JPH0230761A - Composite body having film composed principally of carbon - Google Patents

Composite body having film composed principally of carbon

Info

Publication number
JPH0230761A
JPH0230761A JP63177849A JP17784988A JPH0230761A JP H0230761 A JPH0230761 A JP H0230761A JP 63177849 A JP63177849 A JP 63177849A JP 17784988 A JP17784988 A JP 17784988A JP H0230761 A JPH0230761 A JP H0230761A
Authority
JP
Japan
Prior art keywords
film
carbon
halogen element
halogen
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63177849A
Other languages
Japanese (ja)
Inventor
Shigenori Hayashi
茂則 林
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63177849A priority Critical patent/JPH0230761A/en
Priority to EP88307417A priority patent/EP0304220B1/en
Priority to CN88106060A priority patent/CN1020477C/en
Priority to KR1019880010194A priority patent/KR930001013B1/en
Priority to DE3852357T priority patent/DE3852357T2/en
Priority to US07/380,328 priority patent/US5238705A/en
Publication of JPH0230761A publication Critical patent/JPH0230761A/en
Priority to US07/481,720 priority patent/US5145711A/en
Priority to US07/587,659 priority patent/US5120625A/en
Priority to US07/725,896 priority patent/US5230931A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To satisfy simultaneously mechanical stress resistance, troubles due to static electricity, transparency, and adhesive strength by forming a film having a composition which is composed principally of carbon and to which a halogen element and hydrogen are added on the surface of a substrate by a CVD method and distributing halogen in the direction of film thickness. CONSTITUTION:A film having a composition which is composed principally of carbon and to which a halogen element or a halogen element and hydrogen are added is formed on a substrate of glass, metal, ceramics, organic resin, etc., by using a plasma CVD method. Further, the concentration of the halogen element in the film is regulated so that it is distributed along the thickness direction of the deposited film. The characteristics of this film, such as electric conductivity, hardness, and transmissivity, can be easily changed by changing electric discharge parameters, such as applied electric power, reaction pressure, shape of electric discharge vessel, and flow rates of carbon starting raw material and halogen starting raw material. By this method, the service life and reliability of a composite body can be improved.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、ガラス、金属、セラミックス、有機樹脂等の
表面に耐機械的ストレス、静電気対策を同時に解決する
ことを目的としてコーティングされる、赤外および可視
域に透明な炭素を主成分とする被膜を有する複合体に関
するものである。
Detailed Description of the Invention "Field of Application of the Invention" The present invention relates to an infrared ray material coated on the surface of glass, metal, ceramics, organic resin, etc. for the purpose of simultaneously solving mechanical stress resistance and static electricity countermeasures. The present invention also relates to a composite material having a coating mainly composed of carbon that is transparent in the visible range.

また同時に基板と被膜との間の密着性を向上させた被膜
を有する複合体に関するものである。
The present invention also relates to a composite having a coating that improves the adhesion between the substrate and the coating.

「従来の技術」 ガラス、金属、プラスチックス、樹脂等の比較的柔らか
い材料の表面を、それら柔らかい材料よりも硬い膜でコ
ーティングすることは、摩耗、ひっかき等の機械的スト
レスに対して、有効である。
``Prior art'' Coating the surface of relatively soft materials such as glass, metals, plastics, and resins with a film that is harder than those soft materials is effective against mechanical stresses such as abrasion and scratches. be.

そのような膜としては、AlgO:+、Ti−N、t3
N、W C,S i C,S i 3N4.5ift等
の無機膜および、本発明人の出願による「炭素被膜を有
する複合体」 (昭和56年特許願第146930号)
が知られている。しかしながら、上記既知の保護膜は、
既して電気的に高い抵抗率をもち、静電気が発生しやす
く、雰囲気中のゴミやチリをその表面に吸着しやすい性
質があった。また、電子写真プロセスに用いられる感光
体等のように積極的に電界をかけ、静電気を利用するよ
うな複合材料に用いた場合などは、電気抵抗の高い保護
膜には電荷が蓄積されてしまい、期待される性能が長期
にわたり発揮できない問題があった。
Such films include AlgO:+, Ti-N, t3
Inorganic films such as N, W C, S i C, S i 3N4.5ift, etc., and "composite with carbon film" filed by the present inventor (Patent Application No. 146930 of 1982)
It has been known. However, the above-mentioned known protective film
It already has a high electrical resistivity, tends to generate static electricity, and tends to attract dirt and dust in the atmosphere to its surface. In addition, when used in composite materials that actively apply an electric field and utilize static electricity, such as photoreceptors used in electrophotographic processes, charges accumulate in the protective film with high electrical resistance. However, there was a problem that the expected performance could not be achieved for a long period of time.

