JPH02301991A - El display - Google Patents

El display

Info

Publication number
JPH02301991A
JPH02301991A JP1122593A JP12259389A JPH02301991A JP H02301991 A JPH02301991 A JP H02301991A JP 1122593 A JP1122593 A JP 1122593A JP 12259389 A JP12259389 A JP 12259389A JP H02301991 A JPH02301991 A JP H02301991A
Authority
JP
Japan
Prior art keywords
transparent electrode
insulating layer
display
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1122593A
Other languages
Japanese (ja)
Other versions
JPH0817115B2 (en
Inventor
Nobue Ito
伊藤 信衛
Shinya Mizuki
水木 伸也
Masumi Arai
荒井 真澄
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP1122593A priority Critical patent/JPH0817115B2/en
Publication of JPH02301991A publication Critical patent/JPH02301991A/en
Publication of JPH0817115B2 publication Critical patent/JPH0817115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To improve withstand voltage of an insulating layer and prevent dielectric breakdown by forming a transparent electrode with a transparent conductive film mainly containing zinc oxide. CONSTITUTION:A first transparent electrode 21 is formed on a glass base plate 1, and a first insulating layer 31, a luminous layer 41, a second insulating layer 32 and a second transparent electrode 22 are successively laminated on the upper surface. The first transparent electrode 21 and the second transparent electrode 22 are formed of transparent conductive films having zinc oxide as the main component and containing at least one element having an atomic valence of 3 or more as an impurity donor. The quantity of the impurities added to ZnO is desirably 0.5-5% by atom. The role of the impurities is to form excess electrons, which highly contribute to a reduction in resistance value. When the addition amount is less than 0.5% by atom, this effect is low, and when above 5% by atom, crystallizing property of ZnO is unpreferably reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、例えば計器類のバックライト用の面光源等に
使用されるエレクトロルミネッセンス(EL)ディスプ
レイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroluminescent (EL) display used, for example, as a surface light source for backlighting instruments.

[従来の技術] ELディスプレイは、硫化亜鉛(ZnS)等の蛍光体に
電界をがけなときに発光する現象を利用したもので、自
発光型の平面ディスプレイとして注目されている。
[Prior Art] EL displays utilize the phenomenon that a phosphor such as zinc sulfide (ZnS) emits light when no electric field is applied to it, and is attracting attention as a self-luminous flat display.

このような従来のELディスプレイの一例を第3図に示
す。
An example of such a conventional EL display is shown in FIG.

図において、ガラス基板1上には、IrO2よりなる透
明電極61、酸化タンタル(TazO5)等よりなる第
1絶縁層31、発光層41、第2絶縁層32が順次積層
形成してあり、さらにその上にITO膜よりなる透明電
極62が配設しである。
In the figure, a transparent electrode 61 made of IrO2, a first insulating layer 31 made of tantalum oxide (TazO5), a light emitting layer 41, and a second insulating layer 32 are sequentially laminated on a glass substrate 1. A transparent electrode 62 made of an ITO film is disposed thereon.

I To (Indium Tin 0xide)膜は
、酸化インジウム(InzO3)にすず(Sn)をドー
プした透明の導電膜で、低抵抗率であることがら従来よ
り透明電極用として広く使用されている。
An I To (Indium Tin Oxide) film is a transparent conductive film made of indium oxide (InzO3) doped with tin (Sn), and has been widely used for transparent electrodes because of its low resistivity.

発光層41としては、例えば、ZnSを母材層とし、発
光中心としてマンガン(Mn>や三フッ化テルビウム(
TbF3)を添加したものが使用される。EL発光によ
る発光色はZnS中の添加物の種類によって決まり、例
えば発光i心とじてMnを添加した場合にはオレンジの
、TbF3を添加した場合にはグリーンの発光が得られ
る。
The light-emitting layer 41 may be made of, for example, ZnS as a base material layer and manganese (Mn> or terbium trifluoride (
TbF3) is used. The color of light emitted by EL light emission is determined by the type of additive in ZnS; for example, when Mn is added as the light emitting i core, orange light is obtained, and when TbF3 is added, green light is obtained.

