JPH02302302A - Power generation system of fuel cell - Google Patents

Power generation system of fuel cell

Info

Publication number
JPH02302302A
JPH02302302A JP1123575A JP12357589A JPH02302302A JP H02302302 A JPH02302302 A JP H02302302A JP 1123575 A JP1123575 A JP 1123575A JP 12357589 A JP12357589 A JP 12357589A JP H02302302 A JPH02302302 A JP H02302302A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
desulfurization
desulfurizer
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1123575A
Other languages
Japanese (ja)
Other versions
JP2765950B2 (en
Inventor
Osamu Okada
治 岡田
Takeshi Tabata
健 田畑
Masataka Masuda
正孝 増田
Susumu Takami
晋 高見
Masamichi Ipponmatsu
正道 一本松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1123575A priority Critical patent/JP2765950B2/en
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to DK90907417.1T priority patent/DK0427869T3/en
Priority to CA002033064A priority patent/CA2033064C/en
Priority to DE69008669T priority patent/DE69008669T2/en
Priority to EP90907417A priority patent/EP0427869B1/en
Priority to PCT/JP1990/000607 priority patent/WO1990014305A1/en
Publication of JPH02302302A publication Critical patent/JPH02302302A/en
Priority to US07/921,596 priority patent/US5302470A/en
Application granted granted Critical
Publication of JP2765950B2 publication Critical patent/JP2765950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent deterioration of water vapor-improved catalyst and make possible to operate cell for a long period of time by highly desulfurizing sulfur in fuel gas supplied into a fuel electrode of a fuel cell in a desulfurizer filled with Cu-Zn based desulfurizing agent and a hydrogenated desulfurizer. CONSTITUTION:The objective power generation system of fuel cell is composed of a desulfurizer desulfurizing raw fuel 1 and a improving device 4 with water vapor improving-desulfurized raw fuel to fuel gas mainly containing hydrogen, etc. Said desulfurizer is composed of a hydrogenated desulfurizer 2a and a desulfurizer 2b filled with Cu-Zn based desulfurizing agent. Then sulfur content of raw fuel highly desulfurized by the desulfurizer is made to be <=5ppb.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は燃料電池発電システムに関する。さらに詳細に
は、燃料極に供給される燃料ガス系を改良した燃料電池
発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a fuel cell power generation system. More specifically, the present invention relates to a fuel cell power generation system with an improved fuel gas system supplied to the fuel electrode.

〈従来の技術〉 従来、燃料の有する化学エネルギーを直接電気エネルギ
ーに変換するシステムとして燃料電池が知られている。
<Prior Art> Fuel cells have conventionally been known as a system that directly converts chemical energy contained in fuel into electrical energy.

この燃料電池は、通常、電解質を保持した電解質層を挾
んで燃料極と酸化剤極とからなる一対の多孔質電極を対
向させて燃料電池を形成し、燃料極の背面に水素等の燃
料ガスを接触させ、また酸化剤極の背面に空気等の酸化
剤を接触させることにより、このときに生ずる電気化学
反応を利用して、上記の両極間から電気エネルギーを取
り出すようにしたものである。燃料ガスと酸化剤が供給
されている限り、高い変換効率で電気エネルギーを取り
出すことができ、また省エネルギー、環境保全等で有利
なため実用化研究が活発に行われている。
In this fuel cell, a pair of porous electrodes consisting of a fuel electrode and an oxidizer electrode are placed opposite each other with an electrolyte layer holding an electrolyte sandwiched between them to form a fuel cell. By bringing an oxidizing agent such as air into contact with the back side of the oxidizing agent electrode, electrical energy is extracted from between the two electrodes by utilizing the electrochemical reaction that occurs at this time. As long as fuel gas and oxidizer are supplied, electrical energy can be extracted with high conversion efficiency, and research into practical application is being actively conducted because it is advantageous in terms of energy saving and environmental protection.

この種の燃料電池においては、燃料として水素が汎用さ
れ、この水素は、通常、メタン、エタン、プロパン、ブ
タン、天然ガス、ナフサ、灯油、軽油、液化石油ガス(
LPG)、都市ガス等の原燃料を水蒸気改質反応に付し
て、水素を主成分とする燃料ガスに変換することにより
得られている。
In this type of fuel cell, hydrogen is commonly used as a fuel, and this hydrogen is usually methane, ethane, propane, butane, natural gas, naphtha, kerosene, diesel oil, liquefied petroleum gas (
It is obtained by subjecting raw fuels such as LPG) and city gas to a steam reforming reaction to convert them into fuel gas whose main component is hydrogen.

上記の原燃料中の硫黄成分は、水蒸気改質触媒(例えば
、Ru系触媒、Ni系触媒等)を被毒し、例えば、原燃
料中の硫黄含有量が0.lppm程度の状態であっても
Ru触媒又はNi触媒の表面の約90%が短時間に硫黄
で覆われてしまい、触媒活性が著しく劣化する。かかる
状況から、水蒸気改質反応に付される前に原燃料は脱硫
反応に付される。
The sulfur component in the raw fuel mentioned above poisons the steam reforming catalyst (for example, Ru-based catalyst, Ni-based catalyst, etc.), and for example, if the sulfur content in the raw fuel is 0. Even in a state of about 1 ppm, about 90% of the surface of the Ru catalyst or Ni catalyst is covered with sulfur in a short time, resulting in a significant deterioration of catalytic activity. Under such circumstances, the raw fuel is subjected to a desulfurization reaction before being subjected to a steam reforming reaction.

従来、原燃料の水蒸気改質に先立って行われている代表
的な脱硫方法は、Ni−Mo系又はC〇−Mo系触媒の
存在下、350〜400℃にて、原燃料中の有機硫黄を
水添分解した後、生成するH2 Sを、350〜400
℃にてZnOに吸着させて除去する水添脱硫法である。
Conventionally, a typical desulfurization method carried out prior to steam reforming of raw fuel is to remove organic sulfur from raw fuel at 350 to 400°C in the presence of a Ni-Mo or Co-Mo catalyst. After hydrogenolyzing, the H2S produced is 350 to 400
This is a hydrodesulfurization method in which ZnO is adsorbed and removed at ℃.

第2図は、水添脱硫法による脱硫装置及び水蒸気改質装
置を有する燃料電池発電システムの代表的な例の基本的
構成の概要を示すシステム図である。同図において、原
燃料1は、後記−酸化炭素変成器5から導かれる水素を
主成分とする燃料ガスと混合されて、水添脱硫器2aに
導入される。
FIG. 2 is a system diagram showing an overview of the basic configuration of a typical example of a fuel cell power generation system having a desulfurization device using a hydrodesulfurization method and a steam reformer. In the figure, raw fuel 1 is mixed with a fuel gas containing hydrogen as a main component, which is led from a carbon oxide shift converter 5 (described later), and introduced into a hydrodesulfurizer 2a.

