JPH02300203A - Production of highly crosslinked microgel - Google Patents

Production of highly crosslinked microgel

Info

Publication number
JPH02300203A
JPH02300203A JP12186689A JP12186689A JPH02300203A JP H02300203 A JPH02300203 A JP H02300203A JP 12186689 A JP12186689 A JP 12186689A JP 12186689 A JP12186689 A JP 12186689A JP H02300203 A JPH02300203 A JP H02300203A
Authority
JP
Japan
Prior art keywords
monomer
microgel
vinyl monomer
highly crosslinked
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12186689A
Other languages
Japanese (ja)
Inventor
Masayuki Hattori
雅幸 服部
Kiyoshi Kasai
澄 笠井
Hiroshi Tadenuma
蓼沼 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP12186689A priority Critical patent/JPH02300203A/en
Publication of JPH02300203A publication Critical patent/JPH02300203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an ultrafine, highly reactive and highly crosslinked microgel by emulsion-polymerizing a vinyl monomer mixture containing a crosslinking monomer having a plurality of vinyls and a vinyl monomer having sulfonic groups in specified amounts. CONSTITUTION:At least 6wt.% crosslinking monomer (A) having at least two vinyls (e.g. divinylbenzene) is mixed with at least 0.1wt.%, per pt. component A, sulfonic vinyl monomer or its salt (B) and a polymerizable vinyl monomer (C) (e.g. styrene) to give a total of 100wt.%. By emulsion-polymerizing the obtained mixture in an aqueous medium, a highly crosslinked microgel of a number-mean particle diameter of 5-50nm can be obtained. the obtained microgel can be desirably used as an additive for coating materials, adhesives, resins, rubbers, etc., a reinforcement, a carrier for immobilizing pharmaceuticals or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、数平均粒子径が5〜50nmと非常に小さく
かつ粒子径分布も比較的均一であり、さらに粒子内部が
三次元網目構造を有する高架橋ミクロゲルの製造方法に
関する。
Detailed Description of the Invention [Industrial Application Field] The present invention has a very small number average particle size of 5 to 50 nm, a relatively uniform particle size distribution, and a three-dimensional network structure inside the particle. The present invention relates to a method for producing a highly crosslinked microgel.

[従来の技術] 従来、ミクロゲルと呼ばれる粒子径が50n厘以下の架
橋されたポリマー粒子を乳化重合法により合成すること
は広く知られており、例えば文献J、011 Cot、
 Chew、 As5oc、、 60.438(197
7)にはこのようなミクロゲルをポリスチレン樹脂やポ
リエステル中に分散させて補強剤として応用することが
示されている。これは、ミクロゲルの粒子表面に存在す
る反応性に富むペンダントビニル基がマトリックスであ
る樹脂にグラフトしてその補強効果を発揮するものと考
えられる。
[Prior Art] Conventionally, it is widely known that crosslinked polymer particles called microgels with a particle size of 50 nm or less are synthesized by emulsion polymerization, for example, as described in Document J, 011 Cot.
Chew, As5oc,, 60.438 (197
7) shows that such microgels can be dispersed in polystyrene resin or polyester and applied as reinforcing agents. This is thought to be due to the highly reactive pendant vinyl groups present on the surface of the microgel particles grafting onto the matrix resin and exerting its reinforcing effect.

しかし、かかる超微粒子ポリマーを合成する際には、上
述したペンダントビニル基がミクロゲルの安定性を損な
う原因ともなっている。
However, when synthesizing such ultrafine particle polymers, the above-mentioned pendant vinyl groups also become a cause of impairing the stability of microgels.

即ち、例えば乳化重合によりミクロゲルを合成する際、
系全体が凝集により固化してしまったり、あるいはラテ
ックスとしての安定性が維持できても、凝集により多く
の粒子が200 nm以上となって系が白濁す志といっ
た問題があった。このように粒子が凝集した状態では、
超微粒子としての透明性、成膜化時の光沢、大きな粒子
表面積等の特性が損なわれ、ミクロゲルとしての工業上
の利用価値がな(なってしまう。このような凝集の原因
としでは、架橋性モノマーと1.て使用したジビニルベ
ンゼンなどの未反応のペンダントビニル基が粒子間で反
応することが考えられる。
That is, for example, when synthesizing microgels by emulsion polymerization,
There are problems in that the entire system solidifies due to aggregation, or even if the stability as a latex can be maintained, many particles become larger than 200 nm due to aggregation, resulting in a cloudy system. In this state of agglomeration of particles,
The properties such as transparency as ultrafine particles, gloss during film formation, and large particle surface area are lost, and the industrial value of microgels is lost.The cause of such aggregation is the crosslinking property It is thought that unreacted pendant vinyl groups such as divinylbenzene used in 1. react with the monomer between particles.