そのような問題を解決する方法として前記既知膜中に導
電性物質を添加する方法が考えられる。
One possible way to solve such problems is to add a conductive substance to the known film.

この場合添加された導電性物質が光の吸収中心となり、
前記既知の保護膜中での光の吸収が発生して、赤外およ
び可視域での透光性を必要とする応用に適用できなくな
る。
In this case, the added conductive substance becomes a light absorption center,
Light absorption occurs in the known protective film, making it unsuitable for applications requiring transparency in the infrared and visible ranges.

さらに、前記既知の保護膜は成膜過程の条件にもよるが
、内部応力が蓄積され、膜のピーリングが発生する問題
もあった。したがって膜厚をうすすくする、前記保護膜
と下地材料の間に密着性の向上を目的とした中間層を設
ける等の対策が必要となるが、膜厚の低下は耐機械スト
レスの低下を意味し、中間層の存在はプロセス増加によ
るコスト高の問題が発生する。
Furthermore, depending on the conditions of the film forming process, the known protective film has the problem of accumulation of internal stress and peeling of the film. Therefore, it is necessary to take measures such as thinning the film thickness or providing an intermediate layer between the protective film and the underlying material to improve adhesion, but a reduction in film thickness means a reduction in mechanical stress resistance. However, the presence of an intermediate layer causes the problem of increased costs due to increased processes.

「発明の構成」 本発明は、以上述べた問題を解決し、保護膜としての耐
機械ストレス、静電気に由来する問題点、透明性及び密
着性を同時に満足する被膜として炭素を主成分とする被
膜にハロゲン元素または水素とハロゲン元素を添加し、
該ハロゲン元素の濃度が堆積された膜の厚さ方向に沿っ
て分布をもっことを特徴とする被膜を有する複合体を提
供することを目的とする。
"Structure of the Invention" The present invention solves the above-mentioned problems, and provides a film mainly composed of carbon as a film that satisfies mechanical stress resistance as a protective film, problems arising from static electricity, transparency, and adhesion at the same time. Adding a halogen element or hydrogen and a halogen element to
The object of the present invention is to provide a composite having a film characterized in that the concentration of the halogen element is distributed along the thickness direction of the deposited film.

本発明による被膜は炭素の原料としてメタン(ctr、
)、エタン(CzH6)、エチレン(C2L)、アセチ
レン(C,H,) 、ベンゼン(C4H6)等の炭化水
素をプラズマ中に導入し、前記炭素原料を分解、励起し
、所定の基板上に堆積させることによって形成すること
ができる。この時、同時にハロゲン元素の原料としてN
F、、SF、、WF6等のフン化物、CC1,等の塩化
物、CH,Br等の臭化物又は、ヨウ化物をプラズマ中
に導入してF、C1、Br、T等のハロゲン元素を添加
する。
The coating according to the present invention uses methane (ctr,
), ethane (CzH, It can be formed by At this time, at the same time, N is used as a raw material for the halogen element.
Fluorides such as F, SF, WF6, chlorides such as CC1, bromides such as CH, Br, or iodides are introduced into the plasma to add halogen elements such as F, C1, Br, T, etc. .

添加量は、ハロゲン元素を含む物質の流量によって制御
することができる。ここで、炭素を含む原料ガスとして
、前記炭化水素の他にCF4、CH1F’1等のフッ化
炭素、Cc 1.等の塩化炭素、CH,B r等の臭化
炭化水素を用いてもよい。
The amount added can be controlled by the flow rate of the substance containing the halogen element. Here, in addition to the above-mentioned hydrocarbons, fluorocarbons such as CF4 and CH1F'1, Cc1. Carbon chloride such as, brominated hydrocarbon such as CH, Br, etc. may also be used.

しかしながら、ハロゲン元素としては、プラズマ反応室
内壁の腐蝕の問題からフッ素化物が最も利用しやすい。
However, as the halogen element, fluoride is most easily used due to the problem of corrosion of the walls of the plasma reaction chamber.

また、ハロゲン元素添加量制御の点から炭素原料物質と
してはフッ素を含まない炭化水素が有効である。
In addition, from the viewpoint of controlling the amount of halogen element added, hydrocarbons that do not contain fluorine are effective as the carbon raw material.

本発明による被膜は、以上述べたような原料物質、すな
わち炭素原料物質とハロゲン元素材料を同時にプラズマ
反応室に導入し、この時ハロゲン系原料物質の流量を調
整することによって被膜のハロゲン元素添加量を制御す
るものである。
The film according to the present invention can be produced by introducing the above-mentioned raw materials, that is, a carbon raw material and a halogen element material into a plasma reaction chamber at the same time, and adjusting the flow rate of the halogen-based raw material at this time to adjust the amount of halogen element added to the film. It controls the

ハロゲン元素添加量は導電率、透過率、硬度の違いとし
て観測される。以下にハロゲン元素原料物質の流量を変
えた時の導電率の変化の実験結果をしめす。
The amount of halogen added is observed as a difference in conductivity, transmittance, and hardness. The experimental results of changes in electrical conductivity when changing the flow rate of the halogen element raw material are shown below.

