JPH02305612A - Manufacture of board with fine pattern - Google Patents

Manufacture of board with fine pattern

Info

Publication number
JPH02305612A
JPH02305612A JP6006889A JP6006889A JPH02305612A JP H02305612 A JPH02305612 A JP H02305612A JP 6006889 A JP6006889 A JP 6006889A JP 6006889 A JP6006889 A JP 6006889A JP H02305612 A JPH02305612 A JP H02305612A
Authority
JP
Japan
Prior art keywords
substrate
mold
board
fine pattern
jostle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006889A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsuno
好洋 松野
Shinya Katayama
慎也 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP6006889A priority Critical patent/JPH02305612A/en
Publication of JPH02305612A publication Critical patent/JPH02305612A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form widely, uniformly, highly accurately and without defect a fine pattern, by a method wherein a jostle between a die and board is begun from an arbitrary end and then advanced to the other part. CONSTITUTION:For example, ethanol and water are added to silicone tetraethoxide for dilution and the same is made into a coating solution by adding polyethylene glycol further to the same for uniform dissolution. A disc board 1 made of chemically reinforced glass is immersed into the coating solution and a coated film 2 is formed on the board. Then a die 3 made of polycarbonate having a crest part and the glass board obtained by putting the coated film 2 between them and the die 3 put between the board and a silicone rubber sheet 4 opposite to the board are mounted within a mold. The same is deformed into almost a spherical state by pressing the center part so that a side facing on the glass board is made into a protrusion. A jostle with the glass board is performed on the center part of a disk and the jostle of the whole surface of the disc is performed by widening the jostle part in a state of axis symmetry in a radial direction. It is preferable that the jostle is performed under a depressurized state of not exceeding 10Torr.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は微細パターン付き基板のlll3!!方法に間
し、特に光デイスク用溝付き基板、回折格子等に使用す
るのに適した微細パターン付き基板を製造する方法に関
する。
The present invention is a micropatterned substrate lll3! ! In particular, the present invention relates to a method for manufacturing a finely patterned substrate suitable for use in grooved substrates for optical disks, diffraction gratings, etc.

【従来の技術】[Conventional technology]

基板上に金属有機化合物を含むm液の可塑性塗布膜を形
成した後、型を押し当ててL*塗布膜上に型の峰形状に
対応する溝形状を転写し、その後該塗布膜を焼成して固
化させる溝付き基板の製造方法が考えろでいる。 (例
えば特開昭62−102445、特開昭62−2252
73.  特開昭63−15816[1)
After forming a plastic coating film of liquid M containing a metal organic compound on a substrate, a mold is pressed against the L* coating film to transfer a groove shape corresponding to the peak shape of the mold, and then the coating film is fired. A method for manufacturing grooved substrates that is solidified by solidification is currently being considered. (For example, JP-A-62-102445, JP-A-62-2252
73. Unexamined Japanese Patent Publication No. 63-15816 [1]

【発明が解決しようとする課題】[Problem to be solved by the invention]

基板及び基板上に作製した塗布膜及び型を用いる溝付き
基板の製造方法によれば、金属有機化合物が膜状態であ
り基板上に設けられているのでゲル体と比べて収縮が小
さく、クラックや反りが発生しにくいという利点を有す
るものの、プレス型と該塗布膜付き基板の間に大きな気
泡が残留することが多く、これが欠点となり、製品の分
留りが低くなりやすいという問題点があった。
According to the method for manufacturing a grooved substrate using a substrate, a coating film prepared on the substrate, and a mold, since the metal-organic compound is in the form of a film and is provided on the substrate, it shrinks less than a gel body and is free from cracks. Although it has the advantage of being less likely to warp, large air bubbles often remain between the press mold and the substrate with the coated film, which is a drawback and has the problem that the fractionation of the product tends to be low. .