そこで、特開昭60−170604号、同80−170
605号。
Therefore, JP-A-60-170604, JP-A-80-170
No. 605.

同62−177007号および同64−26603号公
報においては、特殊な乳化剤の効果で架橋性モノマーを
ほとんど使用することなしにポリマー粒子中に三次元網
目構造を付与し、重合中の粒子の安定性を良好にする技
術が開示されている。
In JP 62-177007 and JP 64-26603, a three-dimensional network structure is imparted to polymer particles without using almost any crosslinking monomer by the effect of a special emulsifier, and the stability of the particles during polymerization is improved. Techniques for improving this have been disclosed.

[発明が解決しようとする問題点コ しかしながら、これらの技術では、高濃度で安定なミク
ロゲルが得られるものの、粒子表面に反応性に富むビニ
ル基がほとんどないため、グラフトなど反応性を目的と
した用途に使用できないといった問題点があった。
[Problems to be Solved by the Invention] However, although these techniques yield stable microgels at high concentrations, there are almost no highly reactive vinyl groups on the particle surface, so it is difficult to use methods such as grafting for the purpose of reactivity. There was a problem that it could not be used for any purpose.

このように、従来の製造方法においては、粒子表面が反
応性に富み、かつ平均粒子径が5〜50n−で粒子径分
布が均一であるポリマー粒子を安定に合成することは困
難であった。
As described above, in conventional production methods, it has been difficult to stably synthesize polymer particles that have a highly reactive particle surface, an average particle size of 5 to 50 n-, and a uniform particle size distribution.

本発明は、かかる背景の下になされたものであり、その
目的は、ポリマー粒子表面に反応性に富むペンダントビ
ニル基を多く有し、かつ合成時に凝集物がほとんど発生
せず、工業的利用価値の高い高架橋ミクロゲルの製造方
法を提供することにある。
The present invention was made against this background, and its purpose is to have many highly reactive pendant vinyl groups on the surface of polymer particles, generate almost no aggregates during synthesis, and have industrial value. An object of the present invention is to provide a method for producing a highly crosslinked microgel.

[問題点を解決するための手段] 本発明は、ビニル基を2以上有する架橋性モ、ツマ−を
ビニル系モノマー全体に対し6重量%以上、およびスル
ホン酸基を有するビニル系モノマーまたはその塩を前記
架橋性モノマーの1/10以上含有するビニル系モノマ
ーを水性媒体中において乳化重合することを特徴とする
、数平均粒子径が5〜50n−の高架橋ミクロゲルの製
造方法に関するものである。
[Means for Solving the Problems] The present invention provides a crosslinking monomer having two or more vinyl groups, 6% by weight or more based on the total vinyl monomer, and a vinyl monomer having a sulfonic acid group or a salt thereof. The present invention relates to a method for producing a highly crosslinked microgel having a number average particle diameter of 5 to 50 n-, which comprises emulsion polymerizing a vinyl monomer containing 1/10 or more of the crosslinking monomer in an aqueous medium.

