194284A JPS6169906A (en) | 1984-09-13 | 1984-09-13 | Production of ultrafine particulate metallic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6169906A true JPS6169906A (en) | 1986-04-10 |
Family
ID=16283016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19194284A Pending JPS6169906A (en) | 1984-09-13 | 1984-09-13 | Production of ultrafine particulate metallic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6169906A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004048018A1 (en) * | 2002-11-26 | 2004-06-10 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
WO2004048019A1 (en) * | 2002-11-26 | 2004-06-10 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
US6890492B1 (en) * | 1998-08-13 | 2005-05-10 | Symyx Technologies, Inc. | Parallel reactor with internal sensing and method of using same |
US7214361B2 (en) | 2002-11-26 | 2007-05-08 | Honda Giken Kogyo Kabushiki Kaisha | Method for synthesis of carbon nanotubes |
US7981396B2 (en) | 2003-12-03 | 2011-07-19 | Honda Motor Co., Ltd. | Methods for production of carbon nanostructures |
US8163263B2 (en) | 2006-01-30 | 2012-04-24 | Honda Motor Co., Ltd. | Catalyst for the growth of carbon single-walled nanotubes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5421923A (en) * | 1977-07-20 | 1979-02-19 | Seiko Instr & Electronics Ltd | Container for use in electroless plating |
-
1984
- 1984-09-13 JP JP19194284A patent/JPS6169906A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5421923A (en) * | 1977-07-20 | 1979-02-19 | Seiko Instr & Electronics Ltd | Container for use in electroless plating |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6890492B1 (en) * | 1998-08-13 | 2005-05-10 | Symyx Technologies, Inc. | Parallel reactor with internal sensing and method of using same |
US7214361B2 (en) | 2002-11-26 | 2007-05-08 | Honda Giken Kogyo Kabushiki Kaisha | Method for synthesis of carbon nanotubes |
WO2004048019A1 (en) * | 2002-11-26 | 2004-06-10 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
US6974493B2 (en) | 2002-11-26 | 2005-12-13 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
JP2006507408A (en) * | 2002-11-26 | 2006-03-02 | 本田技研工業株式会社 | Method for synthesizing metal nanoparticles |
JP2006507409A (en) * | 2002-11-26 | 2006-03-02 | 本田技研工業株式会社 | Method for the synthesis of metal nanoparticles |
WO2004048018A1 (en) * | 2002-11-26 | 2004-06-10 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
JP4748989B2 (en) * | 2002-11-26 | 2011-08-17 | 本田技研工業株式会社 | Method for the synthesis of metal nanoparticles |
JP4774214B2 (en) * | 2002-11-26 | 2011-09-14 | 本田技研工業株式会社 | Method for synthesizing metal nanoparticles |
US8088485B2 (en) | 2002-11-26 | 2012-01-03 | Honda Motor Co., Ltd. | Method for synthesis of metal nanoparticles |
US8088488B2 (en) | 2002-11-26 | 2012-01-03 | Honda Giken Kogyo Kabushiki Kaisha | Method for synthesis of metal nanoparticles |
US7981396B2 (en) | 2003-12-03 | 2011-07-19 | Honda Motor Co., Ltd. | Methods for production of carbon nanostructures |
US8163263B2 (en) | 2006-01-30 | 2012-04-24 | Honda Motor Co., Ltd. | Catalyst for the growth of carbon single-walled nanotubes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hammond et al. | Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials | |
US9969006B2 (en) | Method for production of indium nanoparticles | |
Soofivand et al. | Co 3 O 4/graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures | |
US20150266732A1 (en) | METHODS TO SYNTHESIZE NiPt BIMETALLIC NANOPARTICLES BY A REVERSED-PHASE MICROEMULSION, DEPOSITION OF NiPt BIMETALLIC NANOPARTICLES ON A SUPPORT, AND APPLICATION OF THE SUPPORTED CATALYST FOR CO2 REFORMING OF METHANE | |
CN1243775A (en) | Method for producing nano-size particles from transition metals | |
JP2009155197A (en) | Method for production of lamella-structure nanoparticle | |
US7985398B2 (en) | Preparation of iron or iron oxide nanoparticles | |
JPS6169906A (en) | Production of ultrafine particulate metallic | |
Wang et al. | Solution synthesis of triangular and hexagonal nickel nanosheets with the aid of tungsten hexacarbonyl | |
JP2011184725A (en) | Method for synthesizing cobalt nanoparticle by hydrothermal reduction process | |
Li et al. | Yolk‐Shell‐Structured CuO− ZnO− In2O3 Trimetallic Oxide Mesocrystal Microspheres as an Efficient Catalyst for Trichlorosilane Production | |
Alberti et al. | Systematic study on TiO2 crystallization via hydrothermal synthesis in the presence of different ferrite nanoparticles as nucleation seeds | |
KR101350400B1 (en) | The magnetic metal oxide nano particles, the magnetic intermetallic compound nano particles and methods of making them | |
CN112978716B (en) | Preparation method of array type thin-wall small-caliber carbon nano tube | |
JPS6169905A (en) | Production of ultrafine particulate metallic cobalt dispersion | |
CN112317758B (en) | Preparation method of nano nickel | |
US4975267A (en) | Stable K2 FE22 O34 potassium ferrite phase and method of manufacture | |
FR2723015A1 (en) | PROCESS FOR OBTAINING IRON OR IRON POWDERS BY ORGANIC LIQUID PHASE PRECIPITATION | |
Lu et al. | A safe sonochemical route to iron, cobalt and nickel monoarsenides | |
US4842641A (en) | Synthesis of iron-cobalt powders | |
CN1073483C (en) | Nm gamma (iron, nickel) alloy powder and its making method and use | |
CN1416362A (en) | Production of liquid dispersim of submicron sized metal particles | |
KR101621701B1 (en) | Metal oxide nanoparticles and the prosess of manufacture | |
CN115869952B (en) | Catalyst for hydrogen production by plastic degradation and preparation method and application thereof | |
WO1993005877A1 (en) | The sonochemical synthesis of amorphous metals |