[発明が解決しようとする課題] しかしながら、上記構造のELディスプレイを製作し、
連続発光試験に供したところ、わずか200時間で絶縁
破壊が生じ、耐久性能面で大きな問題を有することが判
明した。これは駆動電圧が低い場合にはそれほど重要で
はないが、表示面積の拡大等で駆動電圧を高くする必要
が生じた場合には大きな問題となる。
[Problem to be solved by the invention] However, when producing an EL display with the above structure,
When subjected to a continuous light emission test, dielectric breakdown occurred in just 200 hours, and it was found that there was a major problem in terms of durability performance. Although this is not so important when the driving voltage is low, it becomes a big problem when it becomes necessary to increase the driving voltage due to expansion of the display area or the like.

また、近年、異なる発光色を示す発光層を複数積層して
、ELディスプレイを多色化することが提案されている
(例えば、特開昭60−264096号公報、特開昭6
0−216496号公報等)。
Furthermore, in recent years, it has been proposed to make EL displays multicolored by stacking a plurality of light-emitting layers that emit light of different colors (for example, Japanese Patent Laid-Open No. 60-264096,
0-216496, etc.).

ところが、上記した絶縁層の耐圧低下現象は、このよう
な積層型のE Lディスプレイにおいて特に顕著である
ことが判明し、実用化に際し大きな障害となっている。
However, it has been found that the above-mentioned phenomenon of reduction in breakdown voltage of the insulating layer is particularly noticeable in such a stacked type EL display, and has become a major obstacle to practical application.

しかして、本発明の目的は、絶縁層の電気耐圧が高く、
高電圧駆動時においても絶縁破壊が生じることかない、
高い信顆性を有するELディスプレイを提供することに
ある。
Therefore, an object of the present invention is to provide an insulating layer with a high electric withstand voltage.
No dielectric breakdown occurs even when driven at high voltage.
An object of the present invention is to provide an EL display with high reliability.

[課題を解決するための手段] 上記目的を達成するために、本発明では、少なくとも一
方を透明導電膜で構成した一対の電極層に、絶縁層を介
して発光層を設けてなるELディスプレイにおいて、上
記透明導電膜を、酸化亜鈴を主成分とし、3価以上の原
子価を有する少なくとも一種の元素を含有する材料で構
成しである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an EL display in which a light emitting layer is provided on a pair of electrode layers, at least one of which is composed of a transparent conductive film, with an insulating layer interposed therebetween. The transparent conductive film is made of a material containing tin oxide as a main component and at least one element having a valence of 3 or more.

また、本発明のELディスプレイは、上記発光層を複数
設けてこれらを透明導電膜よりなる中間電極を挟んで積
層し、該中間電極と複数の発光層との間にそれぞれ絶縁
層を形成した積層型の構成としてもよい。
Further, the EL display of the present invention includes a stacked structure in which a plurality of the above-mentioned light-emitting layers are provided, these are laminated with an intermediate electrode made of a transparent conductive film sandwiched therebetween, and an insulating layer is formed between each of the intermediate electrodes and the plurality of light-emitting layers. It may also be a type configuration.

[作用] 従来のELディスプレイにおいて絶縁層の耐圧低下現象
が生じるのは、製造工程において、透明電極を構成する
ITO膜が部分的に還元され、導電体であるInが、熱
処理の過程で絶縁層中に拡散するためと考えられる。
[Function] The reason why the breakdown voltage of the insulating layer decreases in conventional EL displays is that the ITO film constituting the transparent electrode is partially reduced during the manufacturing process, and the conductor In is removed from the insulating layer during the heat treatment process. This is thought to be because it diffuses into the atmosphere.

これに対し、本発明において使用するZn○を主成分と
する透明導電膜は、安定で、ITOのような拡散現象を
生じないので、耐圧低下を抑制することができる。
On the other hand, the transparent conductive film containing Zn◯ as a main component used in the present invention is stable and does not cause the diffusion phenomenon like ITO, and therefore can suppress a decrease in breakdown voltage.

[実施例] 第1図には本発明のELディスプレイの一実施例を示す
。図において、ガラス基板上上には第1透明電極21が
形成してあり、その上面には第1絶縁層31、発光層4
1、第2絶縁層32、第2透明電極22が順次積層形成
しである。
[Embodiment] FIG. 1 shows an embodiment of the EL display of the present invention. In the figure, a first transparent electrode 21 is formed on the glass substrate, and a first insulating layer 31 and a light emitting layer 4 are formed on the top surface of the first transparent electrode 21.
1. The second insulating layer 32 and the second transparent electrode 22 are sequentially laminated.