水添脱硫器2aは、原燃料1の入口側から順に、Ni−
Mo系、Co −M o系触媒等が充填された水素添加
層と、ZnO等の吸着脱硫剤が充填された吸着層とで構
成される。原燃料1は加熱器で350〜400℃に加熱
された後、水素添加層で水素添加されて原燃料中の硫黄
成分をH2Sに変換し、次いで生成したH2 Sは吸着
層で吸着除去され、原燃料1が脱硫される。脱硫された
原燃料1は混合器3で水蒸気と混合されて水蒸気改質装
置4に導入され、水蒸気改質反応により水素を主成分と
する燃料ガスに変換されて排出される。排出された燃料
ガスは、含有する一酸化炭素が燃料極7の触媒を被毒す
ること又水素への変換効率を高めるため、変成触媒が充
填された一酸化炭素変成器5に導入され、−酸化炭素は
水素と二酸化炭素に変換される。−酸化炭素変成器5か
ら排出された燃料ガスは、一部が前記の水添脱硫器2a
に送られ、残りは燃料電池本体6の燃料極7に送られて
燃料として使用される。燃料極7に流入した燃料ガ′ス
中の水素は、コンプレッサー8により酸化剤極10に流
入している空気9中の酸素と電気化学的反応を行ない、
その結果燃料ガスの一部が消費されて電気エネルギーが
得られ、水が副生する。
The hydrodesulfurizer 2a sequentially processes Ni-
It is composed of a hydrogenation layer filled with a Mo-based or Co-Mo-based catalyst, and an adsorption layer filled with an adsorption desulfurization agent such as ZnO. The raw fuel 1 is heated to 350 to 400°C in a heater, and then hydrogenated in a hydrogenation layer to convert the sulfur component in the raw fuel to H2S, and then the generated H2S is adsorbed and removed in an adsorption layer. Raw fuel 1 is desulfurized. The desulfurized raw fuel 1 is mixed with steam in a mixer 3 and introduced into a steam reformer 4, where it is converted into a fuel gas containing hydrogen as a main component by a steam reforming reaction and is discharged. The discharged fuel gas is introduced into the carbon monoxide shift converter 5 filled with a shift catalyst to prevent the contained carbon monoxide from poisoning the catalyst of the fuel electrode 7 and to increase the conversion efficiency into hydrogen. Carbon oxide is converted to hydrogen and carbon dioxide. - Part of the fuel gas discharged from the carbon oxide shift converter 5 is the aforementioned hydrodesulfurizer 2a.
The remainder is sent to the fuel electrode 7 of the fuel cell main body 6 and used as fuel. Hydrogen in the fuel gas flowing into the fuel electrode 7 undergoes an electrochemical reaction with oxygen in the air 9 flowing into the oxidizer electrode 10 by the compressor 8.
As a result, a portion of the fuel gas is consumed, electrical energy is obtained, and water is produced as a by-product.

燃料極7から排出された燃料ガスは、水蒸気改質装置4
のバーナー11に送られると共にコンプレッサー8より
供給される空気9と合流し、バーナー11で燃焼されて
、水蒸気改質装置4の加熱源として利用される。バーナ
ー11から排出された水蒸気を含む排ガスは、熱交換器
12を経た後、凝縮器13で気水分離され、分離された
ガスは排気される。また、凝集した水は給水ライン14
と合流し、給水ポンプ15及び冷却水ポンプ16を経て
、燃料電池本体6へ送られ、その冷却に使用される。燃
料電池本体6から排出された冷却水は、熱交換器17を
経て、気水分離器18に送られ、水と水蒸気に分離され
る。分離された水は冷却水ポンプ16を経て、燃料電池
本体6の冷却に循環使用され、また水蒸気は前記混合器
3に送られ、脱硫された原燃料1と混合された後、水蒸
気改質装置4に送られて水蒸気改質反応に利用される。
The fuel gas discharged from the fuel electrode 7 is transferred to the steam reformer 4
The air 9 is sent to the burner 11 of the steam reformer 11 and joins with the air 9 supplied from the compressor 8, is burned in the burner 11, and is used as a heating source for the steam reformer 4. The exhaust gas containing water vapor discharged from the burner 11 passes through the heat exchanger 12, and then is separated into steam and water by the condenser 13, and the separated gas is exhausted. In addition, the aggregated water is removed from the water supply line 14.
The water flows through the water supply pump 15 and the cooling water pump 16, and is sent to the fuel cell main body 6, where it is used for cooling. Cooling water discharged from the fuel cell main body 6 is sent to a steam-water separator 18 via a heat exchanger 17, and is separated into water and steam. The separated water passes through the cooling water pump 16 and is circulated for cooling the fuel cell main body 6, and the steam is sent to the mixer 3 where it is mixed with the desulfurized raw fuel 1 and then sent to the steam reformer. 4 and used in the steam reforming reaction.

このような燃料電池発電システムにおいては、原燃料の
脱硫工程に多くの問題点がある。即ち、水添脱硫工程に
おいて、原燃料中に一定量以上の有機硫黄、特にチオフ
ェンなどの難分解性の有機硫黄が含まれている場合には
、未分解のものがスリップして、ZnOに吸着されるこ
となく、素通りする。また、吸着脱硫に際しては、例え
ば、Z n O+H2S:l;Z n S +H20Z
nO+CO8::ZnS、+COz で示される平衡のため、H2S、CO8などの量も一定
値以下とはならない。特に、H2OおよびCO2が存在
する場合には、この傾向は著しい。
In such a fuel cell power generation system, there are many problems in the desulfurization process of raw fuel. In other words, in the hydrodesulfurization process, if the raw fuel contains more than a certain amount of organic sulfur, especially difficult-to-decompose organic sulfur such as thiophene, undecomposed substances slip and are adsorbed by ZnO. Pass by without being affected. In addition, for adsorption desulfurization, for example, Z n O + H2S: l; Z n S + H20Z
Because of the equilibrium represented by nO+CO8::ZnS, +COz, the amounts of H2S, CO8, etc. do not fall below a certain value. This tendency is particularly significant when H2O and CO2 are present.

さらに、装置のスタートアップ、シャットダウンなどに
際して脱硫系が不安定である場合には、吸着脱硫触媒か
ら硫黄が飛散して、原燃料中の硫黄濃度が増大すること
もある。従って、現在の脱硫工程は、精製後の原燃料中
の硫黄濃度が数ppm乃至0.lppmとなるようなレ
ベルで行われて′ おり、水蒸気改質触媒の被毒を十分
に抑制することはできず、燃料電池を長時間安定的に運
転することができないという問題がある。
Furthermore, if the desulfurization system is unstable during startup or shutdown of the device, sulfur may scatter from the adsorption desulfurization catalyst, increasing the sulfur concentration in the raw fuel. Therefore, in the current desulfurization process, the sulfur concentration in the raw fuel after refining ranges from several ppm to 0.5 ppm. The problem is that the poisoning of the steam reforming catalyst cannot be sufficiently suppressed and the fuel cell cannot be operated stably for a long period of time.

本発明は上記の従来技術の問題を解消すべく創案された
もので、燃料極に供給される燃料ガス系を改良すること
により、長時間、安定的に運転することができる燃料電
池発電システムを提供することを目的とする。
The present invention was devised to solve the problems of the prior art described above, and by improving the fuel gas system supplied to the fuel electrode, it provides a fuel cell power generation system that can operate stably for a long time. The purpose is to provide.

く課題を解決するための手段及び作用〉上記の課題を解
決すべくなされた、本発明の燃料電池発電システムは、
原燃料を脱硫する脱硫装置と、脱硫された原燃料を水素
を主成分とする燃料ガスに改質する水蒸気改質装置とを
少なくとも有する燃料電池発電システムにおいて、脱硫
装置が水添脱硫器と銅−亜鉛系脱硫剤を充填した脱硫器
とで構成されることを特徴とするものである。
Means and operation for solving the above problems> The fuel cell power generation system of the present invention, which has been made to solve the above problems, has the following features:
In a fuel cell power generation system that includes at least a desulfurization device that desulfurizes raw fuel and a steam reformer that reformens the desulfurized raw fuel into fuel gas containing hydrogen as a main component, the desulfurization device has a hydrodesulfurization device and a copper desulfurization device. - A desulfurizer filled with a zinc-based desulfurizing agent.