【課題を解決するための手段】[Means to solve the problem]

本発明は上記問題点を解決するために、基板上および/
または微細なパターンを有する型上に金属有機化合物を
含む溶液の塗布膜を形成し、その後該基板及び型を押合
し基板上に型の凹凸形状に対応する凹凸形状を有する微
細パターン付き被膜を形成した後、該被膜を固化させる
微細パターン付き基板の製造方法において、鏡型と該基
板の押合を任意の一端から開始させ、ついで他部に進行
させている。 該基板及び鏡型としては板状のものであれば任意の形の
ものが使用可能であるが、これらがディスク形状を有す
る場合には、押合をディスクの中心部分から開始させ、
軸対称に外周方向へ進行させていくことが該基板と鏡型
の軸合わせの而から好ましい。 また該基板の材質としては、光学的性質、機械的性質等
からガラスが好まれて使用され、中でも化学強化可能な
Na、に等アルカリ合圧を含んだガラスが特に好まれて
使用される。 また鏡型の材質としては、金属、ガラス、樹脂等が使用
され、中でも寸法精度の面から、ニッケル電鋳で作製さ
れるニッケル製の型、2P法で作製されるガラス及び樹
脂製の型、射出成形法で作製される樹脂製の型、キャス
ト法による樹脂製の型が好まれて使用される。 また該押合工程を減圧下で行うことが、該基板と該塗布
膜付きの基板の間に気泡が閉じ込められることがあった
としても生ずる欠陥の大きさが小さくなるので好ましい
、特に該減圧状態の圧力が1333Pa (10Tor
r)以下であることが生ずる欠陥の大きさが十分小さく
なるので好ましい。また本発明においては、前記溶液中
に増結剤を含ませると共に押合工程を減圧下で行ってい
るが、増結剤を含ませない状態で押合工程を減圧にする
と、塗布膜中の溶媒が揮発して急激に同化が進み、押合
がうまく行えなくなる。 本発明に用いる増結剤は、上記金属有機化合物・を含む
溶液の粘性を増加させる効果を有し、塗布膜の形成を容
易にする。また同時に基板と型との押合工程を減圧下で
行う場合には、塗布膜を減圧下でも長時閏軟らかい状態
(適度な粘性状態)に維持させる効果を有し、バターニ
ングを容易にする。該増結剤としては、水溶性であり、
かつ有機溶媒に可溶な高分子材料が好まれて使用される
。 中でも、ポリエチレングリコール、ポリテトラメチレン
エーテルグリコール等の鎖状ポリエーテルが好まれて使
用される。 またこれらポリエチレングリコール、ポリテトラメチレ
ンエーテルグリコール等の添加量は該塗布液により生成
される酸化物重量の0.26〜1゜8倍程度が好まれる
。(添加量が0.25倍以下であると減圧時に塗布膜が
硬化してしまいやすくなりパターニングが困難となる。 また逆に添加量が168倍以上であると塗布膜が軟らか
くなりすぎて型くずれ等を生じ易くなる。) 上記金属有機化合物は単一または混合物として、水及び
アルコール等の有機溶媒、上記増結剤及び必要に応じて
酸またはアルカリの加水分解触媒と混合して塗布用溶液
とされる。 型の微細パターンとしては種々の形状のものが使用でき
、例えば光デイスク用の案内溝として使用可能な1μm
程度の幅を持ち、その深さが550−200nの微細パ
ターンや回折格子、グレーティングレンズとして使用可
能な数1100nの形状のパターンのものが使用できる
。 本発明に用いる金属有機化合物は重縮合あるいは架橋反
応が起ごろことによって溶液の粘性を上昇させるような
化合物であれば使用できる。 例えばS I  (OCHi) 41  S I  (
OC2H3) a*Ti   (OCiHt)  4.
   Ti   C0CaH*>a 、  Zr  (
OCtHv)a+  Zr (OC4He)a+  A
I <OC*H1L3.  A I  (OCJHs)
 31  N a OC3I%等のM(OR)n[Mは
Sin  Ti、Zr、  Ca、  AI。 Na、Pb、B、Sn、Ge等の金属、Rはメチル、エ
チル等のアルキル基、nは1〜4の整数]で示される通
常ゾルゲル法と呼ばれる方法に用いられる金属アルコラ
ード、キレート錯体及び−C1、−COOH,−COO
R,−N H2゜HHHOCH3 I  1 1        I+  1− O−C−
C−C−H,−0−C−C= CH2等の重縮合あるい
は架橋反応を行う一般的官能基を含む金属有機化合物等
が例示できる。中でも金属アルコラードが好まれて使用
される。 鏡型と該基板の押合を任意の一端から開始させ、ついで
他部に進行させていく方法としては、例えば鏡型を有機
材料等の剛性の低い材料製の型として、鏡型を球面また
は円筒面状等凸曲面に変形させ、鏡型と該基板を接触さ
せていき、該変形を解放させる方法等が例示できる。
In order to solve the above-mentioned problems, the present invention has been made to solve the above problems.
Alternatively, a coating film of a solution containing a metal organic compound is formed on a mold having a fine pattern, and then the substrate and the mold are pressed together to form a film with a fine pattern on the substrate having an uneven shape corresponding to the uneven shape of the mold. After that, in the method for manufacturing a finely patterned substrate in which the film is solidified, pressing of the mirror mold and the substrate is started from one arbitrary end and then proceeds to the other part. The substrate and mirror mold can be of any plate shape, but if they have a disk shape, pressing starts from the center of the disk,
It is preferable to advance in an axially symmetrical direction toward the outer periphery in order to align the axis of the mirror with the substrate. Further, as the material for the substrate, glass is preferably used from the viewpoint of optical properties, mechanical properties, etc. Among them, glass containing an alkali combined pressure such as Na, which can be chemically strengthened, is particularly preferably used. In addition, metal, glass, resin, etc. are used as materials for the mirror mold, and among them, from the viewpoint of dimensional accuracy, nickel molds made by nickel electroforming, glass and resin molds made by the 2P method, Resin molds produced by injection molding and cast resin molds are preferably used. Furthermore, it is preferable to carry out the pressing step under reduced pressure because even if air bubbles are trapped between the substrate and the substrate with the coated film, the size of defects that occur will be reduced. The pressure is 1333Pa (10Tor)