即ち、本発明においては、架橋された超微粒子ポリマー
を含むミクロゲルを製造するに際し、特定量のスルホン
酸基含有モノマーを使用する点に最大の特徴を有し、そ
れによりポリマー粒子の合成中における粒子相互の凝集
を効果的に防止し、安定でしかも粒子径分布が狭く、例
えば数平均粒子径が100n−以上の粒子が全体の20
重量%以下である高架橋ミクロゲルの製造を可能とした
That is, the greatest feature of the present invention is that a specific amount of a sulfonic acid group-containing monomer is used when producing a microgel containing a crosslinked ultrafine particle polymer, thereby reducing the particle size during polymer particle synthesis. It effectively prevents mutual aggregation, is stable and has a narrow particle size distribution, for example, particles with a number average particle size of 100n- or more account for 20% of the total particles.
It has become possible to produce highly crosslinked microgels with a weight percent or less.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用されるビニル基を2以上有する架橋性モノ
マーとしては、例えばジビニルベンゼン、エチレングリ
コールジメタクリレート、1.3−ブチレングリコール
ジメタクリレート、トリメチロールプロパントリメタク
リレート、トリメチロールエタントリメタクリレート、
ネオペンチルグリコールジメタクリレート、メチレンビ
スアクリルアミド等を例示することができ、特にジビニ
ルベンゼン、エチレングリコールジメタクリレートが好
ましい。これらは2種以上を組みあわせて使用してもよ
い。
Examples of the crosslinkable monomer having two or more vinyl groups used in the present invention include divinylbenzene, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate,
Examples include neopentyl glycol dimethacrylate and methylene bisacrylamide, with divinylbenzene and ethylene glycol dimethacrylate being particularly preferred. These may be used in combination of two or more.

本発明においては、ポリマー粒子表面にビニル基を残す
ために、架橋性モノマーの使用割合を、全七ツマ−に対
して6重量%以上、好ましくは10〜90重量%、さら
に好ましくは20〜70重量%とすることが必要である
In the present invention, in order to leave vinyl groups on the surface of the polymer particles, the proportion of the crosslinking monomer used is 6% by weight or more, preferably 10 to 90% by weight, more preferably 20 to 70% by weight based on the total number of polymer particles. It is necessary to set it as % by weight.

なお、工業用に架橋性モノマーとして用いられるものの
中には、ビニル基を1つしか有さないモノマーや、ビニ
ルモノマー以外の溶剤が含まれる゛場合があるので、前
述した架橋性モノマーの使用割合は、有効成分であるビ
ニル基を21jJ以上有するモノマー成分のみを基準と
する。
In addition, some of the crosslinking monomers used for industrial purposes may contain monomers having only one vinyl group or solvents other than vinyl monomers, so the usage ratio of the crosslinking monomers mentioned above may vary. is based only on monomer components having 21jJ or more of vinyl groups, which are active ingredients.

本発明において、合成中の粒子の凝集を防止する機能を
有する、スルホン酸基を有するビニル系モノマーとして
は、例えばスルホン化イソプレン、スルホン化スチレン
、2−メチル2−アクリルアミドプロパンスルホン酸な
どが挙げられ、これらのモノマーはナトリウム塩、アン
モニウム塩などの形で使用することができる。特に、ス
ルホン化イソプレンは重合後もビニル基が残るため、ポ
リマーの反応性が向上する点で特徴がある。
In the present invention, examples of vinyl monomers having a sulfonic acid group that have the function of preventing particle aggregation during synthesis include sulfonated isoprene, sulfonated styrene, and 2-methyl-2-acrylamidopropanesulfonic acid. , these monomers can be used in the form of sodium salts, ammonium salts, etc. In particular, sulfonated isoprene is characterized in that the vinyl group remains even after polymerization, so the reactivity of the polymer is improved.

本発明においては、スルホン酸基を有するビニル系モノ
マーを前記架橋性モノマーに対し特定量以上使用するこ
とが重要である。架橋性モノマーの使用割合が多ければ
多いほど粒子の凝集が発生しやすくなるため、架橋性モ
ノマーの使用量に応じてスルホン酸基を有するモノマー
の使用量を調整する必要がある。本発明において、粒子
の凝集を効果的に防止するためには、スルホン酸基を有
するビニル系モノマーの使用量は架橋性モノマーに対し
、重量で1/10以上、好ましくは115〜1/2とす
る。この使用量が1/10より少ないと凝集防止効果が
不十分となる。
In the present invention, it is important to use a vinyl monomer having a sulfonic acid group in a specified amount or more relative to the crosslinkable monomer. The higher the proportion of the crosslinking monomer used, the more likely particle aggregation will occur, so it is necessary to adjust the amount of the monomer having a sulfonic acid group depending on the amount of the crosslinking monomer used. In the present invention, in order to effectively prevent particle aggregation, the amount of the vinyl monomer having a sulfonic acid group to be used is at least 1/10, preferably 115 to 1/2, by weight of the crosslinking monomer. do. If the amount used is less than 1/10, the agglomeration prevention effect will be insufficient.