なお、本発明において、銅−亜鉛系脱硫剤とは、銅と亜
鉛成分(例えば、酸化亜鉛等)とを少なくとも含有し、
さらにアルミニウム成分(例えば、酸化アルミニウム等
)、クロム成分(例えば、酸化クロム等)等のその他の
成分を含有していてもよい脱硫剤を意味する。
In addition, in the present invention, the copper-zinc desulfurization agent contains at least copper and a zinc component (for example, zinc oxide, etc.),
It means a desulfurizing agent that may further contain other components such as an aluminum component (for example, aluminum oxide, etc.) and a chromium component (for example, chromium oxide, etc.).

本発明の燃料電池発電システムでは、原燃料は水添脱硫
器により一次脱硫された後、銅−亜鉛系脱硫剤が充填さ
れた脱硫器(以下、銅−亜鉛系脱硫器という)でさらに
脱硫される。該銅−亜鉛系脱硫剤は、−次脱硫された原
燃料中の硫黄含有量を5ppb (硫黄として、以下同
じ)以下、通常0.1ppb以下とすることがでやる。
In the fuel cell power generation system of the present invention, raw fuel is first desulfurized by a hydrodesulfurizer, and then further desulfurized by a desulfurizer filled with a copper-zinc desulfurizer (hereinafter referred to as a copper-zinc desulfurizer). Ru. The copper-zinc desulfurization agent can reduce the sulfur content in the secondary desulfurized raw fuel to 5 ppb (as sulfur, the same hereinafter) or less, usually 0.1 ppb or less.

従って、後続の水蒸気改質反応における水蒸気改質触媒
の被毒が抑制され、触媒活性を長時間維持することがで
き、燃料電池の安定した運転が可能となる。
Therefore, poisoning of the steam reforming catalyst in the subsequent steam reforming reaction is suppressed, the catalyst activity can be maintained for a long time, and stable operation of the fuel cell becomes possible.

上記の構成からなる本発明において、原燃料はまず水添
脱硫器で水添脱硫に付される。水添脱硫器は従来の水添
脱硫器と同様に、Nt−Mo系、Co −M o系触媒
等が充填された水素添加層とZnO等の吸着脱硫剤が充
填された吸着層とで構成され、・水添脱硫も従来の方法
と同様に行われる。
In the present invention having the above configuration, the raw fuel is first subjected to hydrodesulfurization in a hydrodesulfurizer. Similar to conventional hydrodesulfurizers, the hydrodesulfurizer is composed of a hydrogenation layer filled with an Nt-Mo or Co-Mo catalyst, and an adsorption layer filled with an adsorption desulfurization agent such as ZnO.・Hydrodesulfurization is also carried out in the same manner as in the conventional method.

また、本発明においては、上記の水添脱硫器で脱硫され
た原燃料はさらに銅−亜鉛系脱硫器を用′ いて脱硫さ
れる。該銅−亜鉛系脱硫器に充填されている銅−亜鉛系
脱硫剤としては、例えば、特願昭62−279867号
及び特願昭62−279868号に開示された銅−亜鉛
系脱硫剤が挙げられ、同公報には、それぞれ銅と酸化亜
鉛を主成分とする脱硫剤(以下、銅−亜鉛脱硫剤という
)及び銅と酸化亜鉛と酸化アルミニウムを主成分とする
脱硫剤(以、下、銅−亜鉛−アルミニウム脱硫剤という
)が開示されている。より詳細には、これらの脱硫剤は
次のような方法により調製される。
Further, in the present invention, the raw fuel desulfurized in the above-mentioned hydrodesulfurizer is further desulfurized using a copper-zinc desulfurizer. Examples of the copper-zinc desulfurization agent filled in the copper-zinc desulfurization device include the copper-zinc desulfurization agents disclosed in Japanese Patent Application No. 62-279867 and Japanese Patent Application No. 62-279868. The same publication describes a desulfurization agent containing copper and zinc oxide as main components (hereinafter referred to as copper-zinc desulfurization agent) and a desulfurization agent containing copper, zinc oxide, and aluminum oxide as main components (hereinafter referred to as copper-zinc desulfurization agent), respectively. - zinc-aluminum desulfurization agents) are disclosed. More specifically, these desulfurizing agents are prepared by the following method.

(1)銅−亜鉛脱硫剤 銅化合物(例えば、硝酸銅、酢酸銅等)及び亜鉛化合物
(例えば、硝酸亜鉛、酢酸亜鉛等)を含む水溶液とアル
カリ物質(例えば、炭酸ナトリウム等)の水溶液を使用
して、常法による共沈法により沈澱を生じさせる。生成
した沈澱を乾燥、焼成(300℃程度)して酸化銅−酸
化亜鉛混合物(原子比で、通常、銅:亜鉛−1=約0.
3〜10、好ましくは1:約0.5〜3、より好ましく
は1:約1〜2.3)を得た後、水素含有f16容量%
以下、より好ましくは0.5〜4容量%程度となるよう
に不活性ガス(例えば窒素ガス等)により希釈された水
素ガスの存在下に、150〜300℃程度で上記混合物
を還元処理する。このようにして得られた銅−亜鉛脱硫
剤は、他の成分、例えば、酸化クロム等を含有していて
もよい。
(1) Copper-zinc desulfurization agent: Uses an aqueous solution containing a copper compound (e.g., copper nitrate, copper acetate, etc.) and a zinc compound (e.g., zinc nitrate, zinc acetate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.) Then, a precipitate is produced by a conventional coprecipitation method. The formed precipitate is dried and calcined (about 300°C) to form a copper oxide-zinc oxide mixture (in atomic ratio, usually copper:zinc-1=about 0.
3 to 10, preferably 1: about 0.5 to 3, more preferably 1: about 1 to 2.3), then hydrogen-containing f16 volume %
Thereafter, the above mixture is reduced at about 150 to 300° C. in the presence of hydrogen gas diluted with an inert gas (eg, nitrogen gas, etc.) to more preferably about 0.5 to 4% by volume. The copper-zinc desulfurization agent thus obtained may contain other components, such as chromium oxide.

■銅−亜鉛−アルミニウム脱硫剤 銅化合物(例えば、硝酸銅、酢酸銅等)、亜鉛化合物(
例えば、硝酸亜鉛、酢酸亜鉛等)及びアルミニウム化合
物(例えば、硝酸アルミニウム、アルミン酸ナトリウム
等)を含む水溶液とアルカリ物質(例えば、炭酸ナトリ
ウム等)の水溶液を使用して、常法による共沈法により
沈澱を生じさせる。生成した沈澱を乾燥、焼成(300
℃程度)して、酸化鋼−酸化亜鉛−酸化アルミニウム混
合物(原子比で、通常、銅:亜鉛ニアルミニウム−1:
約0.3〜10:約0.05〜2、好ましくは1:約0
.6〜3:約0.3〜1)を得た後、水素含有量6容量
%以下、より好ましくは0.5〜4容量%程度となるよ
うに不活性ガス(例えば、′窒素ガス等)により希釈さ
れた水素ガスの存在下に、150〜300℃程度で上記
混合物を還元処理する。このようにして得られた銅−亜
鉛−アルミニウム脱硫剤は、他の成分、例えば、酸化ク
ロム等を含有していてもよい。
■Copper-zinc-aluminum desulfurization agent Copper compounds (e.g. copper nitrate, copper acetate, etc.), zinc compounds (
By a conventional coprecipitation method using an aqueous solution containing an aluminum compound (e.g., aluminum nitrate, sodium aluminate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.). Forms a precipitate. The generated precipitate was dried and calcined (300
°C) and a steel oxide-zinc oxide-aluminum oxide mixture (in atomic ratio, usually copper:zinc nialium-1:
About 0.3-10: about 0.05-2, preferably 1: about 0
.. After obtaining 6-3: about 0.3-1), inert gas (for example, 'nitrogen gas, etc.) is added so that the hydrogen content is 6% by volume or less, more preferably about 0.5-4% by volume. The above mixture is reduced at about 150 to 300° C. in the presence of hydrogen gas diluted with hydrogen gas. The copper-zinc-aluminum desulfurization agent thus obtained may contain other components such as chromium oxide.