第1透明電極21および第2透明電極22は、酸化亜鈴
を主成分とし、不純物ドナーとして3価以上の原子価を
有する少なくとも一種の元素を含有する透明導電膜で構
成されている。
The first transparent electrode 21 and the second transparent electrode 22 are composed of a transparent conductive film containing tin oxide as a main component and at least one element having a valence of 3 or more as an impurity donor.

以下、上記構造のELディスプレイの製造方法の一例を
説明する。
An example of a method for manufacturing an EL display having the above structure will be described below.

まず、ガラス基板1上に、第1透明電極21を成膜した
。蒸着材料としては、ZnO粉末にGa2O3粉末を2
重量%加えて混合し、ペレット状に成形したものを用い
、成膜装置としてはイオンブレーティング装置を用いた
。装置内にArガスを導入して装置内圧力を3X10−
4Torrに保持し、高周波型カフ0W、基板温度10
0°Cで、蒸着レートが1.0〜2.0人/ s e 
cの範囲になるように電子ビーム電力を調整した。
First, the first transparent electrode 21 was formed on the glass substrate 1 . As a vapor deposition material, 2 Ga2O3 powders are added to ZnO powder.
% by weight and mixed and formed into pellets, and an ion blating device was used as a film forming device. Ar gas is introduced into the device to increase the pressure inside the device to 3X10-
Maintained at 4 Torr, high frequency cuff 0W, substrate temperature 10
At 0°C, the deposition rate is 1.0-2.0 people/s e
The electron beam power was adjusted to fall within the range of c.

このようにして得られた第1透明電極21の抵抗値は約
2X10−4Ω】であり、従来のITOとほぼ同等の抵
抗値が得られた。
The resistance value of the first transparent electrode 21 thus obtained was approximately 2×10 −4 Ω, which was approximately the same as that of conventional ITO.

ZnOに添加する不純物としては、Gaに限らず、3価
以上の原子価を有する元素であれば透明電極の抵抗値を
下げる効果を有する。具体的には、Ga以外に、A、I
l 、Si、P、Ge、La、B、Ti、Hf、Zr、
Sn、Pb等が挙げられ、これらは通常、酸化物等の形
で添加される。
The impurity added to ZnO is not limited to Ga, but any element having a valence of 3 or more has the effect of lowering the resistance value of the transparent electrode. Specifically, in addition to Ga, A, I
l, Si, P, Ge, La, B, Ti, Hf, Zr,
Examples include Sn, Pb, etc., and these are usually added in the form of oxides or the like.

ここで、ZnOに添加する不純物の量は、0゜5〜5原
千%とすることが望ましい。これら不純物の役割は、余
剰電子を生成することにあり、抵抗値の低減に大きく寄
与する。添加量が0.5原子%未満ではこの効果が小さ
く、また5原子%を超えるとZnOの結晶性が低下する
ので好ましくない。
Here, the amount of impurities added to ZnO is preferably 0.5 to 5.000%. The role of these impurities is to generate surplus electrons, which greatly contributes to reducing the resistance value. If the amount added is less than 0.5 atom %, this effect will be small, and if it exceeds 5 atom %, the crystallinity of ZnO will decrease, which is not preferable.

第1透明電極21の上面には、TazOaよりなる第1
絶縁層31をスパッタにより形成し、第1絶縁131上
にはZnSを母材層とし、発光中心としてMnを添加し
た発光層41を蒸着により形成した。その後、発光層4
1の結晶性を向上させ、発光輝度を上げるため、真空中
、300〜500℃で熱処理を行なった。
A first transparent electrode made of TazOa is provided on the upper surface of the first transparent electrode 21.
An insulating layer 31 was formed by sputtering, and a light emitting layer 41 containing ZnS as a base material layer and Mn added as a luminescent center was formed on the first insulating layer 131 by vapor deposition. After that, the light emitting layer 4
In order to improve the crystallinity of No. 1 and increase the luminance, heat treatment was performed at 300 to 500° C. in vacuum.