本発明において、前記架橋性モノマーおよびスルホン酸
基を有するビニル系モノマーと共に用いられる重合性モ
ノマーとしては、例えばスチレン、α−メチルスチレン
、フルオロスチレン、ビニルピリジンなどの芳香族モノ
ビニル化合物、アクリロニトリル、メタクリレートリル
などのシアン化ビニル化合物、ブチルアクリレート、2
−エチルへキシルアクリレート、メチルアクリレート、
2−ヒドロキシエチルアクリレート、グリシジルアクリ
レ−t’、N、N’  −ジメチルアミノエチルアクリ
レートなどのアクリル酸エステルモノマー、ブチルメタ
クリレート、2−エチルへキシルメタクリレート、メチ
ルメタクリレート、2−ヒドロキシエチルメタクリレー
ト、グリシジルメタクリレート、N、N’  −ジメチ
ルアミノエチルメタクリレートなどのメタクリル酸エス
テルモノマー、アクリル酸、メタクリル酸、マレイン酸
、イタコン酸などのモノまたはジカルボン酸およびジカ
ルボン酸の酸無水物、アクリルアミド、メタクリルアミ
ドなどのアミド系モノマーなどを用いることができる。
In the present invention, examples of the polymerizable monomer used together with the crosslinkable monomer and the vinyl monomer having a sulfonic acid group include aromatic monovinyl compounds such as styrene, α-methylstyrene, fluorostyrene, and vinylpyridine, acrylonitrile, and methacrylate. Vinyl cyanide compounds such as butyl acrylate, 2
-ethylhexyl acrylate, methyl acrylate,
Acrylic acid ester monomers such as 2-hydroxyethyl acrylate, glycidyl acrylate-t',N,N'-dimethylaminoethyl acrylate, butyl methacrylate, 2-ethylhexyl methacrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate , methacrylic acid ester monomers such as N,N'-dimethylaminoethyl methacrylate, mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, acid anhydrides of dicarboxylic acids, and amides such as acrylamide and methacrylamide. Monomers and the like can be used.

また重合速度および重合安定性の点で許容される範囲内
において、ブタジェン、イソプレンなどの共役二重結合
化合物や酢酸ビニルなどのビニルエステル化合物、4−
メチル−1−ペンテン、その他のα−オレフィン化合物
も使用することができる。
In addition, within the allowable range in terms of polymerization rate and polymerization stability, conjugated double bond compounds such as butadiene and isoprene, vinyl ester compounds such as vinyl acetate, 4-
Methyl-1-pentene and other α-olefin compounds can also be used.

本発明で使用する乳化剤としては、通常の乳化重合で使
用されるものを用いることができ、ドデシルベンゼンス
ルホン酸ナトリウム、ドデシル硫酸ナトリウム、ジアル
キルスルホコハク酸ナトリウム、ナフタレンスルホン酸
のホルマリン縮合物、ポリオキシエチレンアルキルフェ
ニルエーテルサルフェートアンモニウム塩などのアニオ
ン系界面活性剤を例示することができ、さらにポリオキ
シエチレンノニルフェニルエーテル、ポリエチレングリ
コールモノステアレート、ソルビタンモノステアレート
などのノニオン系界面活性剤を例示することができる。
As the emulsifier used in the present invention, those used in ordinary emulsion polymerization can be used, including sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium dialkylsulfosuccinate, formalin condensate of naphthalenesulfonic acid, polyoxyethylene Examples include anionic surfactants such as alkyl phenyl ether sulfate ammonium salts, and further examples include nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol monostearate, and sorbitan monostearate. can.

さらに、市販の乳化剤であるニューフロンティアA−2
29E、同N177E、同N250Z。
Furthermore, New Frontier A-2, a commercially available emulsifier,
29E, N177E, N250Z.

同N280.同N121P C第−工業製薬味製)やエ
レミノールJS−2.同R3−30(三洋化成工業■製
)などを使用することもできる。
Same N280. N121P C Dai-Kogyo Seiyaku Aji) and Eleminol JS-2. R3-30 (manufactured by Sanyo Chemical Industries, Ltd.) and the like can also be used.

乳化剤としては、1種類でもよいが2種類以上を組み合
せて使用すれば、さらに安定性の点で効果がある。さら
に好ましい乳化剤の組み合せとしては、アニオン系界面
活性剤とノニオン系界面活性剤との組み合せがある。
One type of emulsifier may be used, but if two or more types are used in combination, it is more effective in terms of stability. A more preferable combination of emulsifiers is a combination of an anionic surfactant and a nonionic surfactant.