ハロゲン元素原料物質としてNF、を用いた。NF was used as a halogen element raw material.

炭素原料物質としてエチレンを用い、エチレンの流II
QsccM、反応圧力10Pa、投入電力密度0.08
W/cm”とした。第1図に示すようにNF3の量が増
すに従い、導電率が高くなっている。また、第2図に示
すようにNF、流量が増すに従い透過率は高くなる。さ
らに第3図に示すようにN F 3流量が増すに従い硬
度は低下する。硬度が低下するということは、すなわち
、内部応力が低下することを意味する。
Using ethylene as carbon feedstock material, ethylene stream II
QsccM, reaction pressure 10 Pa, input power density 0.08
W/cm". As shown in FIG. 1, as the amount of NF3 increases, the conductivity increases. Also, as shown in FIG. 2, as the flow rate of NF increases, the transmittance increases. Further, as shown in Fig. 3, as the N F 3 flow rate increases, the hardness decreases.The decrease in hardness means that the internal stress decreases.

以上述べたように比較的広い範囲にわたって被膜の導電
率、硬さ、透過率を変えることができる。
As described above, the conductivity, hardness, and transmittance of the coating can be varied over a relatively wide range.

すなわち種々の応用に要求される最適特性が、比較的安
価に容易に得ることができる。
That is, the optimum characteristics required for various applications can be easily obtained at relatively low cost.

以上ハロゲン元素原料物質の流量を変えることによって
ハロゲン元素添加量を変えることを述べたが、もちろん
放電時の投入電力、反応圧力、放電容器の形、炭素原料
物質流量等の放電条件は一定である。また、これらの放
電条件のうち1つもしくは2つ以上を変化させても、ハ
ロゲン元素添加■を変えることができる。
It has been described above that the amount of halogen element added can be changed by changing the flow rate of the halogen element raw material, but of course the discharge conditions such as input power, reaction pressure, discharge vessel shape, carbon raw material flow rate, etc. during discharge are constant. . Moreover, the halogen element addition (2) can also be changed by changing one or more of these discharge conditions.

一例として、投入電力を変化させた場合の導電率の変化
を第4図に示す。すなわち、投入電力を増すに従い導電
率は高くなる。この場合も勿論、投入電力以外の放電パ
ラメータである反応圧力、放電容器の形、N F 3流
■、C2H,流量等は一定である。
As an example, FIG. 4 shows the change in conductivity when the input power is changed. That is, as the input power increases, the conductivity increases. In this case as well, of course, the discharge parameters other than the input power, such as the reaction pressure, the shape of the discharge vessel, the N F3 flow, C2H, and the flow rate, are constant.

以上述べたように、ハロゲン元素または水素とハロゲン
元素を含む炭素を主成分とする被膜の導電率、硬さ、透
過率等の膜特性は、投入電力、反応圧力、放電容器の形
、炭素原料物質流量、ハロゲン元素原料物質流量等の放
電パラメータを変えることにより、容易に、安価に比較
的広い範囲で変化させることができる。
As mentioned above, the film properties such as conductivity, hardness, and transmittance of a film whose main component is a halogen element or carbon containing hydrogen and a halogen element are determined by the input power, reaction pressure, the shape of the discharge vessel, and the carbon raw material. By changing discharge parameters such as the material flow rate and the halogen element raw material flow rate, it can be easily and inexpensively changed over a relatively wide range.

本発明は前記ハロゲン元素が添加された炭素を主成分と
する被膜の諸特性を、膜厚方向に沿って変化させ、所望
の膜特性を得ることのできる複合体を得るものである。
The present invention is to obtain a composite that can obtain desired film characteristics by changing the various properties of the film mainly composed of carbon to which a halogen element has been added, along the film thickness direction.

またハロゲン元素が添加された炭素を主成分とする被膜
は内部応力が小さいという特徴がある。
Furthermore, a coating mainly composed of carbon to which a halogen element is added is characterized by low internal stress.