上記(1)及び(りの方法で得られた銅−亜鉛系脱硫剤
は、大きな表面積を有する微粒子状の銅が、酸化亜鉛(
及び酸化アルミニウム)中に均一に分散しているととも
に、酸化亜鉛(及び酸化アルミニウム)との化学的な相
互作用により高活性状態となっている。従って、これら
の脱硫剤を使用すると、原燃料中の硫黄含有量を確実に
5ppb以下、通常0.1ppb以下とすることができ
、またチオフェン等の難分解性の硫黄化合物も確実に除
去することができる。
In the copper-zinc desulfurization agent obtained by the methods (1) and (2) above, fine particulate copper with a large surface area is mixed with zinc oxide (
and aluminum oxide), and is highly active due to chemical interaction with zinc oxide (and aluminum oxide). Therefore, when these desulfurization agents are used, the sulfur content in the raw fuel can be reliably reduced to 5 ppb or less, usually 0.1 ppb or less, and it is also possible to reliably remove persistent sulfur compounds such as thiophene. I can do it.

本発明において、使用される原燃料としては、メタン、
エタン、プロパン、ブタン、天然ガス、ナフサ、灯油、
軽油、LPG、都市ガス及びこれらの混合物等が挙げら
れる。また、燃料電池の種類は特に限定されず、低温燃
料電池(例えば、リン酸電解液燃料電池、固体高分子電
解質燃料電池、超強酸電解質燃料電池、アルカリ性電解
液燃料電池等)及び高温燃料電池(例えば、溶融炭酸塩
燃料電池、固体酸化物電解質燃料電池等)のいずれであ
ってもよい。
In the present invention, the raw fuel used is methane,
ethane, propane, butane, natural gas, naphtha, kerosene,
Examples include light oil, LPG, city gas, and mixtures thereof. In addition, the types of fuel cells are not particularly limited, and include low-temperature fuel cells (for example, phosphoric acid electrolyte fuel cells, solid polymer electrolyte fuel cells, super acid electrolyte fuel cells, alkaline electrolyte fuel cells, etc.) and high-temperature fuel cells ( For example, it may be a molten carbonate fuel cell, a solid oxide electrolyte fuel cell, etc.).

〈実施例〉 以下、実施例を示す添付図面によって、本発明の詳細な
説明する。
<Examples> Hereinafter, the present invention will be described in detail with reference to the accompanying drawings showing examples.

第1図は、本発明の燃料電池発電システムの一実施例の
概略を示すシステム図であり、第2図と同一の部分には
同一の符号を付して示した。同図において、脱硫装置は
、水添脱硫器2aと銅−亜鉛系脱硫器2bとで構成され
、この例においては、原燃料1の入口側から順に、水素
添加触媒、吸着脱硫剤及び銅−亜鉛系脱硫剤が充填され
た脱硫管が用いられている。
FIG. 1 is a system diagram showing an outline of an embodiment of the fuel cell power generation system of the present invention, and the same parts as in FIG. 2 are denoted by the same reference numerals. In the figure, the desulfurization equipment is composed of a hydrodesulfurizer 2a and a copper-zinc desulfurizer 2b. A desulfurization tube filled with a zinc-based desulfurization agent is used.

第1図の発電システムにおいて、原燃料1は、−酸化炭
素変成器5から導かれる水素を主成分とする燃料ガスと
適宜な混合比に混合されて、水添脱硫器2aに導入され
る。水添脱硫器2aは、上′記のように原燃料1の入口
側から順に、例えば、Ni−Mo系、Co −M o系
触媒等が充填された水素添加層と、例えば、ZnO等の
吸着脱硫剤が充填された吸着層とで構成される。上記の
水素添加層において、原燃料1は、例えば、温度350
〜400℃程度、圧力0〜10kg/c−・G程度、G
 HS V (Gaseous Hourly 5pa
ce Veloclty) 3000程度の条件下に水
素添加される。水素添加された原燃料1は、吸着層にお
いて、例えば、温度350〜400℃程度、圧力0〜1
0kg/c−・G程度、GH3V100O程度の条件下
で吸着脱硫され、−次脱硫が行われる。なお、上記の水
素添加及び吸着脱硫の条件はこれらに限定されるもので
はない。
In the power generation system shown in FIG. 1, the raw fuel 1 is mixed with a fuel gas containing hydrogen as a main component derived from the -carbon oxide shift converter 5 at an appropriate mixing ratio, and introduced into the hydrodesulfurizer 2a. As described above, the hydrodesulfurizer 2a includes, in order from the inlet side of the raw fuel 1, a hydrogenation layer filled with, for example, a Ni-Mo-based catalyst, a Co--Mo-based catalyst, etc., and a hydrogenation layer filled with, for example, a catalyst such as a It consists of an adsorption layer filled with an adsorption desulfurization agent. In the above hydrogenation layer, the raw fuel 1 has a temperature of, for example, 350
~400℃, pressure 0~10kg/c-・G, G
HS V (Gaseous Hourly 5pa
Hydrogenation is performed under conditions of approximately 3,000 ce velocity). The hydrogenated raw fuel 1 is heated in the adsorption layer at a temperature of about 350 to 400°C and a pressure of 0 to 1.
Adsorption desulfurization is performed under conditions of approximately 0 kg/c-·G and approximately GH3V100O, and secondary desulfurization is performed. Note that the conditions for the hydrogenation and adsorption desulfurization described above are not limited to these.

次いで、−次脱硫された原燃料1は、銅−亜鉛系脱硫器
2bに導入され、更に脱硫される。銅−亜鉛系脱硫器2
bにおける脱硫は、例えば、温度lO〜400℃程度、
好ましくは150〜400℃程度、圧力0〜10kg/
c−・G程度、GH3V1000〜5000程度にて行
われるが、この条件に限定されるものではない。該脱硫
器2bから排出された原燃料1は硫黄含有量が5ppb
以下、通常はo、1ppb以下に脱硫器れている。
Next, the raw fuel 1 that has been desulfurized is introduced into a copper-zinc desulfurizer 2b, where it is further desulfurized. Copper-zinc desulfurizer 2
Desulfurization in step b is carried out at a temperature of, for example, 1O to 400°C,
Preferably about 150-400℃, pressure 0-10kg/
It is carried out at approximately c-.G and GH3V of approximately 1000 to 5000, but is not limited to these conditions. The raw fuel 1 discharged from the desulfurizer 2b has a sulfur content of 5 ppb.
Below, the desulfurizer is usually used to reduce the concentration to 1 ppb or less.