また、乳化剤の使用量は、本発明のポリマー粒子が通常
の乳化重合におけるポリマー粒子よりも粒子径が小さく
その粒子表面積が大きいことから、通常の乳化重合より
多量に必要とし、全モノマーに対し好ましくは10重量
%以上、さらに好ましくは20重量%以上とされる。
In addition, since the polymer particles of the present invention have a smaller particle diameter and a larger particle surface area than those used in ordinary emulsion polymerization, a larger amount of emulsifier is required than in ordinary emulsion polymerization, and is preferable based on the total monomers. is 10% by weight or more, more preferably 20% by weight or more.

また、水溶性高分子を乳化剤と併用してもよい。Furthermore, a water-soluble polymer may be used in combination with an emulsifier.

水溶性高分子の具体例としては、ポリビニルアルコール
、デキストリン、ヒドロキシエチルデンプン、ヒドロキ
シエチルセルロース、ヒドロキシプロピルセルロースお
よびポリアクリル酸やスチレンアクリル酸共重合物など
のナトリウム塩、縮合ナフタレンスルホン酸ナトリウム
塩などを挙げることができ、これらは全モノマーに対し
好ましくは1〜30重量%、さらに好ましくは3〜20
重量%使用されるのが適当である。
Specific examples of water-soluble polymers include polyvinyl alcohol, dextrin, hydroxyethyl starch, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium salts of polyacrylic acid and styrene acrylic acid copolymers, and condensed naphthalene sulfonic acid sodium salts. These are preferably 1 to 30% by weight, more preferably 3 to 20% by weight based on the total monomers.
Suitably, % by weight is used.

本発明で使用する重合開始剤としては、通常の乳化重合
で用いられるものであれば特に制限されないが、過硫酸
カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の
過硫酸塩系開始剤、および過酸化水素、有機過酸化物等
を単独であるいはアスコルビン酸等の各種還元剤と組み
合せて使用してもよい。
The polymerization initiator used in the present invention is not particularly limited as long as it is used in ordinary emulsion polymerization, but includes persulfate-based initiators such as potassium persulfate, sodium persulfate, ammonium persulfate, and hydrogen peroxide. , organic peroxides, etc. may be used alone or in combination with various reducing agents such as ascorbic acid.

本発明で使用される水の量は、全モノマーに対し好まし
くは300重量%以上、さらに好ましくは500重量%
以上である。水の量が300重量%より少ないと凝集を
防ぐことが困難であり、好ましくない。
The amount of water used in the present invention is preferably 300% by weight or more, more preferably 500% by weight based on the total monomers.
That's all. If the amount of water is less than 300% by weight, it is difficult to prevent agglomeration, which is not preferable.

〔実施例] 以下、本発明を実施例によってさらに具体的に説明する
が、本発明はこれらに同等制限されるものではない。な
お、以下の記載において「部」および「%」は重量部お
よび重量%を意味する。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not equally limited to these. In addition, in the following description, "part" and "%" mean parts by weight and weight %.

実施例1〜6.比較例1〜8 第1表に示す組成の七ツマー1乳化剤およびイオン交換
水を内容量100!のステンレス製反応器に仕込み、窒
素置換後70℃に昇温し、さらに過硫酸カリウムを添加
し、5時間にわたって重合を行った。
Examples 1-6. Comparative Examples 1 to 8 The content of 7-mer 1 emulsifier and ion-exchanged water having the composition shown in Table 1 was 100! The mixture was charged into a stainless steel reactor, and after purging with nitrogen, the temperature was raised to 70°C, potassium persulfate was added, and polymerization was carried out for 5 hours.

このようにして得られた高架橋ミクロゲルに関し、下記
の方法により、重合収率1重合安定性。
Regarding the highly crosslinked microgel thus obtained, the following method was used to obtain a polymerization yield of 1 and a polymerization stability.

ポリマー粒子の粒子径分布、およびポリマー粒子に残存
したペンダントビニル基の量を求めた。これらの結果を
第1表に示す。
The particle size distribution of the polymer particles and the amount of pendant vinyl groups remaining in the polymer particles were determined. These results are shown in Table 1.