さらにTa205よりなる第2絶縁層32をスパッタに
より、第2透明電極22を蒸着により順次積層して本発
明のELディスプレイとした。各々の膜厚は、透明電極
21.22が3000A、絶縁層31.32が6000
人、発光層41が6000人である。なお、熱処理は第
2透明電極22の成膜後に行なってもよい。
Further, a second insulating layer 32 made of Ta205 was sequentially laminated by sputtering, and a second transparent electrode 22 was laminated by vapor deposition to obtain an EL display of the present invention. The thickness of each film is 3000A for the transparent electrodes 21 and 22, and 6000A for the insulating layers 31 and 32.
The number of people in the light emitting layer 41 is 6000. Note that the heat treatment may be performed after the second transparent electrode 22 is formed.

このようにして得たELディスプレイを、連続発光試験
に供したところ(印加電圧130〜180V)、500
時間経過後も絶縁破壊は認められず、絶縁破壊に対し良
好な性能を有することがわかった。
When the EL display thus obtained was subjected to a continuous light emission test (applied voltage 130 to 180 V), 500
No dielectric breakdown was observed even after the passage of time, indicating that it had good performance against dielectric breakdown.

第2図には本発明の他の実施例を示す。本実施例では上
記第1実施例の構造上にさらに第2の発光層を積層した
積層型のELディスプレイとしである。
FIG. 2 shows another embodiment of the invention. This embodiment is a stacked EL display in which a second light emitting layer is further stacked on the structure of the first embodiment.

図において、中間電極となる第2透明電極22上にはT
a205よりなる第3絶縁層33がスパッタにより形成
してあり、その上に第2発光層42が形成しである。第
2発光層42は、ZnSを母材層とし、発光中心として
TbF3を添加したものでグリーン発光する。
In the figure, there is a T on the second transparent electrode 22 serving as the intermediate electrode.
A third insulating layer 33 made of a205 is formed by sputtering, and a second light emitting layer 42 is formed thereon. The second light-emitting layer 42 has a base material layer of ZnS to which TbF3 is added as a light-emitting center, and emits green light.

第2発光層42上には、Ta205よりなる第4絶縁層
34を介してAMよりなる上部電極5が形成しである。
An upper electrode 5 made of AM is formed on the second light emitting layer 42 with a fourth insulating layer 34 made of Ta205 interposed therebetween.

絶縁層33.34、第2発光層42の膜厚はいずれも6
000人であり、上部電極5は1000人である。
The film thicknesses of the insulating layers 33 and 34 and the second light emitting layer 42 are both 6
000 people, and the upper electrode 5 has 1000 people.

上記構造のELディスプレイにおいて、第1の発光層4
1、または第2の発光層42に電圧を印加することによ
り、それぞれオレンジ、グリーンの発光色が得られ、さ
らに発光層41.42を同時に発光させることによりこ
れらの混色であるイエローの発光色が得られるので、こ
れらを組合わせることによりマルチカラーディスプレイ
が可能となる。
In the EL display having the above structure, the first light emitting layer 4
By applying a voltage to the first or second light emitting layer 42, orange and green light emitting colors can be obtained, respectively, and by making the light emitting layers 41 and 42 emit light at the same time, a yellow light emitting color, which is a mixture of these colors, can be obtained. Therefore, by combining these, a multicolor display is possible.

上記構造のEしディスプレイでも絶縁破壊に対し良好な
性能が得られ、連続発光試験に供したところ、500時
間経過後も絶縁破壊は認められなかった。
The E-type display with the above structure also showed good performance against dielectric breakdown, and when subjected to a continuous light emission test, no dielectric breakdown was observed even after 500 hours had elapsed.

次に、比較のため、第3図、第4図に示す従来構造のE
Lディスプレイを作製した。これらは、それぞれ、上記
第1実施例(第1図)および第2実施例(第2図)の第
1透明電極21および第2透明電極22に代えて、IT
O膜よりなる透明電極61および透明電極62を有して
いる。他の構造は上記第1.2実施例と同じである。
Next, for comparison, the E of the conventional structure shown in Figs. 3 and 4 is shown.
An L display was created. These are the IT
It has a transparent electrode 61 and a transparent electrode 62 made of an O film. The other structure is the same as the above-mentioned Embodiment 1.2.