斯くして脱硫された原燃料1は混合器3で水蒸気と適宜
の混合比で混合された後、水蒸気改質装置4に導入され
、水蒸気改質反応に付されて水素を主成分とする燃料ガ
スに変換される。水蒸気改質装置4は、従来の燃料電池
の水蒸気改質装置と同様に、例えば、Ru触媒、Ni触
媒等が充填された水蒸気改質装置が用いられる。水蒸気
改質装置4から排出される水素を主成分とする燃料ガス
は、従来と同様に一酸化炭素変成器5に送られ、−酸化
炭素含有量を減少させると共に水素含有量が高められる
。次いで、−酸化炭素変成器5から排出された燃料ガス
は燃料電池本体6の燃料極7に送られ、コンプレッサー
8により酸化剤極10に流入している空気9中の酸素と
電気化学的反応を行ない、その結果燃料ガスの一部が消
費されて電気エネルギーが得られ、水が副生する。
The raw fuel 1 desulfurized in this way is mixed with steam at an appropriate mixing ratio in a mixer 3, and then introduced into a steam reformer 4 where it is subjected to a steam reforming reaction to produce a fuel containing hydrogen as a main component. converted to gas. As the steam reformer 4, a steam reformer filled with, for example, a Ru catalyst, a Ni catalyst, etc. is used, similar to the steam reformer of a conventional fuel cell. Fuel gas containing hydrogen as a main component discharged from the steam reformer 4 is sent to the carbon monoxide shift converter 5 in the same manner as in the past, and the carbon oxide content is reduced and the hydrogen content is increased. Next, the fuel gas discharged from the carbon oxide shift converter 5 is sent to the fuel electrode 7 of the fuel cell main body 6, and undergoes an electrochemical reaction with oxygen in the air 9 flowing into the oxidizer electrode 10 by the compressor 8. As a result, part of the fuel gas is consumed, electrical energy is obtained, and water is produced as a by-product.

なお、燃料極7から排出された燃料ガスの処理(例えば
、バーナー11に送り、燃焼させて水蒸気改質装置4の
加熱源として利用する等)、酸化剤極10から排出され
た排ガスの処理、燃料電池本体6の冷却及び冷却水回路
等は、従来の装置と同様である。
In addition, processing of the fuel gas discharged from the fuel electrode 7 (for example, sending it to the burner 11, burning it, and using it as a heating source for the steam reformer 4, etc.), processing of the exhaust gas discharged from the oxidizer electrode 10, The cooling of the fuel cell main body 6, the cooling water circuit, etc. are the same as those of the conventional device.

本発明は上記の実施例に限定されるものではなく、その
要旨を変更しない範囲で種々に変形して実施することが
でき、また従来公知の種々の機構を付加することができ
る。例えば、第1図においては、原燃料の入口側から順
に、水素添加触媒、吸着脱硫剤及び銅−亜鉛系脱硫剤が
充填された脱硫管により脱硫装置が構成されているが、
脱硫装置として、水素添加触媒及び吸着脱硫剤が充填さ
れた水添脱硫器2aと銅−亜鉛系脱硫剤が充填された銅
−亜鉛系脱硫器2bとを分離した形態としてもよい。ま
た、燃料極7に供給する燃料ガス及び酸化剤極10に供
給する空気9を負荷に見合って制御する機構や、燃料極
7と酸化剤極10間の差圧を検知して差圧を調整する機
構が設けられていてもよく、また複数の燃料電池本体6
を並列又は直列に結合してもよい。さらに燃料極7の燃
料ガス供給ラインと燃料ガス排出ラインとの間に燃料再
循環ファンを設けて排出された燃料ガスの一部を燃料極
7に戻す機構や、酸化剤極10の空気供給ラインと空気
排出ラインとの間に空気再循環ファンを設けて排出され
た空気の一部を酸化剤極10に戻す機構が設けられてい
てもよい。これらの再循環機構を設けることにより、電
極反応後の反応性ガスの再利用を図ると共に排出燃料ガ
スの水素濃度及び排出空気の酸素濃度を調整し、燃料電
池の負荷変動の調整を行なうことができる。
The present invention is not limited to the above-described embodiments, but can be implemented with various modifications without changing the gist thereof, and various conventionally known mechanisms can be added. For example, in FIG. 1, the desulfurization equipment is composed of desulfurization pipes filled with a hydrogenation catalyst, an adsorption desulfurization agent, and a copper-zinc desulfurization agent in order from the raw fuel inlet side.
The desulfurization apparatus may have a configuration in which a hydrodesulfurizer 2a filled with a hydrogenation catalyst and an adsorption desulfurization agent and a copper-zinc desulfurizer 2b filled with a copper-zinc desulfurization agent are separated. In addition, there is a mechanism that controls the fuel gas supplied to the fuel electrode 7 and the air 9 supplied to the oxidizer electrode 10 according to the load, and a mechanism that detects the differential pressure between the fuel electrode 7 and the oxidizer electrode 10 and adjusts the differential pressure. A mechanism may be provided to control the fuel cell body 6.
may be coupled in parallel or in series. Furthermore, a mechanism is provided in which a fuel recirculation fan is provided between the fuel gas supply line of the fuel electrode 7 and the fuel gas discharge line to return a portion of the discharged fuel gas to the fuel electrode 7, and an air supply line of the oxidizer electrode 10. An air recirculation fan may be provided between the oxidizer electrode 10 and the air exhaust line to return a portion of the exhausted air to the oxidizer electrode 10. By providing these recirculation mechanisms, it is possible to reuse the reactive gas after the electrode reaction, adjust the hydrogen concentration of the exhaust fuel gas and the oxygen concentration of the exhaust air, and adjust the load fluctuation of the fuel cell. can.

以下、試験例及び比較例に基づき、本発明をより詳細に
説明するが、本発明はこれら試験例に限定されるもので
はない。
Hereinafter, the present invention will be explained in more detail based on test examples and comparative examples, but the present invention is not limited to these test examples.

試験例1 第1図に示される燃料電池発電システムを用いて試験を
行った。なお、水蒸気改質装置として、Ru触媒(Ru
2%、Af1203担持)5Il (かさ密度的0.8
kg/N)を充填した水蒸気改質装置(触媒層長さ約1
m)を用いた。また、脱硫装置としては、硝酸銅、硝酸
亜鉛及び硝酸アルミニウムを含有する混合水溶液にアル
カリ物質として炭酸ナトリウム水溶液を加え、生じた沈
澱を洗浄及び濾取した後、高さ1/8インチ×直径1/
8インチの大きさに打鍵成型し、約400℃で焼成し、
次いで該焼成体(酸化銅45%、酸化亜鉛45%、酸化
アルミニウム10%)を水素2容量%を含む窒素ガスを
用いて、温度約200℃で還元して得られた銅−亜鉛−
アルミニウム脱硫剤5gを、市販のNi−Mo系水添脱
硫触媒5fI及びZnO吸着脱硫剤10IIの後流側に
充填した脱硫装置(脱硫層長さ約50CI!+)を用シ
)た。
Test Example 1 A test was conducted using the fuel cell power generation system shown in FIG. In addition, as a steam reformer, Ru catalyst (Ru
2%, Af1203 supported) 5Il (bulk density 0.8
kg/N) (catalyst layer length approx. 1
m) was used. In addition, as a desulfurization device, a sodium carbonate aqueous solution is added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and aluminum nitrate, and the resulting precipitate is washed and filtered. /
The key is molded into a size of 8 inches and fired at approximately 400℃.
Next, the fired body (copper oxide 45%, zinc oxide 45%, aluminum oxide 10%) was reduced using nitrogen gas containing 2% by volume of hydrogen at a temperature of about 200°C to obtain a copper-zinc-
A desulfurization device (desulfurization layer length approximately 50CI!+) was used, in which 5 g of aluminum desulfurization agent was packed on the downstream side of a commercially available Ni-Mo-based hydrodesulfurization catalyst 5fI and ZnO adsorption desulfurization agent 10II.