重合収率;重合後のミクロゲルの固形分濃度より求めた
Polymerization yield: determined from the solid content concentration of the microgel after polymerization.

重合安定性;重合後のミクロゲルを400メツシユの金
網にてろ過し、金網上に残った凝集物の量をモノマーに
対する割合で示した。
Polymerization stability: The microgel after polymerization was filtered through a 400-mesh wire mesh, and the amount of aggregates remaining on the wire mesh was expressed as a ratio to the monomer.

粒子径;コールタ−サブミクロン粒子アナライザー(米
国、コールタ−・エレクトロニクス社製。
Particle size: Coulter Submicron Particle Analyzer (manufactured by Coulter Electronics, USA).

Coulter Model N4型)により測定した
。粒子径分布のピークが2山ある場合には、それぞれの
平均粒子径および標準偏差を示し、さらに各ピークに対
応するポリマーの重量割合も示した。
Coulter Model N4). When there are two peaks in the particle size distribution, the average particle size and standard deviation of each peak are shown, and the weight proportion of the polymer corresponding to each peak is also shown.

なお、ピークの平均粒子径が50n−以下のものは目的
粒子であり、ピークの平均粒子径が10On−以上のも
のは凝集した好ましくない粒子のものであるといえる。
It can be said that those having a peak average particle diameter of 50 n- or less are target particles, and those having a peak average particle diameter of 10 on- or more are aggregated and undesirable particles.

ペンダントビニル基;粒子表面および粒子中に残存して
いるペンダントビニル基の定量方法としては、フーリエ
変換赤外分光装置(NICOLET JAPANCOR
PORATION、 mode 80SX)を用い、K
Br法で行った。
Pendant vinyl groups: As a method for quantifying the pendant vinyl groups remaining on the particle surface and in the particles, a Fourier transform infrared spectrometer (NICOLET JAPANCOR) is used.
PORATION, mode 80SX),
This was done using the Br method.

具体的には、パラメチルスチレンモノマーを比較とし、
ビニル基およびベンゼン環の吸光度とミクロゲルのそれ
らについての吸光度の関係より、仕込んだ架橋性モノマ
ーのうち何%がペンダントビニル基として残っているか
を定量し、ポリマー固形分100g中のミリモル数で求
めた。ただし、このとき、スチレン、アクリル酸などの
非架橋性モノマーは100%共重合されているものとし
て計算した。
Specifically, paramethylstyrene monomer was used as a comparison,
Based on the relationship between the absorbance of vinyl groups and benzene rings and the absorbance of the microgel, the percentage of the charged crosslinking monomer remaining as pendant vinyl groups was determined and calculated in millimoles per 100 g of polymer solid content. . However, at this time, the calculation was made assuming that 100% of non-crosslinkable monomers such as styrene and acrylic acid were copolymerized.

比較例1〜6は、いずれもスルホン酸基を有するビニル
系モノマーを使用しない例である。これらの例において
は、第1表に示す結果より明らかなように、いずれも粒
子径分布においてピークが2山となり、目的とする50
n−以下の超微粒子ポリマーのみならず、凝集によって
100n*以上の粒子径となったポリマーが多量に発生
したことがわかる。
Comparative Examples 1 to 6 are examples in which a vinyl monomer having a sulfonic acid group is not used. In these examples, as is clear from the results shown in Table 1, there are two peaks in the particle size distribution, and the target 50
It can be seen that not only ultrafine particle polymers of n- or less, but also a large amount of polymers with particle diameters of 100 n* or more due to aggregation were generated.

比較例7は、スルホン酸基を有するビニル系モノマーの
使用割合が架橋性モノマーの1/10未満の場合の例で
ある。この例も比較例1〜6と同様、凝集によって11
0n*以上の粒子が多量に発生している。
Comparative Example 7 is an example in which the proportion of the vinyl monomer having a sulfonic acid group used is less than 1/10 of the crosslinking monomer. In this example, as well as Comparative Examples 1 to 6, 11
A large amount of particles of 0n* or more are generated.

分布についてはピークが1山であり、目的とする5ns
以下の超微粒子ポリマーが得られているが、架橋度が低
く、残留ペンダントビニル基の量も著しく低いため、ミ
クロゲルとして好ましくない。
Regarding the distribution, there is one peak, and the target 5ns
Although the following ultrafine particle polymer has been obtained, it is not preferred as a microgel because the degree of crosslinking is low and the amount of residual pendant vinyl groups is also extremely low.