これらを連続発光試験に供したところ、第3図の構造で
は200時間で絶縁破壊が生じ、第4図の構造では40
時間で絶縁破壊が生じた。
When these were subjected to a continuous light emission test, dielectric breakdown occurred in the structure shown in Figure 3 after 200 hours, and in the structure shown in Figure 4, dielectric breakdown occurred after 200 hours.
Dielectric breakdown occurred over time.

このITOによる絶縁破壊を調べるため、第5図のよう
に、ガラス基板1上にITO電極6を設け、その上にT
a2o5絶縁膜3をスパッタ法で成膜した試料を作製し
てAES分析(オージェ電子分光分析)を行なった。試
料は側端面を5°に斜め研磨し、深さ方向の元素の分布
がわかるようにした。結果を第6図に示す。
In order to investigate the dielectric breakdown caused by this ITO, as shown in FIG. 5, an ITO electrode 6 is provided on the glass substrate 1, and a T
A sample in which the a2o5 insulating film 3 was formed by sputtering was prepared and subjected to AES analysis (Auger electron spectroscopy). The side end surfaces of the samples were polished at an angle of 5° so that the distribution of elements in the depth direction could be seen. The results are shown in Figure 6.

また、成膜後、350℃で熱処理したもの、550°C
で熱処理したものにつき、同様の分析を行ない、結果を
それぞれ第7図、第8図に示した。
Also, after film formation, heat treated at 350°C, 550°C
A similar analysis was conducted on the heat-treated samples, and the results are shown in FIGS. 7 and 8, respectively.

各図に明らかなように、熱処理によりTaとInのオー
バーラツプが大きくなっており、Inが絶縁層3を構成
するTa2o5中に浸入していく様子がよくわかる。ま
た、熱処理温度を高くすることでさらにその傾向が増加
している。
As is clear from each figure, the overlap between Ta and In increases due to the heat treatment, and it can be clearly seen that In penetrates into the Ta2O5 constituting the insulating layer 3. Moreover, this tendency is further increased by increasing the heat treatment temperature.

Inは導電体であるため、絶縁層3中へInが拡散する
と絶縁層の電気耐圧は低くなり、これが原因となって絶
縁破壊が生じると考えられる。このInの絶縁層中への
拡散は、ITO膜の上層の絶縁層の成膜時に、スパッタ
のようにプラズマを利用する方法を用いるため、In2
O3が還元されて部分的にIn金属となって存在するか
らで、このIn金属が熱処理の過程で拡散するためでは
ないかと考えられている。
Since In is a conductor, when In diffuses into the insulating layer 3, the electric withstand voltage of the insulating layer decreases, which is considered to be the cause of dielectric breakdown. This diffusion of In into the insulating layer is possible because a method using plasma such as sputtering is used when forming the upper insulating layer of the ITO film.
It is thought that this is because O3 is reduced and partially exists as In metal, and this In metal diffuses during the heat treatment process.

なお、同様の試験をZn○にGaを添加じなZnO系透
明導電膜を用いて行なった結果を第9図に示しな。図に
明らかなように550℃熱処理後もZnの絶縁層中への
拡散は見られない。
Incidentally, FIG. 9 shows the results of a similar test using a ZnO-based transparent conductive film in which no Ga was added to Zn○. As is clear from the figure, no diffusion of Zn into the insulating layer is observed even after heat treatment at 550°C.

さらに第5図の構成の試料につき、第10図に示す装置
を使用して、絶縁層6のリーク電流を調べた。第10図
において、7はAuメッキの針電極であり、これと試料
のIT○電極6間に電圧を印加して、熱処理前、550
℃熱処理後においてリーク電流がどのように変化するか
を調べた。また、ITO電極6に代えてZnO系透明導
電膜を用いた場合についても同様に熱処理前後のリーク
電流変化を調べ、結果を第11図に示した。
Furthermore, the leakage current of the insulating layer 6 was investigated using the apparatus shown in FIG. 10 for the sample having the configuration shown in FIG. In FIG. 10, 7 is an Au-plated needle electrode, and a voltage is applied between this and the IT○ electrode 6 of the sample, and 550
We investigated how the leakage current changes after heat treatment at ℃. Furthermore, when a ZnO-based transparent conductive film was used in place of the ITO electrode 6, changes in leakage current before and after heat treatment were similarly investigated, and the results are shown in FIG.