原燃料として、下記第1表に示される成分からなる都市
ガス13A(10m”/h)を、約380℃に予熱した
後、原燃料に対して2容量%のリサイクル改質ガス(即
ち、−酸化炭素変成器からリサイクルされる燃料ガス)
と共に上記脱硫装置に導入して脱硫した。脱硫されたガ
スを、S/C(原燃料炭化水素中の炭素1モル当りの水
蒸気のモル数)−3,3、反応温度450℃(入口)及
び665℃(出口)、反応圧力0. 2kg/cj ・
Gの条件下に水蒸気改質反応に付した。水蒸気改質され
た燃料ガスは、−酸化炭素変成器を経て、燃料電池本体
の燃料極に導き、酸化剤極に導入された空気中の酸素と
反応させて、電気エネルギーを取り出した。
After preheating 13 A (10 m''/h) of city gas having the components shown in Table 1 below to about 380°C as raw fuel, 2% by volume of recycled reformed gas (i.e. - fuel gas recycled from carbon oxide transformer)
It was also introduced into the above desulfurization equipment for desulfurization. The desulfurized gas was heated at S/C (number of moles of water vapor per mole of carbon in the raw fuel hydrocarbon) -3.3, reaction temperature 450°C (inlet) and 665°C (outlet), and reaction pressure 0. 2kg/cj・
It was subjected to a steam reforming reaction under the conditions of G. The steam-reformed fuel gas was led to the fuel electrode of the fuel cell main body through a -carbon oxide shift converter, and reacted with oxygen in the air introduced to the oxidizer electrode to extract electrical energy.

上記の試験において、脱硫装置出口のガス中の硫黄含有
量を経時的に測定したが、2000時間経過後も硫黄含
有量は0. 19pb以下であった。
In the above test, the sulfur content in the gas at the desulfurization equipment outlet was measured over time, and the sulfur content was still 0.0% even after 2000 hours. It was 19 pb or less.

また、水蒸気改質触媒は、2000時間経過後において
も触媒活性の劣化は認められず、反応開始直後と同様な
活性を維持しており、燃料電池は正常に作動した。
Furthermore, no deterioration of the catalytic activity of the steam reforming catalyst was observed even after 2000 hours had elapsed, and the same activity as that immediately after the start of the reaction was maintained, and the fuel cell operated normally.

第  1  表 メタン           86.9容量%エタン 
           8.1容量%プロパン    
       3.7容量%ブタン         
   1.3容量%付臭剤 ジメチルスルフィド 3■
−8/ N m”t−ブチルメルカプタン 2■−8/
 N m”比較例1 試験例1の銅−亜鉛−アルミニウム脱硫剤の代わりに、
市販のZnO吸着脱硫剤を同量充填した脱硫装置を用い
る以外は、試験例1と同様である燃料電池発電装置を用
いて、試験例1と同様な試験を行った。
Table 1 Methane 86.9% by volume Ethane
8.1% by volume propane
3.7% by volume butane
1.3% by volume odorant dimethyl sulfide 3■
-8/ N m"t-butyl mercaptan 2■-8/
N m” Comparative Example 1 Instead of the copper-zinc-aluminum desulfurization agent of Test Example 1,
A test similar to Test Example 1 was conducted using the same fuel cell power generation device as Test Example 1, except that a desulfurization device filled with the same amount of a commercially available ZnO adsorption desulfurization agent was used.

その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.2ppmであり、その後もほぼ変わらなか
ったが、500時間経過後から改質装置の出口でメタン
のスリップが増大し、燃料電池の電気出力が低下し始め
、やがて、装置を停止せざるをえなくなった。このとき
改質触媒はほぼ完全に劣化していた。
As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.2 ppm, and remained almost unchanged thereafter, but after 500 hours, the methane slip at the reformer outlet increased. The fuel cell's electrical output began to decline, and eventually the device had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.

試験例2 原燃料として、フルレンジナフサ(硫黄含有量100p
pm100pp/hを気化し、380℃に予熱した後、
原燃料に対して2容量%のリサイクル改質ガスと共に試
験例1と同様の脱硫装置に導入して脱硫した。脱硫した
ガスを試験例1と同様に水蒸気改質反応に付し、燃料電
池を作動させた。
Test Example 2 Full range naphtha (sulfur content 100p) was used as raw fuel.
After vaporizing pm100pp/h and preheating to 380℃,
The raw fuel was introduced into the same desulfurization equipment as in Test Example 1 together with 2% by volume of recycled reformed gas and desulfurized. The desulfurized gas was subjected to a steam reforming reaction in the same manner as in Test Example 1, and the fuel cell was operated.

上記の試験において、脱硫装置出口のガス中の硫黄含有
量を経時的に測定したが、2000時間経過後も硫黄含
有量は0.1ppb以下であった。
In the above test, the sulfur content in the gas at the desulfurizer outlet was measured over time, and the sulfur content was 0.1 ppb or less even after 2000 hours.

また、水蒸気改質触媒は、2000時間経過後において
も触媒活性の劣化は認められず、反応開始直後と同様な
活性を維持しており、燃料電池は正常に作動した。
Furthermore, no deterioration of the catalytic activity of the steam reforming catalyst was observed even after 2000 hours had elapsed, and the same activity as that immediately after the start of the reaction was maintained, and the fuel cell operated normally.

比較例2 比較例1と同様の装置を用いて、試験例2と同様の試験
を行った。
Comparative Example 2 A test similar to Test Example 2 was conducted using the same apparatus as Comparative Example 1.

その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.4ppmであり、その後もほぼ変わらなか
ったが、200時間経過後から改質装置の出口で原料炭
化水素のスリップが増大し、燃料電池の電気北方が低下
し始め、やがて装置を停止せざるをえなくなった。この
とき改質触媒はほぼ完全に劣化していた。
As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.4 ppm, and remained almost unchanged thereafter, but after 200 hours, the slip of the feedstock hydrocarbon at the reformer outlet increased. However, the electricity from the fuel cell began to decline, and eventually the equipment had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.

試験例3 原燃料として、LPG (硫黄含有量5ppm)1 O
N /hを気化し、380℃に予熱した後、原燃料に対
して2容量%のリサイクル改質ガスと共に試験例1と同
様の脱硫装置に導入して脱硫した。
Test Example 3 As raw fuel, LPG (sulfur content 5 ppm) 1 O
After vaporizing N 2 /h and preheating to 380° C., the raw fuel was introduced into a desulfurization apparatus similar to Test Example 1 together with 2% by volume of recycled reformed gas for desulfurization.

脱硫したガスを試験例1と同様に水蒸気改質反応に付し
、燃料電池を作動させた。
The desulfurized gas was subjected to a steam reforming reaction in the same manner as in Test Example 1, and the fuel cell was operated.

上記の試験において、脱硫装置出口のガス中の硫黄含有
量を経時的に測定したが、2000時間経過後も硫黄含
有量はO,1ppb以下であった。
In the above test, the sulfur content in the gas at the outlet of the desulfurization device was measured over time, and even after 2000 hours, the sulfur content was less than O.1 ppb.