r) or less is preferable because the size of defects that occur will be sufficiently small. Furthermore, in the present invention, the binder is included in the solution and the pressing step is performed under reduced pressure. However, if the pressing step is performed under reduced pressure without the binder being included, the solvent in the coating film will volatilize. Assimilation progresses rapidly, making it difficult to press together properly. The binder used in the present invention has the effect of increasing the viscosity of the solution containing the metal organic compound described above, and facilitates the formation of a coating film. At the same time, when the pressing process of the substrate and the mold is carried out under reduced pressure, it has the effect of maintaining the coating film in a soft state (appropriately viscous state) for a long time even under reduced pressure, making patterning easier. The thickener is water-soluble,
A polymeric material that is soluble in an organic solvent is preferably used. Among them, chain polyethers such as polyethylene glycol and polytetramethylene ether glycol are preferably used. The amount of polyethylene glycol, polytetramethylene ether glycol, etc. to be added is preferably about 0.26 to 1.8 times the weight of the oxide produced by the coating solution. (If the amount added is less than 0.25 times, the coating film tends to harden during depressurization, making patterning difficult. On the other hand, if the amount added is more than 168 times, the coating film becomes too soft, resulting in deformation, etc.) ) The above-mentioned metal-organic compounds are mixed alone or as a mixture with water, an organic solvent such as alcohol, the above-mentioned binder, and if necessary, an acid or alkali hydrolysis catalyst to form a coating solution. . Various shapes can be used as the fine pattern of the mold, for example, a 1 μm pattern that can be used as a guide groove for optical disks.
A fine pattern with a depth of 550 to 200 nm, a pattern with a shape of several 1100 nm that can be used as a diffraction grating, or a grating lens can be used. The metal-organic compound used in the present invention can be any compound that increases the viscosity of the solution by causing a polycondensation or crosslinking reaction. For example, S I (OCHi) 41 S I (
OC2H3) a*Ti (OCiHt) 4.
Ti C0CaH*>a , Zr (
OCtHv)a+ Zr (OC4He)a+ A
I <OC*H1L3. AI (OCJHs)
31 N a OC3I% etc. M (OR) n [M is Sin Ti, Zr, Ca, AI. metals such as Na, Pb, B, Sn, Ge, R is an alkyl group such as methyl or ethyl, and n is an integer of 1 to 4] Metal alcoholades, chelate complexes, and - C1, -COOH, -COO
R, -N H2゜HHHOCH3 I 1 1 I+ 1- O-C-
Examples include metal organic compounds containing general functional groups that perform polycondensation or crosslinking reactions, such as C-C-H, -0-C-C=CH2. Among them, metal alcoholade is preferably used. As a method of starting the pressing of the mirror mold and the substrate from one end and then proceeding to the other part, for example, the mirror mold is made of a material with low rigidity such as an organic material, and the mirror mold is made of a spherical or cylindrical shape. Examples include a method of deforming the substrate into a convex curved surface, bringing the mirror mold into contact with the substrate, and releasing the deformation.