これは、通常炭素中に存在する未結合手(ダングリング
ボンド)には、水素がターミネートされ未結合手の引力
を緩和することにより内部応力を低減させるが、未結合
手すべてに水素がターミネートされるわけではなく、多
少の未結合手が膜中に残っており、これが内部応力の原
因の1つと考えられる。ここに水素よりも反応性の高い
ハロゲン元素、例えばフッ素がプラズマ中に存在すると
フッ素と炭素は容易にC−F結合をつくり炭素の未結合
手は水素のみの場合よりも低減すると考えられる。。す
なわち、内部応力が低減されることになる。また、内部
応力の低下により膜のビーリングの発生が防止されるこ
とも特徴の1つである。
This is because the dangling bonds that normally exist in carbon are terminated with hydrogen and reduce the internal stress by relaxing the attractive force of the dangling bonds. Rather, some dangling bonds remain in the film, and this is thought to be one of the causes of internal stress. It is thought that if a halogen element, such as fluorine, which is more reactive than hydrogen, is present in the plasma, the fluorine and carbon will easily form a C--F bond, and the number of dangling bonds in carbon will be reduced compared to when only hydrogen is present. . In other words, internal stress is reduced. Another feature is that the reduction in internal stress prevents the occurrence of membrane beerling.

さらに、ハロゲン元素が添加された炭素を主成分とする
被膜は耐熱性の点においても優れている。
Furthermore, a film containing carbon as a main component to which a halogen element is added is also excellent in terms of heat resistance.

また、ハロゲン元素が添加された炭素を主成分とする被
膜は堆積的の基板の温度が室温から150°C以下の低
温で成膜できることも特徴の1つである。これによりプ
ラスチックス、樹脂等の有機物、セレン半導体等高温に
できない基板上にも成膜することができる。
Further, one of the characteristics of a film mainly composed of carbon to which a halogen element is added is that it can be formed at a deposition temperature of the substrate at a low temperature ranging from room temperature to 150° C. or less. This allows film formation even on substrates that cannot be heated to high temperatures, such as organic materials such as plastics and resins, and selenium semiconductors.

また、ハロゲン元素が添加された炭素を主成分とする被
膜は透光性も良い。例えば、フッ素を含んだ炭素の透過
率を第6図に示す。図面に示すように600ns+以上
の波長域では95%以上の透過であり、400nmでも
50%以上透過のほぼ透明な膜が得らる。
Furthermore, a film mainly composed of carbon to which a halogen element is added has good light transmission. For example, the transmittance of carbon containing fluorine is shown in FIG. As shown in the drawing, a nearly transparent film with a transmission of 95% or more in the wavelength range of 600 ns+ or more, and a transmission of 50% or more even at 400 nm can be obtained.

本発明はこのような諸特性を有する炭素を主成分はする
被膜性のハロゲン元素含有■をその膜厚方向に沿って変
化させることにより、これらハロゲン元素が添加された
炭素を主成分とする被膜の有する利点をさらに増やし、
有用な複合体を得ようとするものである。
The present invention is capable of producing a film mainly composed of carbon to which these halogen elements are added, by changing the halogen element-containing film having the above-mentioned characteristics along the film thickness direction. further increase the benefits of
The aim is to obtain useful complexes.

以下、−C的な被膜作成方法を述べる。A method for producing a -C film will be described below.

第5図は本発明の炭素または炭素を主成分とする被膜を
形成するためのプラズマCVD装置の概要を示す。
FIG. 5 shows an outline of a plasma CVD apparatus for forming carbon or a film containing carbon as a main component according to the present invention.

図面において、ドーピング系(1)において、キャリア
ガスである水素を(2)より、反応性気体である炭化水
素気体例えばメタン、エチレンを(3)より、ハロゲン
元素を含む気体例えばNF、を(4)よりパルプ(6)
、流量計(7)をへて反応系(8)中にノズル(9)よ
り導入される。このノズルに至る前に、反応性気体の励
起用にマイクロ波エネルギを00で加えて予め活性化さ
廿ることは有効である。
In the drawing, in the doping system (1), hydrogen as a carrier gas is added to (2), a hydrocarbon gas such as methane or ethylene is added to (3) as a reactive gas, and a gas containing a halogen element such as NF is added to (4). ) than pulp (6)
, is introduced into the reaction system (8) through a nozzle (9) through a flowmeter (7). Before reaching this nozzle, it is advantageous to preactivate the reactive gas by applying microwave energy at 000 for excitation of the reactive gas.