これに対し、実施例1〜6においては、ポリマー粒子の
全部あるいはほとんどが目的とする50n−以下の粒子
径を有する超微粒子として得られ、その粒子径分布も比
較的狭く、最も広い分布の実施例であっても100n■
以上の粒子径を有する粒子は全体の20重量%よりはる
かに低いものであった。また、残留ペンダントビニル基
もポリマー固形分100g中に10ミリモル以上あり、
反応性の点でもミクロゲルとして好ましいものであった
On the other hand, in Examples 1 to 6, all or most of the polymer particles were obtained as ultrafine particles having the target particle size of 50n- or less, and the particle size distribution was also relatively narrow, and the widest distribution was achieved. Even if it is an example, it is 100n■
The amount of particles having the above particle size was far less than 20% by weight of the total. In addition, there are 10 mmol or more of residual pendant vinyl groups in 100 g of polymer solid content,
It was also preferable as a microgel in terms of reactivity.

[発明の効果] 本発明によれば、平均粒子径が5〜50naと非常に小
さく、粒子径分布においてもピークが1山であって凝集
した粒子がほとんどなく、さらに粒子表面に反応性に富
むペンダントビニル基を多く含む高架橋ミクロゲルを効
率良く製造することができる。
[Effects of the Invention] According to the present invention, the average particle size is very small at 5 to 50 na, the particle size distribution has a single peak, and there are almost no aggregated particles, and the particle surface is highly reactive. Highly crosslinked microgels containing many pendant vinyl groups can be efficiently produced.

本発明によって得られたミクロゲルは、反応性および超
微粒子であることを活用できる分野で好適に用いること
ができ、例えば塗料等のコーティング剤、ゴム、樹脂、
接着剤、繊維の添加剤あるいは補強剤、あるいは結晶性
樹脂の結晶化温度向上剤、樹脂、フィルムの微小滑材、
または染料や、医薬、農薬の固定用担体などとして有効
に使用することができる。
The microgel obtained by the present invention can be suitably used in fields where its reactivity and ultrafine particles can be utilized, such as coating agents such as paints, rubbers, resins, etc.
Adhesives, additives or reinforcing agents for fibers, crystallization temperature improvers for crystalline resins, minute lubricants for resins and films,
Alternatively, it can be effectively used as a carrier for immobilizing dyes, medicines, agricultural chemicals, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)ビニル基を2以上有する架橋性モノマーをビニル
系モノマー全体に対し6重量%以上、およびスルホン酸
基を有するビニル系モノマーまたはその塩を前記架橋性
モノマーの1/10以上含有するビニル系モノマーを水
性媒体中において乳化重合することを特徴とする、数平
均粒子径が5〜50nmの高架橋ミクロゲルの製造方法
(1) Vinyl type containing at least 6% by weight of a crosslinking monomer having two or more vinyl groups based on the total vinyl monomer, and at least 1/10 of the crosslinking monomer having a sulfonic acid group or a salt thereof. A method for producing a highly crosslinked microgel having a number average particle diameter of 5 to 50 nm, the method comprising emulsion polymerizing a monomer in an aqueous medium.
JP12186689A 1989-05-15 1989-05-15 Production of highly crosslinked microgel Pending JPH02300203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12186689A JPH02300203A (en) 1989-05-15 1989-05-15 Production of highly crosslinked microgel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12186689A JPH02300203A (en) 1989-05-15 1989-05-15 Production of highly crosslinked microgel

Publications (1)

Publication Number Publication Date
JPH02300203A true JPH02300203A (en) 1990-12-12

Family

ID=14821867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12186689A Pending JPH02300203A (en) 1989-05-15 1989-05-15 Production of highly crosslinked microgel

Country Status (1)