また、水蒸気改質触媒は、2000時間経過後において
も触媒活性の劣化は認められず、反応開始直後と同様な
活性を維持しており、燃料電池は正常に作動した。
Furthermore, no deterioration of the catalytic activity of the steam reforming catalyst was observed even after 2000 hours had elapsed, and the same activity as that immediately after the start of the reaction was maintained, and the fuel cell operated normally.

比較例3 比較例1と同様の装置を用いて、試験例3と同様の試験
を行つた。
Comparative Example 3 Using the same apparatus as Comparative Example 1, a test similar to Test Example 3 was conducted.

その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.2ppmであり、その後もほぼ変わらなか
ったが、500時間経過後から改質装置の出口で原料炭
化水素のスリップが増大し、燃料電池の電気出力が低下
し始め、やがて装置を停止せざるをえなくなった。この
とき改質触媒はほぼ完全に劣化していた。
As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.2 ppm, and remained almost unchanged thereafter, but after 500 hours, the slip of the feedstock hydrocarbon at the reformer outlet increased. However, the electrical output of the fuel cell began to decline, and eventually the equipment had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.

試験例4 試験例1において、脱硫装置に充填する銅−亜鉛系脱硫
剤として、硝酸銅及び硝酸亜鉛を含有する混合水溶液に
アルカリ物質として炭酸ナトリウム水溶液を加え、生じ
た沈澱を洗浄及び濾取した後、高さ1/8インチX直径
1/8インチの大きさに打錠成型し、約300℃で焼成
し、次いで、該焼成体[銅:亜鉛−約1:1(原子比)
]を、水素2容量%を含む窒素ガスを用いて、温度約2
00℃で還元処理して得られた銅−亜鉛脱硫剤を用いて
、試験例1と同様な試験を行った。
Test Example 4 In Test Example 1, a sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate and zinc nitrate as a copper-zinc desulfurizing agent to be filled into a desulfurization equipment, and the resulting precipitate was washed and filtered. Thereafter, the tablets were formed into a size of 1/8 inch in height x 1/8 inch in diameter, and fired at about 300°C.
] at a temperature of about 2% using nitrogen gas containing 2% hydrogen by volume.
A test similar to Test Example 1 was conducted using a copper-zinc desulfurization agent obtained by reduction treatment at 00°C.

その結果、試験例1と同様に、脱硫装置出口ガス中の硫
黄含有量をO,1ppb以下に脱硫でき、水蒸気改質触
媒の劣化を抑制することができることが判明し、また燃
料電池は正常に作動した。
As a result, as in Test Example 1, it was found that the sulfur content in the desulfurizer outlet gas could be desulfurized to 0.1 ppb or less, that the deterioration of the steam reforming catalyst could be suppressed, and that the fuel cell could be operated normally. It worked.

〈発明の効果〉 本発明の燃料電池発電システムによれば、下記の効果を
奏することができる。
<Effects of the Invention> According to the fuel cell power generation system of the present invention, the following effects can be achieved.

(1)脱硫性能に優れた脱硫装置が用いられ、特に気体
燃料中の難分解性有機硫黄に対しても高い脱硫効果を示
すので、原燃料は高度に脱硫された後水蒸気改質反応に
付される。従って、水蒸気改質触媒の劣化が防止され、
燃料電池を長時間、安定的に運転することができ、水蒸
気改質触媒コストの低減が図れると共に装置の小型化が
可能となる。
(1) Desulfurization equipment with excellent desulfurization performance is used, and it exhibits a particularly high desulfurization effect on recalcitrant organic sulfur in gaseous fuels, so raw fuel is subjected to a steam reforming reaction after being highly desulfurized. be done. Therefore, deterioration of the steam reforming catalyst is prevented,
The fuel cell can be operated stably for a long time, the cost of the steam reforming catalyst can be reduced, and the device can be downsized.

■水蒸気改質触媒が高活性を長時間維持することができ
るので、高りv運転が可能で装置の小型化及び触媒コス
トの低減が図れる。また、低S/C運転が可能となり、
熱効率、発電効率等の向上に寄与することができる。
(2) Since the steam reforming catalyst can maintain high activity for a long time, high V operation is possible, making it possible to downsize the device and reduce catalyst cost. In addition, low S/C operation is possible,
It can contribute to improving thermal efficiency, power generation efficiency, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の燃料電池発電システムの一実施例の
概要を示すシステム図、 第2図は、従来の燃料電池発電システムの概要を示すシ
ステム図である。 1・・・原燃料      2a・・・水添脱硫器2b
・・・銅−亜鉛系脱硫器 3・・・混合器4・・・水蒸
気改質装置  5・・・−酸化炭素変成器6・・・燃料
電池本体   7・・・燃料極8・・・コンプレッサー
  9・・・空気lO・・・酸化剤極     11・
・・バーナー12・・・熱交換器     13・・・
凝縮器14・・・給水ライン    15・・・給水ポ
ンプ16・・・冷却水ポンプ   17・・・熱交換器
18・・・気水分離器    19・・・電気負荷節 
 1  図 第  2  図
FIG. 1 is a system diagram showing an overview of an embodiment of the fuel cell power generation system of the present invention, and FIG. 2 is a system diagram showing an overview of a conventional fuel cell power generation system. 1... Raw fuel 2a... Hydrodesulfurizer 2b
Copper-zinc desulfurizer 3 Mixer 4 Steam reformer 5 Carbon oxide shift converter 6 Fuel cell main body 7 Fuel electrode 8 Compressor 9... Air lO... Oxidizer electrode 11.
... Burner 12 ... Heat exchanger 13 ...
Condenser 14... Water supply line 15... Water supply pump 16... Cooling water pump 17... Heat exchanger 18... Steam water separator 19... Electrical load node
1 Figure 2

Claims (1)