反応系(8)には第1の電極(11)、第2の電極02
)を設けた。この場合(第1の電極面積/第2の電極面
積)く1の条件を満たすようにした。一対の電極(11
)、θり間には高周波電源0■、マツチングトランス0
70、直流バイアス電源05)より電気エネルギが加え
られ、プラズマが発生する。排気系0ωは圧力調整バル
ブ07)、ターボ分子ポンプ側、ロータリーポンプθつ
をへて不要気体を排気する。反応性気体には、反応空間
Qalにおける圧力が0.001〜l0Torr代表的
には0.01〜ITorrの下で高周波もしくは直流に
よるエネルギにより0.1〜5に−のエネルギが加えら
れる。
The reaction system (8) includes a first electrode (11) and a second electrode 02.
) was established. In this case, condition 1 (first electrode area/second electrode area) was satisfied. A pair of electrodes (11
), 0 high frequency power supply, 0 matching transformer between θ interval
70, electrical energy is applied from the DC bias power supply 05) to generate plasma. The exhaust system 0ω exhausts unnecessary gas through the pressure regulating valve 07), the turbo molecular pump side, and the rotary pump θ. Energy of 0.1 to 5 - is applied to the reactive gas by high frequency or direct current energy under a pressure in the reaction space Qal of 0.001 to 10 Torr, typically 0.01 to ITorr.

特に励起源がIGH,以上、例えば2.45G【■2の
周波数にあっては、C−H結合より水素を分離し、さら
に周波数源が0.1〜50MH2例えば13.56MH
2の周波数にあってはC−C結合、C−C結合を分解し
、−C−C−結合を作り、炭素の不対結合手同志を互い
に衝突させて共有結合させ、安定なダイヤモンド構造を
局部的に有した構造とさせ得る。
In particular, when the excitation source is at a frequency of IGH or above, for example 2.45G [■2], hydrogen is separated from the C-H bond, and the frequency source is 0.1 to 50MH2, for example 13.56MH.
At frequency 2, C-C bonds and C-C bonds are decomposed to create -C-C- bonds, and the unpaired bonds of carbon collide with each other to covalently bond, creating a stable diamond structure. It may have a locally formed structure.

直流バイアスは一200〜600V (実質的には一4
00〜+400V)を加える。なぜなら、直流バイアス
が零のときは自己バイアスが一200V(第2の電極を
接地レベルとして)を有しているためである。
DC bias is -200 to 600V (substantially -4
00~+400V). This is because when the DC bias is zero, the self-bias has a voltage of 1200V (with the second electrode at the ground level).

代表的な被膜の作成条件は、高周波エネルギー60W、
圧力0.015To r r、炭素源、例えばエチレン
の流fflloO3ccM、基板温度は室温である。ハ
ロゲン元素源、例えばNF、の流■は0.01〜300
3CCMの範囲で変化させた。
Typical film creation conditions are high frequency energy of 60W,
The pressure is 0.015 Torr, the flow of carbon source, eg ethylene, fflOO3 ccM, and the substrate temperature is room temperature. The flow rate of the halogen element source, e.g. NF, is 0.01 to 300.
It was varied within a range of 3CCM.

以下、実施例に従って更に詳しく述べる。The following will be described in more detail according to examples.

「実施例1」 第7図は、ハロゲン元素が添加された炭素を主成分とす
る被膜を応用した場合の感光体の構造を示す。約200
μmqさのPETシート(1)上に厚さ600人のA1
蒸着層(2)、中間層(3)をはさんで0.6〜1.2
μmの電荷発生層を(4)を設け、本発明による保護膜
(6)、約20μmの電荷移動層(5)を通して光(力
が入射すると前記電荷発生層で吸収され、電子正孔対が
生成される。あらかじめ、電荷移動層もしくは保護層を
負に帯電させておけば、光入射のあった領域のみ電荷発
生層で生成された正孔が電荷移動層を移動し帯電された
負電荷を中和させる。この時、電荷発生層で生成された
電子は中間層を通って1蒸着層に達し、排出される。
"Example 1" FIG. 7 shows the structure of a photoreceptor in which a film mainly composed of carbon to which a halogen element is added is applied. Approximately 200
600mm thick A1 on μmq PET sheet (1)
0.6 to 1.2 across the vapor deposited layer (2) and intermediate layer (3)
A charge generation layer (4) with a thickness of μm is provided, and when light (force) is incident through the protective film (6) according to the present invention and a charge transfer layer (5) with a thickness of about 20 μm, it is absorbed by the charge generation layer, and electron-hole pairs are formed. If the charge transfer layer or protective layer is negatively charged in advance, the holes generated in the charge generation layer will move through the charge transfer layer only in the area where light is incident, discharging the negative charges. At this time, the electrons generated in the charge generation layer pass through the intermediate layer, reach one deposited layer, and are discharged.

光入射のなかった領域に残った負電荷は、その後トナー
を吸着し、転写紙に転写されて、光入射の有無に応じた
像を転写紙上に形成することとなる。
The negative charge remaining in the area where no light was incident then adsorbs toner and is transferred to the transfer paper, forming an image on the transfer paper depending on whether or not light is incident.

