JPH02293395A - Synthesizing method of granular diamond and device therefor - Google Patents

Synthesizing method of granular diamond and device therefor

Info

Publication number
JPH02293395A
JPH02293395A JP11263589A JP11263589A JPH02293395A JP H02293395 A JPH02293395 A JP H02293395A JP 11263589 A JP11263589 A JP 11263589A JP 11263589 A JP11263589 A JP 11263589A JP H02293395 A JPH02293395 A JP H02293395A
Authority
JP
Japan
Prior art keywords
particles
reaction tube
granular
tube
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11263589A
Other languages
Japanese (ja)
Inventor
Junji Degawa
出川 純司
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11263589A priority Critical patent/JPH02293395A/en
Publication of JPH02293395A publication Critical patent/JPH02293395A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain a large amount of granular diamond at once by reducing lowering speed of granular base material with gas flow of raw material in vapor phase synthesizing of diamond on granular base material dispersed and floated in a space made to plasma. CONSTITUTION:High-frequency wave or microwave giving electric field is irradiated into a reacting tube 1 by a high-frequency wave or microwave generator 5 and valve 11 of particles supplier 10 is adjusted to make group of particles 6 gravitational lowering in the reacting tube 1 with any concentration. On the contrary, raw material gas containing organic compound and H2 and/or O2 is supplied into the reacting tube 1 from lower end of said tube through dispersion plate 12 and lowering speed of the particles 6 is reduced by resistance of the raw material gas, then residence time in the space of plasma 9 is prolonged. In said instance, supplying speed of the raw material gas is made to be lower than the speed at which whole of particles group change to rising and a part of the particles 6 flied out from upper part of the reacting tube 1 are separated from raw material gas with cyclone 3 evacuated by vacuum pump 4 and returned to inside of the reacting tube 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラズマを用いるダイヤモンドの気相合成方
法に関するものであり、特に研削用砥粒等に利用できる
ような粒状ダイヤモンドの気相合成方法及び同装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for vapor phase synthesis of diamond using plasma, and in particular, a method for vapor phase synthesis of granular diamond that can be used as abrasive grains for grinding, etc. and related to the same device.

[従来の技術及び問題点コ プラズマを用いる従来のダイヤモンド気相合成方法を第
5図に示す装置によって説明する。図示のように高周波
、又はマイクロ波発生装置5の間に反応管1を配置し、
この反応管1の中に支持台8を配置し、この支持台8の
上に板状基材7を載置する。これに対して矢印で示すよ
うに、揮発性有機化合物と水素及び/又は酸素の混合ガ
ス(原料ガス)を高周波、又はマイクロ波によりプラズ
マ化し、そのプラズマ空間内に配置した前記板状基材7
の上にダイヤモンドを析出させる方法が最も一般的であ
る。
[Prior Art and Problems] A conventional diamond vapor phase synthesis method using coplasma will be explained using the apparatus shown in FIG. As shown in the figure, the reaction tube 1 is placed between the high frequency or microwave generators 5,
A support stand 8 is placed inside the reaction tube 1 , and a plate-shaped base material 7 is placed on this support stand 8 . On the other hand, as shown by the arrow, a mixed gas (raw material gas) of a volatile organic compound and hydrogen and/or oxygen is turned into plasma by high frequency or microwave, and the plate-shaped base material 7 is placed in the plasma space.
The most common method is to deposit diamond on top of the diamond.

ところが、この方法ではダイヤモンドの核発生が非常に
多く、生成するダイヤモンドが互に接触し合い、膜状と
なるため、研削用砥粒等粒状の形状が要求される製品に
は適用が難しい。
However, this method generates a large number of diamond nuclei, and the resulting diamonds come into contact with each other and form a film, making it difficult to apply to products that require a granular shape, such as grinding abrasive grains.

このような観点で気相合成法により粒状ダイヤモンドを
合成する方法として、第5図の板状基材7にかえ、支持
台8上にダイヤモンド、Sl等の粒状基材を(以下粒子
という)分散配置し、この粒子のみより粒状のダイヤモ
ンドを成長させる方法が最もよく知られている。
From this point of view, as a method for synthesizing granular diamond by vapor phase synthesis, a granular base material such as diamond or Sl (hereinafter referred to as particles) is dispersed on a support base 8 instead of the plate-like base material 7 shown in FIG. The most well-known method is to grow granular diamonds using only these particles.

しかし、この方法では分散配置できる粒子の数が限られ
るため、すなわち1回の操作で得られる粒状ダイヤモン
ドの数が非常に少ないため、生産量、コストの面で工業
的要求に応えることはできない。
However, this method cannot meet industrial demands in terms of production volume and cost because the number of particles that can be dispersed is limited, that is, the number of granular diamonds that can be obtained in one operation is very small.

一このように配置できる粒子の数の少ないのは、いうま
でもなく粒子を2次元的、つまり、ある平面にしか配置
できないためである。粒子を3次元的、つまり反応容器
の中に充填すれば、その粒子数を飛躍的に増大すること
ができる。しかし、単に充填したのみでは粒子間に空間
が少ないため、ここに高周波、又はマイクロ波を入射し
ても原料ガスはプラズマ化しない。原料ガスをプラズマ
化し、粒子上にダイヤモンドを析出させるためには、粒
子間に一定割合以上の空間が必要である。
Needless to say, the reason why the number of particles that can be arranged in this way is small is that particles can only be arranged two-dimensionally, that is, on a certain plane. If particles are packed three-dimensionally, that is, into a reaction vessel, the number of particles can be dramatically increased. However, if the particles are simply filled, there are few spaces between the particles, so even if high frequency waves or microwaves are applied thereto, the raw material gas will not turn into plasma. In order to turn the source gas into plasma and deposit diamond on the particles, a certain proportion or more of space is required between the particles.

粒子間に空間を導入する方法としては、特公昭62−5
7588号公報に示されているように粒子充填層下端に
振動板を配し、これを振動させることにより粒子を分散
.浮遊させる方法がある。
As a method of introducing spaces between particles,
As shown in Japanese Patent No. 7588, a vibrating plate is placed at the bottom of the particle packed bed, and the particles are dispersed by vibrating the plate. There is a way to make it float.

しかし、本発明者らがこの方法を試みたところ、この方
法では特に大径(50pm以上)の粒子の場合、粒子が
高濃度に存在する部分と全く存在しない部分に明瞭に分
かれ、大量の粒子を良好な分散状態に維持することは困
難であった。
However, when the present inventors tried this method, they found that, especially in the case of large-diameter particles (50 pm or more), the particles were clearly separated into a region where particles were present in a high concentration and a region where they were not present at all. It was difficult to maintain a good dispersion state.

また、化学プラントにおいて広範に用いられているガス
流動層法、つまり粒子充填下端より原料ガスを供給する
ことにより粒子を分散.浮遊させる方法についても試み
たが、一般的な操作条件下ではプラズマが発生しない程
高1度に粒子が存在する部分と、粒子濃度が薄すぎて仮
にダイヤモンドの析出を行っても効率が悪すぎる部分と
に分かれ、粒子濃度の制御は困難であった。
In addition, the gas fluidized bed method, which is widely used in chemical plants, disperses particles by supplying raw material gas from the bottom of the particle packing. We also tried suspending the diamond, but under normal operating conditions, the particles exist at such a high concentration that no plasma is generated, and the particle concentration is too thin, making it inefficient even if diamond precipitation were to occur. It was difficult to control the particle concentration.

効率を上げるためにはプラズマ空間内での粒子濃度をプ
ラズマが維持できる範囲で、できるだけ増す必要がある
。そこで、本発明者らは、終末速度と呼ばれる粒子が反
応管より飛び出すのに充分な速度で原料ガスを供給し、
一部を反応管より飛び出させ、飛び出した粒子はサイク
ロンによりガスと分離し、再び反応管にリサイクルする
ことによりプラズマ空間での粒子濃度を制御する方法を
開発し、さきに出願した。(特願昭[i3−28471
8号) しかし、この方法にも粒子がプラズマ空間を高速で通り
すぎるものとなるため、すなわち、プラズマ空間での滞
留時間が極めて短かいため、個々の粒子温度が一様とな
らないし、その極めて短い間に粒子の昇温過程等も含ま
れているので、実際にダイヤモンドが析出する時間は更
に少ないといった問題があった。
In order to increase efficiency, it is necessary to increase the particle concentration within the plasma space as much as possible within the range that the plasma can maintain. Therefore, the present inventors supplied the raw material gas at a velocity sufficient to cause the particles to fly out of the reaction tube, which is called the terminal velocity.
We have developed a method to control the particle concentration in the plasma space by ejecting a portion of the particles from the reaction tube, separating them from the gas in a cyclone, and recycling them back into the reaction tube, and have recently filed an application. (Tokugan Sho [i3-28471
(No. 8) However, in this method, the particles pass through the plasma space at high speed, that is, the residence time in the plasma space is extremely short, so the temperature of each particle is not uniform, and the temperature of the individual particles is extremely low. Since the short period of time includes the process of raising the temperature of the particles, etc., there is a problem that the time for the actual precipitation of diamond is even shorter.

[問題を解決するための手段] 上記事情に鑑み、粒子をプラズマ空間内で充分な時間、
滞留させる方法について検討した結果、重力降下する粒
子群に鉛直下方より原料ガスを供給することにより、粒
子の降下速度を減殺し、プラズマ空間内での粒子滞留時
間を延ばすという本発明に到達したのである。
[Means for solving the problem] In view of the above circumstances, particles are kept in the plasma space for a sufficient time.
As a result of studying methods for retention, we have arrived at the present invention, which reduces the rate of particle descent and extends the residence time of the particles in the plasma space by supplying raw material gas from vertically below to the particle group falling by gravity. be.

以下、第1〜第4図の本発明を実施する装置について説
明し、方法実施についてその詳細を説明する。なお第5
図と同一部分は同一符号で示す。
Hereinafter, the apparatus for carrying out the present invention shown in FIGS. 1 to 4 will be described, and the method implementation will be explained in detail. Furthermore, the fifth
The same parts as in the figure are indicated by the same reference numerals.

第1図に示すように、反応管1の下部に分散板I2が設
置され、その下方に反応管1に対して下方より鉛直方向
に原料ガスを導入するガス導入管I3を設ける。反応管
1の上側に粒子供給器10が設置され、その底部で粒子
6の供給を調整するバルブ1lを介して反応管1の天井
l4にパイプによって連結され、また、ガス、粒状基材
を分離する手段、例えば、サイクロン3が設置され、サ
イクロン3は真空ポンプ4によって吸気され、反応管1
の天井14とサイクロン3との間を連結するパイプにょ
って、原料ガス、粒子を吸い込んでガスと粒子とを分離
し、ガスは真空ボンプ4によって排出され、粒子はサイ
クロン3と反応管1の下方側部であって、前記分散板1
2の上方となる位置との間を連結するパイプによって分
散板l2上に運ばれる構成を採り、反応管1には高周波
、又はマイクロ波発生装置5が設置され、反応管1の内
部に電界を与える高周波、又はマイクロ波が入射するよ
うにする。なお図で9は発生したプラズマを模式的に示
している。
As shown in FIG. 1, a dispersion plate I2 is installed at the bottom of the reaction tube 1, and a gas introduction tube I3 is provided below the distribution plate I2 for vertically introducing raw material gas into the reaction tube 1 from below. A particle feeder 10 is installed above the reaction tube 1, and is connected to the ceiling l4 of the reaction tube 1 by a pipe through a valve 1l at the bottom that adjusts the supply of particles 6, and also separates gas and granular base material. For example, a cyclone 3 is installed, the cyclone 3 is sucked by a vacuum pump 4, and the reaction tube 1 is
A pipe connecting between the ceiling 14 of the cyclone 3 and the cyclone 3 sucks in the raw material gas and particles and separates the gas and particles. a lower side portion of the dispersion plate 1;
A high frequency or microwave generator 5 is installed in the reaction tube 1 to generate an electric field inside the reaction tube 1. Make sure that the high frequency waves or microwaves to be given are incident. In the figure, numeral 9 schematically indicates the generated plasma.

粒子供給器10に付随したバルブl!を調整することに
より粒子群は反応管1内を任意の濃度で重力降下する。
Valve l! associated with particle feeder 10! By adjusting the concentration, the particle group falls by gravity within the reaction tube 1 at an arbitrary concentration.

これに対して反応管1の下端より分散板12を介して原
料ガスを供給すると、その抵抗により粒子の降下速度は
鈍り、プラズマ空間内に滞留する時間は長くなる。この
原料ガスの供給速度を調節すれば,粒子群の降下速度、
すなわち、プラズマ空間内での滞留時間を任意に調節す
ることができる。原料ガスの供給速度は粒子群の運動が
反転し、上昇に転じる速度未堝でなければならないこと
はいうまでもない。但し、操作条件によって、反応中に
一部の粒子が原料ガスとともに反応管外に排出されるこ
とは避け得られないので、前記サイクロン3により、飛
び出した粒子のみを反応管1内に還してやることが望ま
しい。
On the other hand, when the raw material gas is supplied from the lower end of the reaction tube 1 through the dispersion plate 12, the falling speed of the particles slows down due to the resistance, and the residence time in the plasma space becomes longer. By adjusting the supply rate of this raw material gas, the descending speed of the particle group can be adjusted.
That is, the residence time within the plasma space can be adjusted as desired. Needless to say, the feed rate of the raw material gas must be such that the movement of the particle group is reversed and begins to rise. However, depending on the operating conditions, it is unavoidable that some particles will be discharged out of the reaction tube together with the raw material gas during the reaction, so only the particles that have flown out should be returned to the reaction tube 1 by the cyclone 3. is desirable.

しかし、いくら粒子群のプラズマ空間滞留時間を延ばし
ても、ただ一度の通過に要する時間のみで充分にダイヤ
モンドが析出することはあり得ない。充分な大きさの粒
子に成長させるためには繰り返しプラズマ内を通過させ
る必要がある。これを行なうためには、モーター等によ
る機械的な手段によることも考えられるが、ガスによる
方法が最も簡便である。このような観点で第2図、第3
図の構成を育するものが、好適である。
However, no matter how long the residence time of the particles in the plasma space is extended, it is impossible for diamond to be sufficiently precipitated within the time required for just one passage. In order to grow particles of sufficient size, it is necessary to pass through the plasma repeatedly. In order to do this, it is possible to use mechanical means such as a motor, but the simplest method is to use gas. From this perspective, Figures 2 and 3
One that fosters the structure of the diagram is preferred.

第2図の装置において、第1図の装置と相違した点を挙
げてみると、反応管1に副管2が併設されることであり
、!11管2の下部に分散板l2が設置され、その下方
で副管2に対して鉛直方向にガスを導入するガス導入管
+3’が設けられ、その天井14′よりのパイプが反応
管1の側方より反応管1上部内に入り、そのバイプl5
の開孔を鉛直上向きして中心に配置し、また反応管1の
下郎より副管2の下部に粒子群が重力によって移送でき
るように、傾斜付パイプで連結されていることである。
The difference between the apparatus shown in FIG. 2 and the apparatus shown in FIG. 1 is that a sub-tube 2 is attached to the reaction tube 1. 11 A dispersion plate l2 is installed at the bottom of the tube 2, and a gas introduction tube +3' is provided below it to introduce gas vertically into the sub-pipe 2, and the pipe from the ceiling 14' is connected to the reaction tube 1. Enter the upper part of the reaction tube 1 from the side, and the pipe 15
The opening of the reaction tube 1 is arranged in the center with the opening facing vertically upward, and the tube is connected with an inclined pipe so that the particle group can be transferred from the lower part of the reaction tube 1 to the lower part of the auxiliary tube 2 by gravity.

反応管1下部に下降した粒子6は副管2に移動し、この
副管2の下端のガス導入管!3′より粒子が副・管2を
飛び出すのに充分な流速でガス(輸送ガス)を供給する
と粒子は再び反応管1の上部にもどり、再び分散して重
力降下を始める。このサイクルが繰り返され粒子は成長
を続ける。なお反応管1内の粒子濃度は副管2に供給す
る輸送ガスの流速によって制御することができる。
The particles 6 that have descended to the bottom of the reaction tube 1 move to the sub-pipe 2, and the gas inlet pipe at the lower end of this sub-pipe 2! When a gas (transport gas) is supplied from 3' at a flow rate sufficient for the particles to fly out of the sub-pipe 2, the particles return to the upper part of the reaction tube 1, are dispersed again, and begin to fall by gravity. This cycle is repeated and the particles continue to grow. Note that the particle concentration in the reaction tube 1 can be controlled by the flow rate of the transport gas supplied to the auxiliary tube 2.

この場合、副管2より反応管1への粒子を含んだ輸送ガ
スの供給は上述のように鉛直上向きとすることが望まし
く、下向きに供給すると粒子群が初速をもつことになる
ので、プラズマ空間滞留時間を延ばすためには、反応管
1の下端のガス導入管+3’よりの供給する原料ガスが
余分に必要となるからである。
In this case, it is desirable to supply the transport gas containing particles from the sub-pipe 2 to the reaction tube 1 in a vertically upward direction as described above; if it is supplied downward, the particle group will have an initial velocity, so the plasma space This is because, in order to extend the residence time, extra raw material gas is required to be supplied from the gas introduction pipe +3' at the lower end of the reaction tube 1.

また、第3図の装置は、第2図の装置において、反応管
1の外側に併設した副管2を反応管1の内部に配置した
ものである。
The apparatus shown in FIG. 3 is the same as the apparatus shown in FIG. 2, except that a sub-pipe 2 attached to the outside of the reaction tube 1 is arranged inside the reaction tube 1.

劉管2の下端のガス導入管13’より供給される輸送ガ
スは,副管2にも電界を与え、そこでもダイヤモンドの
析出を行う場合を除き、反応管1でのダイヤモンドの析
出と直接関係がないため、原理的には、特に種類は問わ
れない。例えば、安全で安価な窒素ガス等が最も一般的
である。しかし実際には輸送ガスと原料ガスの混合が避
けられないので、輸送ガスとして原料ガスと異なる種類
のものを使用する際は、第4図に示す装置が好適である
。これを第3図に示す装置と対比して説明すると、併設
した副管2の天井側は、反応管1の天井I4の上に配置
されたサイクロン3′にパイプによって連結され、サイ
クロン3′の下端より粒子が反応管1の天井14からパ
イプによって反応管1に入ることになり、また、第1図
の装置と同様に、反応管1よりの原料ガスを俳出すると
同時に、反応中上方より飛び出す粒子6を捉らえて反応
管1にもどすサイクロン3を備えることである。
The transport gas supplied from the gas introduction tube 13' at the lower end of the Liu tube 2 also applies an electric field to the sub tube 2, and unless diamond is deposited there as well, there is no direct relationship with the diamond deposition in the reaction tube 1. Since there is no such thing, in principle, the type does not matter. For example, the most common gas is nitrogen gas, which is safe and inexpensive. However, in practice, mixing of the transport gas and the raw material gas is unavoidable, so when using a different type of transport gas than the raw material gas, the apparatus shown in FIG. 4 is suitable. To explain this in comparison with the apparatus shown in FIG. 3, the ceiling side of the auxiliary pipe 2 is connected by a pipe to the cyclone 3' placed on the ceiling I4 of the reaction tube 1. Particles enter the reaction tube 1 from the lower end via a pipe from the ceiling 14 of the reaction tube 1, and, similarly to the apparatus shown in FIG. A cyclone 3 is provided to catch the particles 6 flying out and return them to the reaction tube 1.

このような構成を採ることによって、粒子を含む輸送ガ
スは、サイクロン3′で輸送ガスを分離して、粒子のみ
を再び反応管1の上部より反応管1内に送り込むことが
できる。
By adopting such a configuration, the transport gas containing particles can be separated by the cyclone 3', and only the particles can be sent into the reaction tube 1 from the upper part of the reaction tube 1 again.

なお、第2図の装置における副管2を設置する構成によ
れば、一つの副管に対して多数の反応管に粒子を供給す
る構成も容易に採ることができる。
In addition, according to the structure in which the sub-pipe 2 is installed in the apparatus shown in FIG. 2, it is possible to easily adopt a structure in which particles are supplied to a large number of reaction tubes from one sub-pipe.

゛)以上、主として本発明を実施する装置について述べ
たが、本発明の方法実施について最も重要な点はプラズ
マ空間内の粒子群濃度である。前述のように粒子群濃度
が濃いとプラズマは発生せず、反対に薄いとダイヤモン
ド析出の効率が悪い。プラズマ空間内での粒子群濃度は
原料ガスの種類、組成、系内の圧力にもよるが、体積で
20%以下であることが必要で、好ましくは5〜15%
程度である。
゛) Although the apparatus for carrying out the present invention has been mainly described above, the most important point in carrying out the method of the present invention is the concentration of particle groups in the plasma space. As mentioned above, if the concentration of particle groups is high, plasma will not be generated, and on the other hand, if the concentration of particle groups is low, the efficiency of diamond precipitation will be poor. The concentration of particles in the plasma space depends on the type and composition of the source gas, and the pressure in the system, but it needs to be 20% or less by volume, preferably 5 to 15%.
That's about it.

プラズマを発生する手段としては交流、又は直流電界を
用いることができるが、反応管中に電極を挿入すること
なく、プラズマを発生することができる30KHz〜5
0GHzの高周波、又はマイクロ波が好ましい。
Alternating current or direct current electric fields can be used as means for generating plasma, but 30 KHz to 5 kHz can generate plasma without inserting electrodes into the reaction tube.
A high frequency of 0 GHz or microwave is preferred.

原料ガスとしては、一般にダイヤモンドの気相成長に用
いられるものなら、特にその種類、組成は問わないが、
高粒子濃度で安定にプラズマを維持するために不活性ガ
スを加えることが好ましい。具体的にはH2, Ar,
 C■4の体積で1=1二〇.02の混合ガス等である
が、CO,C02l アルコール等炭素を含む化合物を
原料とすることができる。
The raw material gas may be of any type or composition, as long as it is generally used for diamond vapor phase growth.
It is preferable to add an inert gas to maintain stable plasma at a high particle concentration. Specifically, H2, Ar,
C ■ The volume of 4 is 1 = 120. 02 mixed gas, etc., but a compound containing carbon such as CO, CO2l alcohol, etc. can be used as a raw material.

粒子6、すなわち粒状基材もダイヤモンドで被覆可能な
物質であれば、何を用いてもよい。ダイヤモンドを基材
とした場合、最も結晶性がよく、又強度が高くなること
は当然であるが、目的により、SIC, AfN, S
l. W等を使用することができる。
The particles 6, ie, the granular base material, may be made of any material as long as it can be coated with diamond. It goes without saying that when diamond is used as the base material, it has the best crystallinity and the highest strength, but depending on the purpose, SIC, AfN, S
l. W etc. can be used.

以下、実施例により本発明の方法を具体的に説明する。Hereinafter, the method of the present invention will be specifically explained with reference to Examples.

実施例1 第2図の装置を使用した。石英製の反応管1の内径は4
0■冒、副管2の内径は20箇一である。副管2に平均
粒径50μ曹のダイヤモンド粒子を高さ40璽■に充填
した。
Example 1 The apparatus shown in FIG. 2 was used. The inner diameter of the quartz reaction tube 1 is 4
0. The inner diameter of the auxiliary pipe 2 is 20 pieces. The sub-pipe 2 was filled with diamond particles having an average particle diameter of 50 μm to a height of 40 μm.

反応管、コ11管の下端よりH2, Ar, CO4の
体積で1 : 1 : 0.02の混合ガスを各々IO
OSCCM,720SCCMで供給しながらサイクロン
3に連結した真空ボンブ4で系内の圧力を50Torr
に保ったところ、ダイヤモンド粒子群の副管→反応管→
副管の循環が起こり、又反応管中ではダイヤモンド群が
煙状となり、その降下速度も充分遅いようにうかがわれ
た。
A mixed gas of 1:1:0.02 by volume of H2, Ar, and CO4 was added to the bottom end of the reaction tube and Co-11 tube, respectively.
While supplying with OSCCM, 720SCCM, the pressure in the system was increased to 50 Torr using vacuum bomb 4 connected to cyclone 3.
When kept at
Circulation occurred in the sub-tube, and the diamond clusters became smoke-like in the reaction tube, and the rate of descent of the diamonds appeared to be sufficiently slow.

この状態において反応管に周波数2.450[lzのマ
イクロ波を出力500Wで与えながら24時間保持した
ところ、すべてのダイヤモンド粒子の粒径が100μ塵
近くとなり回収された。但し粒子の成長にあわせ、ガス
流量を増した。
When this state was maintained for 24 hours while applying microwaves with a frequency of 2.450 [lz and an output of 500 W to the reaction tube, the particle size of all the diamond particles became close to 100 microns and was recovered. However, the gas flow rate was increased as the particles grew.

実施例2 第4図の装置を使用した。反応管1の内径は45■−、
III管2の内径は20m閣である。副管に平均粒径1
00lmのSIC粒子を40mmの高さ充填した。
Example 2 The apparatus shown in FIG. 4 was used. The inner diameter of the reaction tube 1 is 45cm-,
The inner diameter of the III pipe 2 is 20 m. Average particle size 1 in sub pipe
00 lm SIC particles were filled to a height of 40 mm.

反応管下端より121 Ar+ C21150■の体積
で1:2: 0.04の混合ガスを5005CCMで、
副管の下端よりArを2500SCCMで供給しながら
、系内の圧力を75Torrに保ったところ、実施例1
と同じ< SIC群の循環が起こり、反応管内は煙状と
なった。
From the lower end of the reaction tube, a mixed gas of 1:2:0.04 with a volume of 121 Ar + C21150 cm was introduced at 5005 CCM.
Example 1 The pressure in the system was maintained at 75 Torr while supplying Ar at 2500 SCCM from the lower end of the sub pipe.
The same circulation of the SIC group occurred, and the inside of the reaction tube became smoky.

この状態において反応管に周波数2.450}lzs出
力800Wのマイクロ波を与えながら30時間保持した
。但し粒子の成長にあわせガス流量を増した。
In this state, microwaves with a frequency of 2.450}lzs and an output of 800 W were applied to the reaction tube for 30 hours. However, the gas flow rate was increased as the particles grew.

その結果、すべてのSIC粒子の周囲はダイヤモンドで
覆われ、その粒子径は最大+70β園、平均で140声
閣であった。
As a result, the periphery of all SIC particles was covered with diamonds, and the particle diameter was at most +70β and on average 140.

[発明の効果] 以上説明したように、本発明の方法によれば、比較的長
い時間、粒状基材群をプラズマ空間に置くことができ、
一度に多量の粒状ダイヤモンドを効率よく得ることがで
きる。
[Effects of the Invention] As explained above, according to the method of the present invention, a group of granular base materials can be placed in a plasma space for a relatively long time,
A large amount of granular diamond can be efficiently obtained at one time.

また、本発明の装置では、予め粒状基材群を充填できる
副管を反応管に併設し、反応管に対して、輸送速度を、
これに供給するガス速度をかえて供給することで、輸送
量を調節するこ七ができるとともに、反応管より半被覆
された粒状基材群を回収して再び反応管に輸送、供給す
る系を作っているので、収率高く、安定した粒状ダイヤ
モンド合成ができる。
In addition, in the apparatus of the present invention, an auxiliary pipe that can be filled with a group of granular base materials in advance is attached to the reaction tube, and the transport speed is adjusted to the reaction tube.
By changing the gas speed and supplying it, it is possible to adjust the transport amount, and also to create a system in which half-covered granular base materials are collected from the reaction tube and transported and supplied to the reaction tube again. This allows for stable granular diamond synthesis with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は、本発明を実施する
装置を概略図で示す。 第5図は従来のダイヤモンド合成を行う装置を概略的に
示す。 1・・・反応管、2・・・副管、3、3’・・・サイク
ロン、4・・・真空ポンプ、5・・・高周波、又はマイ
クロ波発生装置、6・・・粒状基材、7・・・板状基材
、8・・・支持台、9・・・プラズマ、10・・・粒子
供給器、II・・・バルブ、+2・・・分散板。 N 憧 寥4図
1, 2, 3 and 4 schematically depict apparatus for carrying out the invention. FIG. 5 schematically shows a conventional apparatus for synthesizing diamonds. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Sub-tube, 3, 3'... Cyclone, 4... Vacuum pump, 5... High frequency or microwave generator, 6... Granular base material, 7... Plate base material, 8... Support stand, 9... Plasma, 10... Particle supplier, II... Valve, +2... Dispersion plate. N Aspiration 4

Claims (2)

【特許請求の範囲】[Claims] (1)有機化合物と水素及び/又は酸素を含む混合ガス
を交流、又は直流の電界によってプラズマ化し、このプ
ラズマ化した空間内に分散・浮遊させた粒状基材上にダ
イヤモンドを析出させるダイヤモンド合成方法において
、重力降下する粒状基材群に、前記混合ガスを鉛直下方
より、該粒状基材群の全部が鉛直上方に反転輸送される
流速未満で供給することを特徴とする粒状ダイヤモンド
の合成方法。
(1) A diamond synthesis method in which a mixed gas containing an organic compound and hydrogen and/or oxygen is turned into plasma by an alternating current or direct current electric field, and diamond is deposited on a granular base material dispersed and suspended in the plasma-formed space. A method for synthesizing granular diamond, characterized in that the mixed gas is supplied from vertically below to a group of granular substrates falling by gravity at a flow rate lower than that at which all of the group of granular substrates is reversely transported vertically upward.
(2)反応管の内部に電界を発生させる手段と、該反応
管の上部より粒状基材群を供給する手段と、該反応管の
鉛直下方より上方に原料ガスを供給する手段と、該反応
管内のガス、粒状基材を分離し、前記粒状基材を反応管
下部にもどす手段と、下部よりのガス供給によって、内
部に充填した粒材基材群を前記反応管の上部に輸送する
とともに、前記反応管の下部より粒状基材群が回収でき
る副管を備えることを特徴とする粒状ダイヤモンドの合
成装置。
(2) means for generating an electric field inside the reaction tube; means for supplying a group of granular base materials from the upper part of the reaction tube; means for supplying raw material gas upward from the vertically downward direction of the reaction tube; A means for separating the gas and granular base material in the tube and returning the granular base material to the lower part of the reaction tube, and transporting the granular base material group filled inside to the upper part of the reaction tube by supplying gas from the lower part. . A granular diamond synthesis apparatus, comprising a sub-tube capable of collecting a granular base material group from the lower part of the reaction tube.
JP11263589A 1989-05-01 1989-05-01 Synthesizing method of granular diamond and device therefor Pending JPH02293395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11263589A JPH02293395A (en) 1989-05-01 1989-05-01 Synthesizing method of granular diamond and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11263589A JPH02293395A (en) 1989-05-01 1989-05-01 Synthesizing method of granular diamond and device therefor

Publications (1)

Publication Number Publication Date
JPH02293395A true JPH02293395A (en) 1990-12-04

Family

ID=14591661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11263589A Pending JPH02293395A (en) 1989-05-01 1989-05-01 Synthesizing method of granular diamond and device therefor

Country Status (1)

Country Link
JP (1) JPH02293395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122094A (en) * 1989-10-03 1991-05-24 Yasuyuki Takarada Method for vapor synthesis of fine diamond grain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216906A (en) * 1985-12-24 1987-09-24 住友電気工業株式会社 Composite powdery particle, composite body and manufacture
JPS6414196A (en) * 1987-03-30 1989-01-18 Kurisutaruumu Fluidized bed diamond grain growing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216906A (en) * 1985-12-24 1987-09-24 住友電気工業株式会社 Composite powdery particle, composite body and manufacture
JPS6414196A (en) * 1987-03-30 1989-01-18 Kurisutaruumu Fluidized bed diamond grain growing process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122094A (en) * 1989-10-03 1991-05-24 Yasuyuki Takarada Method for vapor synthesis of fine diamond grain

Similar Documents

Publication Publication Date Title
US4820587A (en) Polysilicon produced by a fluid bed process
US4883687A (en) Fluid bed process for producing polysilicon
US5346141A (en) Method for pulverizing silicon particles by fluid jet energy
US4606941A (en) Deposition metalizing bulk material by chemical vapor
US4207360A (en) Silicon seed production process
US4784840A (en) Polysilicon fluid bed process and product
JPH04500063A (en) Continuous melt replenishment system
JP2009161426A (en) Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2004531450A (en) Method for producing high-purity particulate silicon in a fluidized bed
JPS62242B2 (en)
US4881722A (en) Apparatus for producing superfine particle
JP2639505B2 (en) Synthesis method of granular diamond
US4262039A (en) Pyrolytic gas method of coating graphitic or ceramic articles with solids
JPH02293395A (en) Synthesizing method of granular diamond and device therefor
JP6219529B2 (en) Method for producing granular polysilicon
JPH06191818A (en) Production of polycrystal silicon
CN108296489A (en) A method of it is brilliant to prepare high temperature compound block
JPH06127916A (en) Production of spherical high-purity polycrystalline silicon
JPS605013A (en) Preparation of silicon powder and its device
JP2637134B2 (en) Synthesis method of vapor phase diamond
JP2002173394A (en) Method of producing diamond, plasma apparatus and method of producing diamond using the plasma apparatus
JPH0754006A (en) Production of coated semifine particle
JP2621977B2 (en) Method for producing powder for thermoelectric conversion material
JPH04224195A (en) Improved polysilicon and method therefor
JPH0441176Y2 (en)