【特許請求の範囲】 1、原燃料を脱硫する脱硫装置と脱硫された原燃料を水
素主成分の燃料ガスに改質する水蒸気改質装置とを少な
くとも有する燃料電池発電システムにおいて、脱硫装置
が水添脱硫器と銅−亜鉛系脱硫剤を充填した脱硫器とで
構成されることを特徴とする燃料電池発電システム。 2、脱硫装置により、原燃料の硫黄含有量を5ppb以
下に脱硫する請求項1記載の燃料電池発電システム。 3、脱硫装置により、原燃料の硫黄含有量を0.1pp
b以下に脱硫する請求項2記載の燃料電池発電システム
。 4、脱硫装置の銅−亜鉛系脱硫剤が、銅化合物及び亜鉛
化合物を用いる共沈法により調製した酸化銅−酸化亜鉛
混合物を水素還元して得られた脱硫剤、又は銅化合物、
亜鉛化合物及びアルミニウム化合物を用いる共沈法によ
り調製した酸化銅−酸化亜鉛−酸化アルミニウム混合物
を水素還元して得られた脱硫剤である請求項1乃至3の
いずれかに記載の燃料電池発電システム。
[Scope of Claims] 1. In a fuel cell power generation system that includes at least a desulfurization device that desulfurizes raw fuel and a steam reformer that reforms the desulfurized raw fuel into fuel gas mainly composed of hydrogen, the desulfurization device A fuel cell power generation system comprising a desulfurizer and a desulfurizer filled with a copper-zinc desulfurizer. 2. The fuel cell power generation system according to claim 1, wherein the desulfurization device desulfurizes the sulfur content of the raw fuel to 5 ppb or less. 3. Desulfurization equipment reduces the sulfur content of raw fuel to 0.1pp
The fuel cell power generation system according to claim 2, wherein the fuel cell power generation system desulfurizes to below b. 4. The copper-zinc desulfurization agent in the desulfurization equipment is a desulfurization agent obtained by hydrogen reduction of a copper oxide-zinc oxide mixture prepared by a coprecipitation method using a copper compound and a zinc compound, or a copper compound;
4. The fuel cell power generation system according to claim 1, wherein the desulfurization agent is obtained by hydrogen reduction of a copper oxide-zinc oxide-aluminum oxide mixture prepared by a coprecipitation method using a zinc compound and an aluminum compound.
JP1123575A 1989-05-16 1989-05-16 Fuel cell power generation system Expired - Lifetime JP2765950B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1123575A JP2765950B2 (en) 1989-05-16 1989-05-16 Fuel cell power generation system
CA002033064A CA2033064C (en) 1989-05-16 1990-05-15 Fuel cell power generation system
DE69008669T DE69008669T2 (en) 1989-05-16 1990-05-15 FUEL CELL WITH POWER GENERATION SYSTEM.
EP90907417A EP0427869B1 (en) 1989-05-16 1990-05-15 Fuel cell power generation system
DK90907417.1T DK0427869T3 (en) 1989-05-16 1990-05-15 Energy producing fuel cell system
PCT/JP1990/000607 WO1990014305A1 (en) 1989-05-16 1990-05-15 Fuel cell power generation system
US07/921,596 US5302470A (en) 1989-05-16 1992-07-31 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123575A JP2765950B2 (en) 1989-05-16 1989-05-16 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH02302302A true JPH02302302A (en) 1990-12-14
JP2765950B2 JP2765950B2 (en) 1998-06-18

Family

ID=14863976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123575A Expired - Lifetime JP2765950B2 (en) 1989-05-16 1989-05-16 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2765950B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083623A (en) * 2000-06-27 2002-03-22 Idemitsu Kosan Co Ltd Fuel cell facility, its fuel and fuel supply device
JP2003064386A (en) * 2001-08-23 2003-03-05 Mitsubishi Heavy Ind Ltd Desulfurizing agent for removing sulfur compound in fuel gas, and fuel cell power generation system utilizing the agent
JP2003103176A (en) * 2001-09-28 2003-04-08 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
JP2006036616A (en) * 2004-07-30 2006-02-09 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
WO2008056621A1 (en) 2006-11-07 2008-05-15 Nippon Oil Corporation Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
JP2013177435A (en) * 2005-03-23 2013-09-09 Basf Corp Method for purifying benzene feedstock containing contaminating sulfur compound
JP2016104686A (en) * 2014-11-25 2016-06-09 パナソニックIpマネジメント株式会社 Hydrogen-generating device and fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396473A1 (en) 2001-06-12 2004-03-10 Matsushita Electric Industrial Co., Ltd. HYDROGEN FORMATION APPARATUS&comma; FUEL CELL SYSTEM AND METHOD FOR CONTROLLING HYDROGEN FORMATION APPARATUS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263193A (en) * 1975-11-04 1977-05-25 Ici Ltd Manufacture of catalysts containing active metal copper
JPS5511376A (en) * 1978-07-10 1980-01-26 Matsushita Electric Ind Co Ltd Bothhside circuit board and method of manufacturing same
US4521387A (en) * 1982-11-23 1985-06-04 Basf Aktiengesellschaft Purification of gases containing CO and/or CO2
JPS61163568A (en) * 1985-01-11 1986-07-24 Mitsubishi Heavy Ind Ltd Unified desulfurizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263193A (en) * 1975-11-04 1977-05-25 Ici Ltd Manufacture of catalysts containing active metal copper
JPS5511376A (en) * 1978-07-10 1980-01-26 Matsushita Electric Ind Co Ltd Bothhside circuit board and method of manufacturing same
US4521387A (en) * 1982-11-23 1985-06-04 Basf Aktiengesellschaft Purification of gases containing CO and/or CO2
JPS61163568A (en) * 1985-01-11 1986-07-24 Mitsubishi Heavy Ind Ltd Unified desulfurizing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083623A (en) * 2000-06-27 2002-03-22 Idemitsu Kosan Co Ltd Fuel cell facility, its fuel and fuel supply device
JP2003064386A (en) * 2001-08-23 2003-03-05 Mitsubishi Heavy Ind Ltd Desulfurizing agent for removing sulfur compound in fuel gas, and fuel cell power generation system utilizing the agent
JP4745557B2 (en) * 2001-08-23 2011-08-10 三菱重工業株式会社 Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JP4559676B2 (en) * 2001-09-28 2010-10-13 Jx日鉱日石エネルギー株式会社 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2003103176A (en) * 2001-09-28 2003-04-08 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP4676690B2 (en) * 2002-11-05 2011-04-27 出光興産株式会社 METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP2004168648A (en) * 2002-11-05 2004-06-17 Idemitsu Kosan Co Ltd Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
JP2006036616A (en) * 2004-07-30 2006-02-09 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2013177435A (en) * 2005-03-23 2013-09-09 Basf Corp Method for purifying benzene feedstock containing contaminating sulfur compound
WO2008056621A1 (en) 2006-11-07 2008-05-15 Nippon Oil Corporation Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
JP2008115309A (en) * 2006-11-07 2008-05-22 Nippon Oil Corp Desulfurizing agent for kerosene, desulfurization process, and fuel cell system using the same
JP2016104686A (en) * 2014-11-25 2016-06-09 パナソニックIpマネジメント株式会社 Hydrogen-generating device and fuel cell system

Also Published As

Publication number Publication date
JP2765950B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
AU2003261776B2 (en) Fuel Cell Electrical Power Generation System
JP5063584B2 (en) FUEL CELL DEVICE FOR FUEL CELL DEVICE AND METHOD OF OPERATING FUEL PROCESSING DEVICE FOR FUEL CELL DEVICE
US6984372B2 (en) Dynamic sulfur tolerant process and system with inline acid gas-selective removal for generating hydrogen for fuel cells
JP4741231B2 (en) Operation method of fuel cell
JP4911927B2 (en) Solid oxide fuel cell system
US6551732B1 (en) Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode
JP2001524739A (en) Cover gas and starting gas supply system for solid oxide fuel cell power plant
KR20210086015A (en) A production method and system of blue hydrogen
WO2006082332A1 (en) Method for producing syngas with low carbon dioxide emission
JP2002020102A (en) Method for starting and method for stopping hydrogen producing device
JP4292362B2 (en) Polymer electrolyte fuel cell power generation system and polymer electrolyte fuel cell power generation method
WO2016203944A1 (en) Synthesis gas production method and apparatus
JPH02302302A (en) Power generation system of fuel cell
CN100517827C (en) Startup method of fuel cell system
JP2004338975A (en) Starting method of hydrogen production apparatus
JP2002151124A (en) Stopping method of reformer for solid polymer fuel cell
JP4931865B2 (en) Solid polymer fuel cell power generation system and solid polymer fuel cell power generation method
JP2002334714A (en) Hydrogen manufacturing system incorporating fuel cell
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP2003132926A (en) Reformer for fuel cell generator
JP3050850B2 (en) Fuel cell power generation system
JP2828661B2 (en) Method for producing fuel gas for phosphoric acid electrolyte fuel cell
JP5547994B2 (en) Desulfurization method, desulfurization apparatus and fuel cell power generation system
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP2993507B2 (en) Fuel cell power generation system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12