【作用】[Effect]

本発明によれば、型と基板の押合工程において、ゾルゲ
ル膜の表面張力により型と基板の間隙に存在していた気
体がこの間隙から追い出されるため塗布膜中に気泡が発
生することが少ない。
According to the present invention, in the process of pressing the mold and the substrate together, the gas existing in the gap between the mold and the substrate is expelled from the gap by the surface tension of the sol-gel film, so that bubbles are less likely to be generated in the coating film.

【実施例】【Example】

実施例−1 シリコンテトラエトキシド0.05モルを秤量し、これ
にモル比で5倍のエタノールと6倍の水(3wt%のH
CIを含む)を加え、約50℃で1時間かくはんする。 この溶液に218iiのエタノールを加えて希釈し、さ
らに分子量600のポリエチレングリコール(P E 
G ass)を、最終生成物であるS i Osに対す
る重量比で(PEGais)/(Si02)=1.Oの
量を加え均一に溶かしたものを塗布溶液とした。 この塗布溶液中へ、外径130mm、  厚さ1゜2m
mの化学強化ガラス製のディスク基板lを浸漬した後ゆ
っくりと引き上げて基板上に塗布膜2を形成した0次い
で、第1図に示すように、峰高さ0.14pm、峰輻0
.7pms  峰間隔1.6μmのスパイラル状の峰部
な半径25mmから60 m mの範囲に有する外径1
30mm、  厚さ1゜2mmのポリカーボネート製型
3とこのガラス基板を塗布膜を間に挟んで、さらにこの
型の基板と反対側に外径130mm、厚さ5mmのシリ
コーンゴム板4を挟んで金型中に設置した。ついで鏡型
3の周辺部を固定した後中央部を2〜3mm程度押して
、ガラス基板に向いた側を凸とするような略球面状に変
形させ、そのままの状態でゆっくりとガラス基板にディ
スク中心部より押合した。 ついでこの型の変形を緩めながら押合し、押合部を軸対
称に半径方向に広げて行き、最終的にはディスク全面を
押合した。 その後このままの状態で加熱して行き、100℃て10
分間の焼成を行い、その時点で型とガラスディスクの離
型を行い、さらにガラスディスクに対して400℃で1
0分間の焼成を行った。この焼成操作により、塗布膜は
エタノール及び水分等が飛散してガラス体類似の約0.
 2μm厚の非晶質膜となっていた。 上記操作により作製された溝付きガラスディスクの表面
を偏光顕V&鏡で観察したところ、ta深さ約0.1μ
m、満幅約0.7μm、溝間隔約1゜6μmの良好な溝
形状が全面に得られており、気泡の混入はほとんどみら
れなかった。 実施例−2 シリコンテトラエトキシド0.05モルを秤量し、これ
にモル比で4倍のエタノールと4倍の水(3w t%の
HCIを含む)を加え、約50℃で30分間かくはんす
る。この溶液にチタニウムテトラノルマルブトキシド0
.01モルをエタノールで希釈した溶液を徐々に加え、
同じく約60℃で30分間かくはんする。この溶液に2
倍量のエタノールを加えて希釈し、さらに分子ff16
00のポリエチレングリコール(PEGess)を、最
終生成物であるS i 02+T i Otに対する重
量比で(PEGass+) / (S i Oe+T 
i 02) = 1. 0の量を加え均一に溶かしたも
のを塗布溶液とした。 上記塗布溶液を用いた以外は実施例−1と同様の操作を
行い、溝付きガラスディスクを作成した。 本実施例により作製された溝付きガラスディスクの表面
を実施例−1同様偏光顕微鏡で観察したところ、実施例
−1同様溝深さ約0.1μm1  溝幅的0. 7μm
、溝間隔約1.6μmの良好な溝形状が全面に得られて
おり、気泡の混入はほとんどみられなかった。 実施例−3 実施例−1で作成した塗布溶液中へ、縦100mm、 
 横150mm、  厚さ1mmの化学強化ガラス製の
基板5を浸漬した後ゆっくりと引き上げて基板上に塗布
膜2を形成した0次いで、第2図に示すように、峰高さ
0.5μm、峰幅0. 7μm1峰間隔1. 6μmの
峰部を有する縦100mm。 横150mm、  厚さ1.2mmのポリカーボネート
製型6とこのガラス基板を塗布膜2を間に挟んで、さら
にこの型の基板と反対側に、縦100mm、横150m
m、  厚さ5μmmのシリコーンゴム板4を挟んで金
型中に設置した。ついで鏡型を円筒形の下地材に巻き付
けてガラス基板に向いた側を凸とするような円筒面状に
変形させ、そのままの状態でゆっくりとガラス基板に端
部より押合した。ついでこの押合部の型6を円筒形の下
地材から解放しなから押合を一方向に広げて行き、最終
的には全面を押合した。 その後このままの状態で加熱して行き、100℃で10
分間の焼成を行い、その時点で型とガラス基板の離型を
行い、さらにガラス基板に対して400℃で10分間の
焼成を行った。この焼成操作により、塗布膜はエタノー
ル及び水分等が飛散してガラス体類似の約0. 2μm
厚の非晶質膜となっていた。 上記操作により作製された溝付きガラス基板の表面を偏
光顕微鏡で観察したところ、溝深さ約0゜36μm、溝
幅的0.7μm1  溝間隔約1.6μmの良好な溝形
状が全面に得られており、気泡の混入はほとんどみられ
なかった。 比較例 第3図に示すように、型を曲げながら押合せずに、フラ
ットなままの状態でゆっくりとガラス基板にディスク全
面を押合する以外は実施例−1と同様な材料および方法
により、溝付きガラスディスクを作成した。 本操作により作製された溝付きガラスディスクの表面を
偏光顕微鏡で観察したところ、一部分には、溝深さ約0
.1μm、  溝幅的0. 7μm、  11間隔約1
. 6μmの良好な溝形状が得られていたが、多くの部
分に気泡の混入がみられた。
Example-1 0.05 mol of silicon tetraethoxide was weighed, and 5 times the molar ratio of ethanol and 6 times the amount of water (3 wt% H
(including CI) and stirred at about 50°C for 1 hour. This solution was diluted by adding 218ii ethanol and further diluted with polyethylene glycol (PE) with a molecular weight of 600.