ここで形成された保3ffJfflは本発明を用いたも
のであり、前記装置を用いて、前記−船釣な条件にて被
膜を作成した。初めの2分間はNF、流量を0、ISC
CM以下として第1の層を形成し、その後20分間はN
F3流■を11005CCとし°ζ第2の層を形成した
。第1の層と第2の層のM厚は各々0.021ノー、1
μmであった。この複合被膜の比抵抗、透光性、硬さ、
内部応力等の特性はその膜厚の大きさから、殆ど第2の
層の特性で決定される。ところが、密着性に関しては感
光層と被膜の界面即ち第1の居の特性が大きく影客する
。フッ素を添加した場合はしない時に比べて密着性は良
くないから、第一の層の存在により複合被膜の密着性は
かなり改善される。
The film formed here was formed using the present invention, and the film was created using the above-mentioned apparatus under the above-mentioned conditions. For the first 2 minutes, NF, flow rate 0, ISC
Form the first layer below CM, then apply N for 20 minutes.
A second layer was formed using F3 stream (1) at 11005 CC. The M thickness of the first layer and the second layer is 0.021 and 1, respectively.
It was μm. The specific resistance, translucency, hardness,
Characteristics such as internal stress are determined mostly by the characteristics of the second layer due to its film thickness. However, the adhesion is greatly affected by the characteristics of the interface between the photosensitive layer and the coating, that is, the first bond. Since adhesion is not as good when fluorine is added as compared to when it is not added, the presence of the first layer significantly improves the adhesion of the composite coating.

該複合被膜の比抵抗は第2の層で決まり、10’〜10
9(Ωcm)であった。従って、比抵抗が低すぎる為に
発生する、帯電電荷の横方向の移動がなく、光入射のあ
った領域の境界はぼけることなくはっきりとしている。
The specific resistance of the composite coating is determined by the second layer and is between 10' and 10'.
It was 9 (Ωcm). Therefore, there is no lateral movement of charged charges that occurs because the specific resistance is too low, and the boundaries of the areas where light is incident are clear without blurring.

依って、転写された像も鮮明なものであった。また、比
抵抗が高すぎれば、繰り返し使用により徐々に保護膜に
電荷が蓄積され、使用済のトナーが除去されなくなり、
転写紙が黒くなるという現象が起こるが、本発明による
保護膜は電荷が蓄積されない程度の比抵抗に制御されて
いるため、そのような現象もなく長期に渡り良質の転写
像を得るごとができた。
Therefore, the transferred image was also clear. Additionally, if the specific resistance is too high, charges will gradually accumulate on the protective film due to repeated use, making it impossible to remove used toner.
The phenomenon that the transfer paper becomes black occurs, but since the protective film according to the present invention has a resistivity controlled to such an extent that no charge is accumulated, this phenomenon does not occur, and high-quality transferred images can be obtained for a long period of time. Ta.

また、保護膜の透過率も第2の層で決まり、500n1
1以上の波長域で80%以上であり、400nm以上の
波長域で60%以上であった。従って、本実用例の感光
体は可視光域においても十分使用可能なものであった。
In addition, the transmittance of the protective film is determined by the second layer, and is 500n1
It was 80% or more in a wavelength range of 1 or more, and 60% or more in a wavelength range of 400 nm or more. Therefore, the photoreceptor of this practical example was sufficiently usable even in the visible light range.

勿論、耐摩耗性、耐引っ掻き等の機械的ストレスに対す
る耐久性が向上していることは言うまでもないが、更に
第3の層として、フッ素の含有量を少なくした層を構成
すると、表面は−より硬くなる。
Of course, it goes without saying that durability against mechanical stress such as abrasion resistance and scratch resistance is improved, but when a third layer with a lower fluorine content is constructed, the surface becomes more It becomes hard.

更に、内部応力は第2の層で決まり、フッ素が多く添加
されているため、内部応力は緩和され、密着性も良いも
のであった。即し、シート状感光体を曲率半径10mm
まで曲げても、保護膜にクランクの発生は見られず、ま
た、ピーリングも生じなかった。
Furthermore, since the internal stress was determined by the second layer and a large amount of fluorine was added, the internal stress was relaxed and the adhesion was good. Therefore, the sheet-like photoreceptor has a radius of curvature of 10 mm.
Even when the protective film was bent to a certain extent, no cranking was observed, and no peeling occurred.

以上、本実施例では感光体としてシート状有機怒光体に
ついて述べたが、ドラム状有機感光体、アモルファスシ
リコン感光体、セレン感光体についても同様に本発明に
よる保護膜を構成することができ、同様の効果が得られ
る。
Although the present embodiment has described a sheet-like organic photoreceptor as a photoreceptor, the protective film according to the present invention can be similarly constructed for a drum-shaped organic photoreceptor, an amorphous silicon photoreceptor, and a selenium photoreceptor. A similar effect can be obtained.