Country Link
JP (1) JPH02300203A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293907A (en) * 1991-03-22 1992-10-19 Toyo Ink Mfg Co Ltd Water-base photoresin composition
EP0644210A1 (en) * 1993-09-18 1995-03-22 BASF Aktiengesellschaft Matt transparent thermoplastic resins
WO1999058588A1 (en) * 1998-05-07 1999-11-18 The University Of Melbourne Process for microgel preparation
EP0968765A1 (en) * 1998-07-01 2000-01-05 The Secretary of State for Defence in her Britannic Majesty's Gov. of the United Kingdom of Great Britain and North Ireland Catalytic microgels
AU757416B2 (en) * 1998-05-07 2003-02-20 Commonwealth Scientific And Industrial Research Organisation Process for microgel preparation
WO2004048428A1 (en) * 2002-11-27 2004-06-10 The University Of Melbourne Microgel composition and process for preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192718A (en) * 1984-03-15 1985-10-01 Dainippon Ink & Chem Inc Production of aqueous resin dispersion
JPS6119614A (en) * 1984-07-05 1986-01-28 Nitto Electric Ind Co Ltd Aqueous resin emulsion
JPS61155958A (en) * 1984-12-28 1986-07-15 Shionogi & Co Ltd Immunological diagnostic reagent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192718A (en) * 1984-03-15 1985-10-01 Dainippon Ink & Chem Inc Production of aqueous resin dispersion
JPS6119614A (en) * 1984-07-05 1986-01-28 Nitto Electric Ind Co Ltd Aqueous resin emulsion
JPS61155958A (en) * 1984-12-28 1986-07-15 Shionogi & Co Ltd Immunological diagnostic reagent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293907A (en) * 1991-03-22 1992-10-19 Toyo Ink Mfg Co Ltd Water-base photoresin composition
EP0644210A1 (en) * 1993-09-18 1995-03-22 BASF Aktiengesellschaft Matt transparent thermoplastic resins
WO1999058588A1 (en) * 1998-05-07 1999-11-18 The University Of Melbourne Process for microgel preparation
EP1076668A1 (en) * 1998-05-07 2001-02-21 The University of Melbourne Process for microgel preparation
EP1076668A4 (en) * 1998-05-07 2001-10-24 Univ Melbourne Process for microgel preparation
JP2002514667A (en) * 1998-05-07 2002-05-21 ザ・ユニヴァーシティ・オヴ・メルボルン Microgel preparation process
AU757416B2 (en) * 1998-05-07 2003-02-20 Commonwealth Scientific And Industrial Research Organisation Process for microgel preparation
EP0968765A1 (en) * 1998-07-01 2000-01-05 The Secretary of State for Defence in her Britannic Majesty's Gov. of the United Kingdom of Great Britain and North Ireland Catalytic microgels
WO2004048428A1 (en) * 2002-11-27 2004-06-10 The University Of Melbourne Microgel composition and process for preparation thereof

Similar Documents

Publication Publication Date Title
JPH10120710A (en) Production of emulsion homopolymer and copolymer and apparatus used therefor
JPH05178912A (en) Production of cross-linked polymer particle
US6656999B1 (en) Method of preparing synthetic rubber latex having a large particle size
JPS59199703A (en) Manufacture of emulsifier-free and protective colloid-free emulsion polymer
JPH02300203A (en) Production of highly crosslinked microgel
JPS61215603A (en) Production of polymer particle
JPH1077317A (en) Production of polybutadiene rubber latex
US3795647A (en) Agglomerating latices of diene polymers
JPH06256438A (en) Production of polymer particle
JP2722661B2 (en) Method for producing aqueous dispersion of reactive polymer particles
EP0308864B1 (en) Process for preparing uniformly sized, fine particles of polymer
JP3339091B2 (en) Method for producing polymer particles
JP3130437B2 (en) Method for producing polymer particles of uniform size
Zou et al. Model filled polymers. XI. Synthesis of monodisperse crosslinked polymethacrylonitrile beads
JPH0368883B2 (en)
JPH0678398B2 (en) Method for producing crosslinked fine particle polymer
US5405818A (en) Free radical initiator delivery system
US6025443A (en) Process for the production of spherical polymers
JP3393452B2 (en) Composite crosslinked polymer particles and method for producing the same
US5414062A (en) Method for reduction of aqueous phase polymer formation in suspension polymerization
JP3508304B2 (en) Glycol dispersion of crosslinked polymer particles and method for producing the same
JPH06345825A (en) Emulsion polymer composition
JPS63191805A (en) Manufacture of finely divided particle of monodisperse vinyl polymer
JPH0692443B2 (en) Method for producing polymer particles
JPS6250304A (en) Novel polymerization process