G ass) to the final product S i Os at a weight ratio of (PEGais)/(Si02)=1. A coating solution was obtained by adding an amount of O and dissolving it uniformly. Into this coating solution, an outer diameter of 130 mm and a thickness of 1°2 m
A disk substrate l made of chemically strengthened glass of m was immersed and then slowly pulled up to form a coating film 2 on the substrate.Then, as shown in FIG.
.. 7pms Spiral-shaped peaks with a peak interval of 1.6μm, outer diameter 1 with radius ranging from 25mm to 60mm
A polycarbonate mold 3 of 30 mm and a thickness of 1°2 mm and this glass substrate were sandwiched with a coating film between them, and a silicone rubber plate 4 of an outer diameter of 130 mm and a thickness of 5 mm was sandwiched on the opposite side of the mold substrate, and a metal mold was formed. placed in the mold. Next, after fixing the peripheral part of the mirror mold 3, push the central part by about 2 to 3 mm to transform it into a roughly spherical shape with the side facing the glass substrate convex, and while keeping it as it is, slowly press the center of the disk onto the glass substrate. The parts were pressed together. Next, the molds were pressed together while loosening the deformation, and the pressed portion was expanded in the radial direction axially symmetrically, and finally the entire surface of the disk was pressed together. After that, heat it in this state and heat it to 100℃ for 10
Baking is performed for 1 minute, at which point the mold and glass disk are released from the mold, and the glass disk is further heated to 400°C for 1 minute.
Firing was performed for 0 minutes. By this baking operation, ethanol, water, etc. are scattered, and the coating film has a coating film with a coating film of about 0.00%, which is similar to a glass body.
It was an amorphous film with a thickness of 2 μm. When the surface of the grooved glass disk produced by the above procedure was observed using a polarizing microscope and mirror, it was found that the ta depth was approximately 0.1μ.
A good groove shape with a full width of about 0.7 μm and a groove interval of about 1°6 μm was obtained on the entire surface, and almost no air bubbles were observed. Example-2 Weigh out 0.05 mol of silicon tetraethoxide, add 4 times the molar ratio of ethanol and 4 times the amount of water (containing 3wt% HCI), and stir at about 50°C for 30 minutes. . This solution contains 0 titanium tetranormal butoxide.
.. Gradually add a solution of 01 mol diluted with ethanol,
Stir at the same temperature of about 60°C for 30 minutes. Add 2 to this solution
Add twice the amount of ethanol to dilute, and further molecule ff16
The weight ratio of 00 polyethylene glycol (PEGess) to the final product S i 02+T i Ot is (PEGass+) / (S i Oe+T