また、サーマルプリントヘッドや密着型イメージセンサ
−のようなガラス若しくはセラミックスのような基板の
上に形成しても同様に密着性の良い良質な保護膜を構成
することができる。
Further, even when formed on a substrate such as glass or ceramics such as a thermal print head or a contact type image sensor, a high-quality protective film with good adhesion can be constructed.

「実施例2」 ICチップの高信頼化のために採用されるリードフレー
上へのワイヤーボンド後の被膜形成に本発明を適用した
場合、ICチップ上のアルミパッドに溶着された金線の
剥がれの原因となる被膜中の内部応力の対策に極めて有
効である。
"Example 2" When the present invention is applied to the formation of a film after wire bonding on a lead fly adopted to improve the reliability of an IC chip, the gold wire welded to the aluminum pad on the IC chip peels off. It is extremely effective in countering internal stress in the coating that causes

フッ素の多く含まれている第1の層を1rI記一般的な
作成条件に於いてC,H,とNF、の流■比を1:1と
して、厚さ0.6μmの被膜を作成した。
The first layer containing a large amount of fluorine was prepared under typical conditions, with a flow ratio of C, H, and NF of 1:1 to form a film with a thickness of 0.6 μm.

この第1の層は内部応力がl O7dyn/cm”と非
常に小さなものである。第1の層作成の後、第2の層を
前記一般的な作成条件に於いてC2H,とNF3の流量
比を100:1として、厚さ0.1μmの被膜を作成し
た。この第2の層はりビッカース硬度2000kg/m
m”以上の硬い膜であり化学的に安定なものである。依
って、本実施例に述べたような被膜をリードフレー上へ
のワイヤーボンド後の被膜に適用すると、第1の層が応
力を緩和することによりICチップ上のアルミパッドに
溶着された金線の剥がれが防止でき、同時に第2の層が
水やアルカリイオン等の不純物の浸入を防止するため、
ICの信頼性を格段に向上させることができた。
This first layer has a very small internal stress of lO7dyn/cm. After the first layer is formed, the second layer is formed under the general conditions described above with a flow rate of C2H and NF3. A coating with a thickness of 0.1 μm was prepared using a ratio of 100:1. This second layer had a Vickers hardness of 2000 kg/m.
It is a hard film with a hardness of more than m" and is chemically stable. Therefore, when a film like the one described in this example is applied to the lead fly after wire bonding, the first layer will be free from stress. By alleviating this, the gold wire welded to the aluminum pad on the IC chip can be prevented from peeling off, and at the same time, the second layer prevents impurities such as water and alkali ions from entering.
We were able to significantly improve the reliability of the IC.

「効果」 以上述べたように本発明はハロゲン元素または水素とハ
ロゲン元素が添加された炭素を主成分とする被膜におい
て、該被膜中のハロゲン元素量を厚さ方向に沿って分布
をもたせることにより、本来有用性の高い高硬度、高透
光性、比抵抗可変化性、低内部応力等の膜特性の欠点を
補うことによりさらに工業上利用価値の高い複合体とす
ることができ、本発明を応用した場合の複合体の寿命お
よび信頼性を格段に向上させることができた。
"Effects" As described above, the present invention provides a film whose main component is halogen element or carbon to which hydrogen and halogen element are added, by making the amount of halogen element in the film distributed along the thickness direction. By compensating for the disadvantages of film properties such as high hardness, high light transmittance, variable specific resistance, and low internal stress, which are originally highly useful, a composite with even higher industrial utility value can be obtained, and the present invention We were able to significantly improve the lifespan and reliability of the composite when it was applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNF、流量と導電率の関係を示す。 第2図はNFユ流聞と透過率の関係を示す。 第3図はN F s流量と硬度の関係を示す。 第4図は投入電力と導電率の関係を示す。 第5図は本発明の炭素または炭素を主成分とする被膜を
形成するためのプラズマCVD装置の概要を示す。 第6図はフッ素を含んだ炭素の透過率を示す。 第7図は、本発明よる炭素を主成分とした被膜を応用し
た場合の感光体の構造を示す。 NF3式 (scct−をン ネ1図 /θθ 2v      ダ0 NF3直蓋(SC錯) 第2図 NFa 追撃L(Sここノイ9 役人tカ (w) 二欠髪(hm) 第乙図
FIG. 1 shows the relationship between NF, flow rate, and conductivity. Figure 2 shows the relationship between NF Yu leakage and transmittance. FIG. 3 shows the relationship between N F s flow rate and hardness. FIG. 4 shows the relationship between input power and conductivity. FIG. 5 shows an outline of a plasma CVD apparatus for forming carbon or a film containing carbon as a main component according to the present invention. FIG. 6 shows the transmittance of carbon containing fluorine. FIG. 7 shows the structure of a photoreceptor to which a coating mainly composed of carbon according to the present invention is applied. NF3 type (scct- 1 diagram/θθ 2v da 0 NF3 direct lid (SC complex) Figure 2 NFa Pursuit L (S Kokonoi 9 Official tka (w) Two missing hairs (hm) Figure Otsu