これらの結果を比較して明らかなように、ZnO系透明
導電膜では熱処理してもリーク電流はほとんど変化しな
いが、ITO膜では熱処理によりリーク電流が大きく増
加しており、絶縁破壊しやすくなっていることがわかる
。このように、ZnO系透明導電膜を用いることにより
絶縁破壊を抑制でき、高電圧駆動のELディスプレイに
おいて大きな効果を発揮する。
As is clear from comparing these results, the leakage current of the ZnO-based transparent conductive film hardly changes even after heat treatment, but the leakage current of the ITO film increases significantly due to heat treatment, making it more susceptible to dielectric breakdown. I know that there is. In this way, dielectric breakdown can be suppressed by using a ZnO-based transparent conductive film, which is highly effective in high-voltage driven EL displays.

上記実施例では、絶縁層をTa205で構成したが、A
、ff 203、Si3N4、Y2O3等の他の絶縁材
料で構成してもよい。
In the above embodiment, the insulating layer was made of Ta205, but A
, ff 203, Si3N4, Y2O3, etc. may be used.

また、発光層として、ZnSにSm、Tm等の他の希土
類金属イオンを添加したもの、あるいはCaS、SrS
に希土類金属イオンを添加したものを用いてもよい。
In addition, as a light-emitting layer, ZnS with other rare earth metal ions such as Sm and Tm added, or CaS, SrS
A material to which rare earth metal ions are added may also be used.

上記実施例では発光層を1層または2層有する構成のも
のを示したか、本発明のELディスプレイは、発光層を
3層以上有する構成としてももちろんよく、例えば、赤
色系、緑色系、青色系の発光層を重ねることによりフル
カラー化が可能となる。
In the above embodiments, the structure having one or two light-emitting layers is shown, but the EL display of the present invention may of course have a structure having three or more light-emitting layers. For example, the EL display may have a structure having three or more light-emitting layers. By stacking two light-emitting layers, full color is possible.

U発明の効果] 以上のように、本発明のELディスプレイは、透明電極
を、酸化亜鉛を主成分とする透明導電膜で構成したので
、絶縁層の電気耐圧が飛躍的に向上し、絶縁破壊が生じ
ることを防止する。また、酸化亜鉛を主成分とする透明
導電膜は、抵抗率が低く、安価であり、高い信頼性と優
れた特性を有するELディスプレイを実現する。
[Effects of the Invention] As described above, in the EL display of the present invention, the transparent electrode is composed of a transparent conductive film containing zinc oxide as a main component, so the electric withstand voltage of the insulating layer is dramatically improved, and dielectric breakdown is prevented. prevent the occurrence of Furthermore, a transparent conductive film containing zinc oxide as a main component has low resistivity, is inexpensive, and realizes an EL display having high reliability and excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すELディスプレイの全
体断面図、第2図は本発明の他の実施例を示すEl−デ
ィスプレイの全体断面図、第3図および第4図は従来の
ELディスプレイの全体断面図、第5図は従来のELデ
ィスプレイにおけるInの拡散状態を調べるための試料
の部分断面図、第6図〜第8図は従来のELディスプレ
イにおけるInの拡散状態を示す図、第9図は本発明の
ELディスプレイにおけるZnの拡散状態を示す図、第
10図は熱処理前後のリーク電流変化を調べるための試
験方法を示す図、第11図は熱処理前後のリーク電流変
化を示す図である。 1・・・・・・ガラス基板 21.22・・・・・・透明電極 31.32.33.34・・・・・・絶縁層41.42
・・・・・・発光層 5・・・・・・上部電極 第1図 第2図 第3図 第4図 第5図 顕 雛 距 離 第 10 図 第11図 電圧 (V)
FIG. 1 is an overall sectional view of an EL display showing one embodiment of the present invention, FIG. 2 is an overall sectional view of an EL display showing another embodiment of the invention, and FIGS. 3 and 4 are conventional EL displays. 5 is a partial sectional view of a sample for investigating the diffusion state of In in a conventional EL display, and FIGS. 6 to 8 are diagrams showing the diffusion state of In in a conventional EL display. , FIG. 9 is a diagram showing the diffusion state of Zn in the EL display of the present invention, FIG. 10 is a diagram showing a test method for investigating leakage current changes before and after heat treatment, and FIG. 11 is a diagram showing leakage current changes before and after heat treatment. FIG. 1...Glass substrate 21.22...Transparent electrode 31.32.33.34...Insulating layer 41.42
...Light-emitting layer 5...Top electrode Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Observation distance Fig. 10 Fig. 11 Voltage (V)