i02) = 1. A coating solution was prepared by adding an amount of 0 and dissolving it uniformly. A grooved glass disk was produced in the same manner as in Example-1 except that the above coating solution was used. When the surface of the grooved glass disk produced according to this example was observed using a polarizing microscope as in Example-1, the groove depth was approximately 0.1 μm1 and the groove width was 0.1 μm as in Example-1. 7μm
A good groove shape with a groove interval of about 1.6 μm was obtained on the entire surface, and almost no air bubbles were observed. Example-3 Into the coating solution prepared in Example-1, 100 mm in length,
A substrate 5 made of chemically strengthened glass with a width of 150 mm and a thickness of 1 mm was immersed and then slowly pulled up to form a coating film 2 on the substrate.Then, as shown in FIG. Width 0. 7μm 1 peak interval 1. 100mm long with a 6μm peak. A polycarbonate mold 6 with a width of 150 mm and a thickness of 1.2 mm and this glass substrate were sandwiched with the coating film 2 between them, and a mold 6 with a length of 100 mm and a width of 150 m was placed on the opposite side from this type of substrate.
m, and placed in a mold with a silicone rubber plate 4 having a thickness of 5 μmm sandwiched therebetween. Next, the mirror mold was wrapped around a cylindrical base material to transform it into a cylindrical surface with the side facing the glass substrate convex, and in that state, it was slowly pressed onto the glass substrate from the end. Next, the mold 6 of this pressed part was released from the cylindrical base material, and the pressed part was expanded in one direction, and finally the entire surface was pressed together. After that, heat it in this state and heat it for 10 minutes at 100℃.
Baking was performed for 1 minute, at which point the mold and glass substrate were released, and the glass substrate was further fired at 400° C. for 10 minutes. By this baking operation, ethanol, water, etc. are scattered, and the coating film has a coating film with a coating film of about 0.00%, which is similar to a glass body. 2μm
It was a thick amorphous film. When the surface of the grooved glass substrate produced by the above procedure was observed with a polarizing microscope, good groove shapes were obtained on the entire surface with a groove depth of approximately 0°36 μm, a groove width of 0.7 μm, and a groove spacing of approximately 1.6 μm. , and almost no air bubbles were observed. Comparative Example As shown in Figure 3, grooves were formed using the same materials and method as in Example 1, except that the entire surface of the disk was slowly pressed onto the glass substrate in a flat state, without bending the mold and pressing it together. I created a glass disc with a When the surface of the grooved glass disk produced by this operation was observed using a polarizing microscope, it was found that in some parts, the groove depth was about 0.
.. 1μm, groove width 0. 7μm, 11 intervals approx. 1
.. Although a good groove shape of 6 μm was obtained, air bubbles were observed in many parts.

【発明の効果】【Effect of the invention】

本発明によれば、微細なパターンを大面積に均一に高精
度、無欠陥で形成することができる。
According to the present invention, a fine pattern can be formed uniformly over a large area with high precision and without defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例−1において説明した本発明の押合方法
の概略を示す断面図、第2図は実施例−3において説明
した本発明の押合方法の概略を示す断面図、第3図は比
較例の押合方法の概略を示す断面図である。 第1図 第2図 第3図
FIG. 1 is a cross-sectional view schematically showing the pressing method of the present invention explained in Example-1, FIG. 2 is a cross-sectional view schematically showing the pressing method of the present invention explained in Example-3, and FIG. FIG. 3 is a cross-sectional view schematically showing a pressing method of a comparative example. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)基板上および/または微細なパターンを有する型上
に金属有機化合物を含む溶液の塗布膜を形成し、その後
該基板及び型を押合し基板上に型の凹凸形状に対応する
凹凸形状を有する微細パターン付き被膜を形成した後、
該被膜を固化させる微細パターン付き基板の製造方法に
おいて、該型と該基板の押合を任意の一端から開始させ
、ついで他部に進行させていくことを特徴とする微細パ
ターン付き基板の製造方法。 2)該基板及び該型がディスク状であり、該押合が、該
型と該基板のディスクの中心部分から開始させ、軸対称
に外周方向へ進行させていく操作である特許請求の範囲
第1項記載の微細パターン付置基板の製造方法。 3)該溶液中に増結剤が含まれ、かつ該押合工程が減圧
雰囲気下で行われる特許請求の範囲第1項または第2項
記載の微細パターン付き基板の製造方法。 4)該減圧状態の圧力が1333Pa(10Torr)
以下である特許請求の範囲第3項記載の微細パターン付
を基板の製造方法。 5)該基板がガラス基板である特許請求の範囲第1項な
いし第4項記載の微細パターン付き基板の製造方法。 6)該押合を、該型を曲面に変形させた後に行う特許請
求の範囲第1項ないし第5項記載の微細パターン付を基
板の製造方法。
[Claims] 1) A coating film of a solution containing a metal organic compound is formed on a substrate and/or a mold having a fine pattern, and then the substrate and the mold are pressed together to form the uneven shape of the mold on the substrate. After forming a finely patterned film with corresponding uneven shapes,
A method for manufacturing a substrate with a fine pattern in which the film is solidified, the method comprising: starting pressing the mold and the substrate from one arbitrary end and then proceeding to other parts. 2) The substrate and the mold are disk-shaped, and the pressing is an operation that starts from the center of the disk of the mold and the substrate and advances toward the outer circumference in an axially symmetrical manner. A method for manufacturing a fine pattern-attached substrate as described in Section 1. 3) The method for manufacturing a finely patterned substrate according to claim 1 or 2, wherein the solution contains a binder and the pressing step is performed under a reduced pressure atmosphere. 4) The pressure in the reduced pressure state is 1333 Pa (10 Torr)
A method for manufacturing a substrate with a fine pattern according to claim 3 as follows. 5) The method for manufacturing a finely patterned substrate according to any one of claims 1 to 4, wherein the substrate is a glass substrate. 6) A method for manufacturing a substrate with a fine pattern according to claims 1 to 5, wherein the pressing is performed after the mold is transformed into a curved surface.
JP6006889A 1989-03-13 1989-03-13 Manufacture of board with fine pattern Pending JPH02305612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006889A JPH02305612A (en) 1989-03-13 1989-03-13 Manufacture of board with fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006889A JPH02305612A (en) 1989-03-13 1989-03-13 Manufacture of board with fine pattern

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13485190A Division JPH03101701A (en) 1990-05-24 1990-05-24 Manufacture of substrate with fine pattern

Publications (1)

Publication Number Publication Date
JPH02305612A true JPH02305612A (en) 1990-12-19

Family

ID=13131400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006889A Pending JPH02305612A (en) 1989-03-13 1989-03-13 Manufacture of board with fine pattern

Country Status (1)

Country Link
JP (1) JPH02305612A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200368A1 (en) * 2003-03-20 2004-10-14 Masahiko Ogino Mold structures, and method of transfer of fine structures
WO2004100143A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Imprint device and imprint method
WO2004100142A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Imprint device and imprint method
JP2007535172A (en) * 2004-04-27 2007-11-29 モレキュラー・インプリンツ・インコーポレーテッド Compliant hard template for UV imprinting
JP2008044147A (en) * 2006-08-11 2008-02-28 Sakaiya:Kk Spin working method applicable to plastic sheet
JP2010510106A (en) * 2006-11-21 2010-04-02 チバ ホールディング インコーポレーテッド Security product manufacturing apparatus and method
US20100289182A1 (en) * 2007-09-28 2010-11-18 Yuma Hirai method and device for manufacturing sheet having fine shape transferred thereon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200368A1 (en) * 2003-03-20 2004-10-14 Masahiko Ogino Mold structures, and method of transfer of fine structures
US8632714B2 (en) 2003-03-20 2014-01-21 Hitachi, Ltd. Mold structures, and method of transfer of fine structures
WO2004100143A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Imprint device and imprint method
WO2004100142A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Imprint device and imprint method
CN100373488C (en) * 2003-05-09 2008-03-05 Tdk株式会社 Imprint device and imprint method
JP2007535172A (en) * 2004-04-27 2007-11-29 モレキュラー・インプリンツ・インコーポレーテッド Compliant hard template for UV imprinting
JP2008044147A (en) * 2006-08-11 2008-02-28 Sakaiya:Kk Spin working method applicable to plastic sheet
JP2010510106A (en) * 2006-11-21 2010-04-02 チバ ホールディング インコーポレーテッド Security product manufacturing apparatus and method
US20100289182A1 (en) * 2007-09-28 2010-11-18 Yuma Hirai method and device for manufacturing sheet having fine shape transferred thereon
US8814556B2 (en) * 2007-09-28 2014-08-26 Toray Industries, Inc Method and device for manufacturing sheet having fine shape transferred thereon
US9573300B2 (en) 2007-09-28 2017-02-21 Toray Industries, Inc. Method and device for manufacturing sheet having fine shape transferred thereon

Similar Documents

Publication Publication Date Title
JP3751778B2 (en) Method for producing sol-gel molded product
US2488446A (en) Polytetrafluoroethylene casting mold
US5234717A (en) Process for producing a minute-patterned substrate
JP4192174B2 (en) Soft mold manufacturing method
US4810547A (en) Substrate with fine grooves and method for manufacturing the same
JPH02305612A (en) Manufacture of board with fine pattern
EP1364763A1 (en) Method of manufacturing article with specified surface shape
CN110568530A (en) Curved surface bionic compound eye processing method based on die forming
Roncone et al. Embossed gratings in sol-gel waveguides: pre-emboss heat treatment effects
JPS62225273A (en) Production of grooved substrate
JPH06114334A (en) Method for forming very fine recessed and projected pattern on base
JPH02283638A (en) Production of substrate with very fine pattern
JP2007517253A (en) Production of polymer optical waveguides using molds
JPH03101701A (en) Manufacture of substrate with fine pattern
JP2516227B2 (en) Grooved substrate manufacturing method
JPH04321953A (en) Method and device for manufacturing substrate with minute pattern
JP3166203B2 (en) Method for forming a fine uneven pattern on a substrate
JPH0327002A (en) Production of optical waveguide
JP3089700B2 (en) Method for manufacturing substrate with fine pattern
JPH01131031A (en) Production of glass transfer body
JPH0447541A (en) Manufacture of substrate with fine pattern
JPH0349057A (en) Stamper
JP2763357B2 (en) Manufacturing method of substrate with fine pattern
JPH04335075A (en) Coating solution
JPS6021215A (en) Manufacture of fine pattern