Claims (1)

【特許請求の範囲】[Claims] ガラス、金属、セラミックス、有機樹脂等の基板の上に
プラズマCVD(化学気相成長法)を用いて作成された
炭素を主成分とする被膜において該炭素を主成分とする
被膜には、ハロゲン元素または水素とハロゲン元素が含
有され、前記ハロゲン元素の濃度が堆積された膜の厚さ
方向に沿って分布をもつことを特徴とする炭素を主成分
とする被膜を有する複合体。
In a carbon-based film created using plasma CVD (chemical vapor deposition) on a substrate such as glass, metal, ceramics, or organic resin, the carbon-based film contains a halogen element. Alternatively, a composite having a film mainly composed of carbon, which contains hydrogen and a halogen element, and wherein the concentration of the halogen element has a distribution along the thickness direction of the deposited film.
JP63177849A 1987-02-24 1988-07-17 Composite body having film composed principally of carbon Pending JPH0230761A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP63177849A JPH0230761A (en) 1988-07-17 1988-07-17 Composite body having film composed principally of carbon
EP88307417A EP0304220B1 (en) 1987-08-10 1988-08-10 Thin film carbon material and method of depositing the same
CN88106060A CN1020477C (en) 1987-08-10 1988-08-10 Carbon material containing halogen and deposition method for same
KR1019880010194A KR930001013B1 (en) 1987-08-10 1988-08-10 Carbon material containing a halogen and deposition method for same
DE3852357T DE3852357T2 (en) 1987-08-10 1988-08-10 Thin film carbon material and method of application.
US07/380,328 US5238705A (en) 1987-02-24 1989-07-17 Carbonaceous protective films and method of depositing the same
US07/481,720 US5145711A (en) 1987-08-10 1990-02-16 Cyclotron resonance chemical vapor deposition method of forming a halogen-containing diamond on a substrate
US07/587,659 US5120625A (en) 1987-08-10 1990-09-26 Carbon material containing a halogen and deposition method for same
US07/725,896 US5230931A (en) 1987-08-10 1991-07-01 Plasma-assisted cvd of carbonaceous films by using a bias voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177849A JPH0230761A (en) 1988-07-17 1988-07-17 Composite body having film composed principally of carbon

Publications (1)

Publication Number Publication Date
JPH0230761A true JPH0230761A (en) 1990-02-01

Family

ID=16038179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177849A Pending JPH0230761A (en) 1987-02-24 1988-07-17 Composite body having film composed principally of carbon

Country Status (1)

Country Link
JP (1) JPH0230761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080445A (en) * 1997-02-20 2000-06-27 Citizen Watch Co., Ltd. Method of forming films over insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080445A (en) * 1997-02-20 2000-06-27 Citizen Watch Co., Ltd. Method of forming films over insulating material

Similar Documents

Publication Publication Date Title
US5238705A (en) Carbonaceous protective films and method of depositing the same
JPH10230561A (en) Low refractive index sio2 film and its production
JPH0230761A (en) Composite body having film composed principally of carbon
JPH0230763A (en) Composite body having film composed principally of carbon
JPH0234786A (en) Laminated body having carbon-based coating film
JPS6363051A (en) Electrophotographic sensitive body
JPH11256339A (en) Water-repellent coating film, contamination preventing product and production of water-repellent coating film
JPH0230760A (en) Composite body having film composed principally of carbon
JP2002115061A (en) Method for manufacturing diamond-like carbon film
JPH0234787A (en) Laminated body having carbon-based coating film
JPH02107773A (en) Formation of carbon-based coating film
JPH0230762A (en) Composite body having film composed principally of carbon
JP3057072B2 (en) Method for producing diamond-like carbon film
JPH02107774A (en) Formation of carbon-based coating film
JP3281354B2 (en) Method for producing diamond-like carbon film
JP2627939B2 (en) Office materials covered with carbon film
JPH0230755A (en) Carbon-based coating film
JP3254202B2 (en) A member provided with a carbon film or a film containing carbon as a main component
JP3256212B2 (en) Method for producing diamond-like carbon film
JPH0229662A (en) Photoconductor
JPS61264350A (en) Electrophotographic sensitive body
JP3310647B2 (en) Member covered with carbon film
JP3267959B2 (en) Method for producing diamond-like carbon film
JP3165423B2 (en) Member covered with carbon film
JP2668240B2 (en) Electrophotographic photoreceptor