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一方を透明導電膜で構成した一対の電
極間に、絶縁層を介して発光層を設けてなるELディス
プレイにおいて、上記透明導電膜が、酸化亜鉛を主成分
とし、3価以上の原子価を有する少なくとも一種の元素
を含有することを特徴とするELディスプレイ。
(1) In an EL display in which a light emitting layer is provided between a pair of electrodes, at least one of which is composed of a transparent conductive film, with an insulating layer interposed therebetween, the transparent conductive film contains zinc oxide as a main component and has a valence of 3 or more. An EL display characterized by containing at least one element having a valence.
(2)上記発光層を複数設けてこれらを透明導電膜より
なる中間電極を挟んで積層し、該中間電極と複数の発光
層との間にそれぞれ絶縁層を形成した請求項1記載のE
Lディスプレイ。
(2) E according to claim 1, wherein a plurality of the light emitting layers are provided, and these are laminated with an intermediate electrode made of a transparent conductive film sandwiched therebetween, and an insulating layer is formed between each of the intermediate electrodes and the plurality of light emitting layers.
L display.
JP1122593A 1989-05-16 1989-05-16 EL display manufacturing method Expired - Fee Related JPH0817115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1122593A JPH0817115B2 (en) 1989-05-16 1989-05-16 EL display manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1122593A JPH0817115B2 (en) 1989-05-16 1989-05-16 EL display manufacturing method

Publications (2)

Publication Number Publication Date
JPH02301991A true JPH02301991A (en) 1990-12-14
JPH0817115B2 JPH0817115B2 (en) 1996-02-21

Family

ID=14839772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1122593A Expired - Fee Related JPH0817115B2 (en) 1989-05-16 1989-05-16 EL display manufacturing method

Country Status (1)

Country Link
JP (1) JPH0817115B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180891A (en) * 1981-04-30 1982-11-08 Fujitsu Ltd El display element
JPS63190294A (en) * 1987-01-31 1988-08-05 株式会社リコー Electroluminescence device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180891A (en) * 1981-04-30 1982-11-08 Fujitsu Ltd El display element
JPS63190294A (en) * 1987-01-31 1988-08-05 株式会社リコー Electroluminescence device

Also Published As

Publication number Publication date
JPH0817115B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US4686110A (en) Method for preparing a thin-film electroluminescent display panel comprising a thin metal oxide layer and thick dielectric layer
US6036823A (en) Dielectric thin film and thin-film EL device using same
US5721562A (en) Electroluminescent display device including a columnar crystal structure insulating film
US5581150A (en) TFEL device with injection layer
US6403204B1 (en) Oxide phosphor electroluminescent laminate
US5539424A (en) Thin-film electroluminescence display device
US20020125495A1 (en) Thin film alternating current electroluminescent displays
US4947081A (en) Dual insulation oxynitride blocking thin film electroluminescence display device
JPH02301991A (en) El display
US4777099A (en) Thin-film EL device
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JPS5829880A (en) Electric field luminescent element
JPH0541286A (en) Electroluminecence element
KR0164456B1 (en) Blue color lighting electro-luminescense element and its manufacturing method
JPH03192690A (en) El display element
JPS5947879B2 (en) Manufacturing method of EL element
JPS6110955B2 (en)
JPH03236195A (en) Double-insulated thin film electroluminescence device
JPH03112089A (en) Thin film el element
JPH05347187A (en) Thin film el element
JPS61121290A (en) Manufacture of thin film el element
JP3487618B2 (en) Electroluminescence element
JPH01246790A (en) Thin film el element and its manufacture
JPS6338982A (en) Electroluminescence element
JPS61214395A (en) Manufacture of thin film electroluminescence element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees