JPH02292335A - Biaxially oriented thermoplastic resin film and its production - Google Patents

Biaxially oriented thermoplastic resin film and its production

Info

Publication number
JPH02292335A
JPH02292335A JP11299189A JP11299189A JPH02292335A JP H02292335 A JPH02292335 A JP H02292335A JP 11299189 A JP11299189 A JP 11299189A JP 11299189 A JP11299189 A JP 11299189A JP H02292335 A JPH02292335 A JP H02292335A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
biaxially oriented
resin film
oriented thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11299189A
Other languages
Japanese (ja)
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Katsuya Toyoda
豊田 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11299189A priority Critical patent/JPH02292335A/en
Publication of JPH02292335A publication Critical patent/JPH02292335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain the subject film excellent in scratch resistance and dubbing resistance by specifying the state of fine ruggedness present on at least one surface of a film. CONSTITUTION:A thermoplastic resin (e.g. polyethylene terephthalate) is, for example, biaxially oriented to form a film, and fine ruggednesses are formed on at least one surface of this film desirably by irradiation with laser beams so that the height of these ruggednesses may be 0.01 to 2mum, the distance between the peaks may be 10mum or below, and that these ruggednesses may be composed of those substantially not ascribable to inert particles.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向熱可塑性樹脂フィルムおよびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a biaxially oriented thermoplastic resin film and a method for producing the same.

[従来の技術] 二軸配向熱可塑性樹脂フィルムとしては少なくとも片面
の走行性が改良されたフィルムが知られている(例えば
、特開昭59−111818号公報等)。
[Prior Art] As a biaxially oriented thermoplastic resin film, a film with improved runnability on at least one side is known (for example, JP-A-59-111818, etc.).

[発明が解決しようとする課題] しかしながら、上記従来の二軸配向熱可塑性樹脂フィル
ムでは、表面凹凸がボリマー中に含有する不活性粒子に
起因するため、フィルム表面に存在する微細な凹凸の高
さと間隔を最適化することが難しく、そのために、例え
ば、磁気媒体用途における磁性層塗布、カレンダー工程
、あるいは、できたビデオテープ等をダビングしてソフ
トテープ等を製造する工程等の工程速度の増大に伴い、
接触するロールやガイドでフイルム表面に傷がつくとい
う欠点があった。また、従来のものでは、上記ダビング
時の画質低下のために、ビデオテープにした時の画質、
すなわち、S/N (シグナル/ノイズ比)も不十分と
いう欠点があった。
[Problems to be Solved by the Invention] However, in the above conventional biaxially oriented thermoplastic resin film, the surface irregularities are caused by inert particles contained in the polymer, so the height of the fine irregularities existing on the film surface and It is difficult to optimize the spacing, which makes it difficult to increase the process speed, for example, in magnetic layer coating in magnetic media applications, in the calendering process, or in the process of dubbing finished video tapes to produce soft tapes, etc. Accompanied by
The drawback was that the film surface was scratched by the rolls and guides that came into contact with it. In addition, with conventional methods, due to the above-mentioned image quality deterioration during dubbing, the image quality when converted to videotape,
That is, there was a drawback that the S/N (signal/noise ratio) was also insufficient.

本発明はかかる課題を解決し、特に高速工程でフィルム
に傷がつきに<<(以下耐スクラッチ性に優れるという
)、シかもダビング時の画質低下の少ない(以下耐ダビ
ング性に優れるという)二軸配向熱可塑性樹脂フィルム
及びその製造方法を提供することを目的とする。
The present invention has solved these problems, and has two types of film that are particularly resistant to scratches in high-speed processes (hereinafter referred to as "excellent scratch resistance") and have less deterioration in image quality during dubbing (hereinafter referred to as "excellent dubbing resistance"). An object of the present invention is to provide an axially oriented thermoplastic resin film and a method for manufacturing the same.

[課題を解決するための手段] 本発明は、(1)少なくとも片面のフイルム表面に存在
する微細な凹凸の高さが0.01〜2μm1頂と頂の間
隔が10μm以下であり、かつ該凹凸が実質的に不活性
粒子に起因しない凹凸より成ることを特徴とする二軸配
向熱可塑性樹脂フィルム、(2)レーザー光を照射して
、少なくとも片面のフィルム表面に微細な凹凸を形成す
ることを特徴とする上記(1)記載の二軸配向熱可塑性
樹脂フィルl・の製造方法、(3)レーザー光を照射し
て、少なくとも片面のフィルム表面に微細な凹凸を形成
した後、少なくとも一軸方向に延伸することを特徴とす
る上記(1)記載の二軸配向熱可塑性樹脂フィルムの製
造方法、(4)レーザー光の照射を大気中雰囲気下で行
なうことを特徴とする上記■または(3)記載の二軸配
向熱可塑性樹脂フィルムの製造方法、(5)照射するレ
ーザー光の波長が150〜700nmであることを特徴
とする上記■〜(4)のいずれかに記載の二軸配向熱可
塑性樹脂フィルムの製造方法、(6)照射するレーザー
光のエネルギー密度が0.02〜1 0.  O J/
am2であることを特徴とする上記(2)〜(5)のい
ずれかに記載の二軸配向熱可塑性樹脂フィルムの製造方
法に関するものである。
[Means for Solving the Problems] The present invention provides that (1) the height of the fine irregularities present on at least one side of the film surface is 0.01 to 2 μm, and the distance between the peaks is 10 μm or less; A biaxially oriented thermoplastic resin film characterized in that the film consists of irregularities substantially not caused by inert particles, (2) forming fine irregularities on at least one surface of the film by irradiating with laser light; A method for producing a biaxially oriented thermoplastic resin film l described in (1) above, characterized by (3) irradiating with laser light to form fine irregularities on at least one side of the film surface, and then at least in one axial direction. (4) The method for producing a biaxially oriented thermoplastic resin film as described in (1) above, characterized in that the film is stretched, and (4) as described in (2) or (3) above, characterized in that the irradiation with laser light is carried out in the air. (5) The biaxially oriented thermoplastic resin according to any one of (4) above, characterized in that the wavelength of the irradiated laser light is 150 to 700 nm. Film manufacturing method, (6) Energy density of irradiated laser light is 0.02 to 10. OJ/
The present invention relates to a method for producing a biaxially oriented thermoplastic resin film according to any one of (2) to (5) above, characterized in that the film is am2.

本発明を構成する熱可塑性樹脂はポリエステル、ポリオ
レフィン、ボリアミド、ポリフエニレンスルフィド等フ
ィルム成形性を有するものであれば特に限定されないが
、特にポリエステル、なかでもエチレンテレフタレート
、エチレンーα,β−ビス(2−クロロフエノキシ)エ
タン−4,4′ジカルボキシレート、エチレン−2.6
−ナフタレート単位から選ばれた少なくとも一種の構造
単位を主要構成成分とするのが望ましい。但し、本発明
を阻害しない範囲内、好ましくは15モル%以内であれ
ば他成分が共重合されていてもよい。
The thermoplastic resin constituting the present invention is not particularly limited as long as it has film formability, such as polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but in particular polyester, especially ethylene terephthalate, ethylene-α,β-bis(2 -chlorophenoxy)ethane-4,4'dicarboxylate, ethylene-2.6
- It is desirable that the main constituent is at least one structural unit selected from naphthalate units. However, other components may be copolymerized within a range that does not impede the present invention, preferably within 15 mol%.

また、エチレンテレフタレートを主要構成成分とするポ
リエステルの場合に、耐ダビング性がより一層良好とな
るので特に望ましい。
Furthermore, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better dubbing resistance.

本発明のフィルムは、上記組成物を主要成分とするが、
本発明の目的を阻害しない範囲内で、他種ポリマをブレ
ンドしてもよいし、また酸化防止剤、熱安定剤、滑剤、
紫外線吸収剤、核生成剤等の無機または有機添加剤、ま
たは不活性微粒子が、通常添加される程度添加されてい
てもよい。本発明は上記組成物を二軸配向せしめたフイ
ルムであって、その配向の程度を示す厚さ方向の屈折率
比は特に限定されないが、0.935〜0.970の範
囲である場合に、耐スクラッチ性、耐ダビング性がより
一層良好となるので特に望ましい。
The film of the present invention has the above composition as a main component, but
Other types of polymers may be blended within the range that does not impede the purpose of the present invention, and antioxidants, heat stabilizers, lubricants,
Inorganic or organic additives such as ultraviolet absorbers and nucleating agents, or inert fine particles may be added to the extent that they are normally added. The present invention provides a film in which the above composition is biaxially oriented, and the refractive index ratio in the thickness direction indicating the degree of orientation is not particularly limited, but when it is in the range of 0.935 to 0.970, This is particularly desirable since scratch resistance and dubbing resistance are further improved.

本発明のフィルムは、耐スクラッチ性、耐ダビング性の
点で、その少なくとも片面に存在する微細な凹凸の高さ
が0.01〜2μm1頂と頂の間隔が10μm以下であ
ることが必要である。凹凸の高さは、より好ましくは0
.02〜1μm1さらに好ましくは0.05〜0.5μ
mである。凹凸の高さがこの範囲より高いと耐ダビング
性が満足されず、この範囲より低いと耐スクラッチ性が
満足できない。また、頂と頂の間隔は、より好ましくは
5μm以下、さらに好ましくは2μm以下である。その
製造上の限界はおよそ0.1μmである。頂と頂の間隔
がこの範囲より大きいと耐スクラッチ性、耐ダビング性
が満足されない。
In terms of scratch resistance and dubbing resistance, the film of the present invention requires that the height of the fine irregularities present on at least one side of the film is 0.01 to 2 μm, and the distance between the peaks is 10 μm or less. . The height of the unevenness is more preferably 0.
.. 02-1μm1 More preferably 0.05-0.5μm
It is m. If the height of the unevenness is higher than this range, dubbing resistance will not be satisfied, and if it is lower than this range, scratch resistance will not be satisfied. Further, the distance between the peaks is more preferably 5 μm or less, and even more preferably 2 μm or less. Its manufacturing limit is approximately 0.1 μm. If the distance between the peaks is larger than this range, scratch resistance and dubbing resistance will not be satisfied.

さらに、本発明のフイルムは、上記した微細な凹凸が実
質的に不活性粒子に起因しない凹凸より成ることが必要
である。フィルム表面の微細な凹凸が、含有する不活性
粒子に起因するものか否かは、該フィルム断面の電子顕
微鏡写真(5 0 0 0〜40000倍)により判定
しうる。実質的に不活性粒子に起因しない凹凸より成る
とは、上記電子顕微鏡写真による判定で、該フィルム表
面に存在する微細な凹凸における不活性粒子に起因する
凹凸の占める割合が20%以下、好ましくは10%以下
であることを意味する。不活性粒子に起因する凹凸が2
0%を越えると、耐スクラッチ性、耐ダビング性を満足
することはできない。
Further, in the film of the present invention, it is necessary that the above-mentioned fine irregularities consist of irregularities that are not substantially caused by inert particles. Whether or not the fine irregularities on the film surface are caused by the inert particles contained can be determined by an electron micrograph (50,000 to 40,000 times) of a cross section of the film. Consisting of irregularities that are not substantially caused by inert particles means that, as determined by the above-mentioned electron micrograph, the ratio of irregularities caused by inert particles to the fine irregularities existing on the film surface is 20% or less, preferably This means 10% or less. The unevenness caused by inert particles is 2
If it exceeds 0%, scratch resistance and dubbing resistance cannot be satisfied.

また、本発明のフィルムは耐スクラッチ性、耐ダビング
性の点で、熱可塑性樹脂がポリエステルであり、該凹凸
を有する面の全反射ラマン結晶化指数が15〜2 5 
cm−’であることが望ましい。より望ましくは全反射
ラマン結晶化指数が17〜24 cm−’、さらに望ま
しくは全反射ラマン結晶化指数が18〜2 4 cm−
1である。
Furthermore, in terms of scratch resistance and dubbing resistance, the thermoplastic resin of the film of the present invention is polyester, and the total reflection Raman crystallization index of the surface having the unevenness is 15 to 25.
It is desirable that it is cm-'. More preferably, the total reflection Raman crystallization index is 17 to 24 cm, and even more preferably, the total reflection Raman crystallization index is 18 to 24 cm.
It is 1.

本発明のフィルムのヤング率は特に限定されないが、長
手方向、幅方向のヤング率が共に400kg/mm2以
上である場合に耐ダビング性がより一層良好となるので
特に望ましい。さらに、幅方向のヤング率が長手方向の
ヤング率より1 0 0 kg/mm2以上高い場合に
耐ダビング性がより一層良好となるので特に望ましい。
Although the Young's modulus of the film of the present invention is not particularly limited, it is particularly desirable that the Young's modulus in both the longitudinal direction and the width direction be 400 kg/mm 2 or more, since the dubbing resistance will be even better. Furthermore, it is particularly desirable that the Young's modulus in the width direction is 100 kg/mm2 or more higher than the Young's modulus in the longitudinal direction, since the dubbing resistance will be even better.

また、フィルム幅方向の屈折率ntoが1.655〜1
.700、好ましくは1.675〜1.700の範囲の
場合に耐スクラッチ性、耐ダビング性がより一層良好と
なるので特に望ましい。
In addition, the refractive index nto in the film width direction is 1.655 to 1.
.. 700, preferably in the range of 1.675 to 1.700, which is particularly desirable because scratch resistance and dubbing resistance become even better.

次に、本発明のフィルムの製造方法について述べる。Next, a method for manufacturing the film of the present invention will be described.

本発明の熱可塑性樹脂を公知の方法で重合し、得られた
熱可塑性樹脂を溶融押出し機に供給し、スリット状の口
金からシート状に吐出し冷却固化せしめて未延伸フィル
ムを作る。次に、この未延伸フィルムを二軸延伸し二軸
配向させる。延伸方法としては、逐次二軸延伸法、また
は同時二軸延伸法を用いることができる。この場合の延
伸条件としては、まず長手方向に3〜5倍、次に幅方向
に3〜5倍延伸を行ない、縦横の延伸倍率の積が10倍
以上とするのが本発明の表面パラメータを得るのに有効
である。長手方向延伸の後、幅方向に延伸を行ない、さ
らに必要に応じて、長手方向の再延伸を行なう方法を用
いることができる。次に、延伸フィルムを熱処理する。
The thermoplastic resin of the present invention is polymerized by a known method, and the resulting thermoplastic resin is supplied to a melt extruder and extruded in the form of a sheet from a slit-shaped die and cooled and solidified to produce an unstretched film. Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. In this case, the stretching conditions include first stretching 3 to 5 times in the longitudinal direction and then 3 to 5 times in the width direction, so that the product of the longitudinal and lateral stretching ratios is 10 times or more. It is effective for obtaining After stretching in the longitudinal direction, stretching is performed in the width direction, and if necessary, a method of re-stretching in the longitudinal direction can be used. Next, the stretched film is heat treated.

不活性粒子に起因しない凹凸を得るには、例えば、レー
ザー光あるいはX線の照射、エンボスロール、サンドブ
ラスト処理等の方法があるが、本発明の表面形状を有す
るフィルムを得るにはレーザー光によるのが好ましい。
To obtain irregularities that are not caused by inert particles, there are methods such as irradiation with laser light or X-rays, embossing rolls, and sandblasting, but in order to obtain a film having the surface shape of the present invention, methods using laser light or is preferred.

フィルム表面の少なくとも片面にレーザー光を照射する
ことにより、フィルム表面に微細な凹凸を形成すること
ができ、本発明範囲内の表面パラメータの二軸配向熱可
塑性樹脂フィルムを得るのに特に有効である。その場合
、室温において大気中、減圧下( 1 0 −’Tor
r)又は加圧下( N 2ガス、5 kg/cm2) 
、なかでも大気中の雰囲気下で、特に波長150〜7 
0 0 nm,特にエネルギー密度0.02〜1 0.
  O J/cm2のレーザー光を照射するのが特に有
効である。
By irradiating at least one side of the film surface with laser light, fine irregularities can be formed on the film surface, which is particularly effective for obtaining a biaxially oriented thermoplastic resin film with surface parameters within the range of the present invention. . In that case, at room temperature in the atmosphere under reduced pressure (10-'Tor
r) or under pressure (N2 gas, 5 kg/cm2)
, especially in the atmosphere, especially at wavelengths of 150 to 7.
00 nm, especially energy density 0.02 to 10.
Irradiation with a laser beam of OJ/cm2 is particularly effective.

なお、レーザー光の照射は、上記の二軸延伸後に行なう
場合の他、熱可塑性樹脂の種類、延伸条件、熱処理条件
等により延伸前、あるいは一軸方向に延伸後に行なうこ
とも有効である。
In addition to the case where the laser beam irradiation is performed after the biaxial stretching described above, it is also effective to perform the irradiation with the laser light before the stretching or after the stretching in the uniaxial direction, depending on the type of thermoplastic resin, stretching conditions, heat treatment conditions, etc.

[特性の測定方法並びに効果の評価方法]本発明の特性
値の測定方法、並びに効果の評価.方法は次のとおりで
ある。
[Method for measuring characteristics and evaluating effects] Method for measuring characteristic values and evaluating effects of the present invention. The method is as follows.

(1)粒子の平均粒径 粒子含有フィルムをエッチング処理し、粒子表層ポリマ
を除去した後、粒子を露出させ、走査型電子顕微鏡下2
万倍で観察し粒子径を測定した。
(1) Average particle size of the particles After etching the particle-containing film and removing the particle surface polymer, the particles were exposed and exposed under a scanning electron microscope.
The particle size was measured by observing at a magnification of 10,000 times.

粒子の平均粒径はフィルム表面1 mm2について求め
た平均である。
The average particle size of the particles is the average determined for 1 mm2 of the film surface.

■ 粒子の含有量 熱可塑性樹脂に、該熱可塑性樹脂を溶解し含有粒子を溶
解しない溶媒を加え加熱した後、日立工機製超遠心機5
5P−72を用い遠心分離を行ない、得られた粒子を真
空乾燥する。その粒子をDSC(示差走査熱量計)にて
測定した時、ポリマに相当する溶解ピークが認められる
場合にはさらに溶媒を加え、加熱後再び遠心分離操作を
行なう。
■ Particle content A solvent that dissolves the thermoplastic resin but does not dissolve the contained particles is added to the thermoplastic resin, heated, and then heated using a Hitachi Koki ultracentrifuge 5.
Centrifugation is performed using 5P-72, and the obtained particles are vacuum dried. When the particles are measured using a DSC (differential scanning calorimeter), if a dissolution peak corresponding to the polymer is observed, further solvent is added, and after heating, the centrifugation operation is performed again.

溶解ピークが認められなくなった時、粒子を析出粒子と
する。通常遠心分離操作は2回で足りる。
When the dissolution peak is no longer observed, the particles are considered to be precipitated particles. Normally, two centrifugation operations are sufficient.

かくして分離された粒子の全体重量に対する比率(重量
%)をもって含有量とした。
The content was defined as the ratio (% by weight) of the thus separated particles to the total weight.

(3)表面凹凸の高さ及び間隔 2検出器方式の走査型電子顕微鏡(エリオニクス■製E
SM−3200)でフィルム表面を走査し、断面測定装
置(エリオニクス■製PMS−1)、画像処理装置(カ
ールツァイス■製I B A S 2000)によりフ
ィルム表面の高さ測定値を得る。これをもとに、凹凸の
高さ及び頂と頂の間隔をフィルム表面1mm2について
求め平均した。
(3) Surface unevenness height and spacing Two-detector scanning electron microscope (Elionix E)
The film surface is scanned using a cross-section measuring device (PMS-1 manufactured by Elionix ■) and an image processing device (IB AS 2000 manufactured by Carl Zeiss ■) to obtain a height measurement value of the film surface. Based on this, the height of the unevenness and the distance between the peaks and peaks were determined and averaged for 1 mm2 of the film surface.

(4)  ヤング率 J I S−Z−1702に準拠し、インストロンタイ
プの引っ張り試験機を用いて、25℃相対湿度65%に
て測定した。
(4) Young's Modulus Measured at 25° C. and 65% relative humidity using an Instron type tensile tester in accordance with JIS-Z-1702.

(5)表面の全反射ラマン結晶化指数 Jobin−Yvon社製Ramanor U−100
0ラマンシステムにより、全反射ラマンスペクトルを測
定し、カルボニル基の伸縮振動である1730cm−”
の半価幅をもって表面の全反射ラマン結晶化指数とした
。測定深さは表面から500〜IOOOAであり、測定
条件は次のとおりである。
(5) Total reflection Raman crystallization index of the surface Ramanor U-100 manufactured by Jobin-Yvon
The total reflection Raman spectrum was measured using the 0 Raman system, and 1730 cm-" which is the stretching vibration of the carbonyl group was measured.
The half width of the surface was taken as the total reflection Raman crystallization index of the surface. The measurement depth was 500 to IOOOA from the surface, and the measurement conditions were as follows.

■光源 アルゴンイオンレーザー(5, 145人)■試料のセ
ッティング レーザー偏光方向(S偏光)とフイルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着させ
、レーザーのプリズムへの入射角(フィルム厚さ方向と
の角度)は60゜ とした。
■Light source argon ion laser (5, 145 people) ■Setting the sample Press the film surface onto a total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and calculate the incident angle of the laser to the prism ( The angle with respect to the film thickness direction was 60°.

■検出器 PM : RCA31034/Photon Coun
ting System(flamama!su C1
230)  (supply 1,600V)■測定条
件 SLI7        1, 000μmLASER
       100mW GATE TIME     l. OsecSCAN
 SPEED     12cm”/minSAMPL
ING  INTERVAL  O.2cm””REP
EAT  TIME      6(6)屈折率、屈折
率比 ナトリウムD線(波長5 8 9 nm)を光源として
アッペ屈折率計を用いて20℃相対湿度60%にて測定
した。なお、マウント液にはイオウーヨウ化メチレン溶
液を用いた。また、二軸配向フィルムの厚さ方向の屈折
率(Aとする)及び溶融プレス後10℃の水中へ急冷し
て作った無配向(アモルファス)フィルムの厚さ方向の
屈折率(Bとする)を測定し、A/Bをもって厚さ方向
の屈折率比とした。
■Detector PM: RCA31034/Photon Coun
ting System(flamama!su C1
230) (supply 1,600V) ■Measurement conditions SLI7 1,000μm LASER
100mW GATE TIME l. OsecSCAN
SPEED 12cm”/minSAMPL
ING INTERVAL O. 2cm””REP
EAT TIME 6 (6) Refractive index, refractive index ratio Measured at 20° C. and 60% relative humidity using an Appe refractometer using sodium D line (wavelength 589 nm) as a light source. Note that a sulfur-methylene iodide solution was used as the mounting solution. In addition, the refractive index in the thickness direction of a biaxially oriented film (denoted as A) and the refractive index in the thickness direction of a non-oriented (amorphous) film made by melt-pressing and quenching in 10°C water (denoted as B) was measured, and A/B was defined as the refractive index ratio in the thickness direction.

■ 耐ダビング性 フィルムに下記組成の磁性塗料をグラビヤロールにより
塗布し、、.磁気配向させ乾燥させる。さらに、小型テ
ストカレンダー装置(スチールロール/ナイロンロール
、5段)で、温度:70℃、線圧: 2 0 0kg/
cmでカレンダー処理した後、70℃で48時間キュア
リングする。そのテープ原反を1/2インチにスリット
し、パンケーキを作成した。このパンケーキから長さ2
50mの長さをVTRカセットに組み込みVTRカセッ
トテープとした。
■ Apply magnetic paint with the composition below to the dubbing-resistant film using a gravure roll. Magnetically align and dry. Furthermore, using a small test calender device (steel roll/nylon roll, 5 stages), temperature: 70°C, linear pressure: 200 kg/
After calendering at 70° C. for 48 hours. The original tape was slit into 1/2 inch pieces to make pancakes. 2 lengths from this pancake
A length of 50 m was incorporated into a VTR cassette to make a VTR cassette tape.

(磁性塗料の組成)          重量部・co
含有酸化鉄(BET値50m2/g)・塩化ビニル/酢
酸ビニル共重合体 :10・ポリウレタンエラストマ 
    :10・ポリイソシアネート        
  5●レシチン               1・
メチルエチルケトン       =75・メチルイソ
ブチルケトン     :75●トルエン      
      =75●カーボンブラック       
    2・ラウリン酸           :1.
5このテープに家庭用VTRを用いてシバソク製のテレ
ビ試験波形発生器(TG7/U706)により100%
クロマ信号を記録し、その再生信号からシバソク製カラ
ービデオノイズ測定器(925D/1)でクロマS/N
を測定しAとした。また上記と同じ信号を記録したテー
プのパンケーキを磁界転写方式のビデオソフト高速プリ
ントシステム(例えばソニーマグネスケール■製のスプ
リンタ)を用いて同じ種類のテープ(未記録)のパンケ
ーキへダビングした後のテープのクロマS/Nを上記と
同様にして測定し、Bとした。このダビングによるクロ
マS/Nの低下(A−B)が4.0dB未満の場合は耐
ダビング性良好、4.0dB以上の場合は耐ダビング性
不良と判定した。
(Composition of magnetic paint) Part by weight/co
Contains iron oxide (BET value 50m2/g), vinyl chloride/vinyl acetate copolymer: 10, polyurethane elastomer
:10・Polyisocyanate
5●Lecithin 1.
Methyl ethyl ketone = 75・Methyl isobutyl ketone: 75●Toluene
=75●Carbon black
2. Lauric acid: 1.
5 This tape was 100% tested using a Shibasoku TV test waveform generator (TG7/U706) using a home VTR.
Record the chroma signal and check the chroma S/N from the playback signal using a Shibasoku color video noise meter (925D/1).
was measured and designated as A. In addition, a pancake from a tape on which the same signal as above was recorded was dubbed onto a pancake from the same type of tape (unrecorded) using a magnetic field transfer type video software high-speed print system (for example, Sony Magnescale's Sprinter). The chroma S/N of the subsequent tape was measured in the same manner as above and designated as B. When the chroma S/N reduction (A-B) due to dubbing was less than 4.0 dB, it was determined that the dubbing resistance was good, and when it was 4.0 dB or more, it was determined that the dubbing resistance was poor.

(8)耐スクラッチ性 20℃相対湿度60%の雰囲気下で、外径6mmφの固
定軸(表面粗度0.28)に1/2インチ幅のテープ状
フィルムを角度θ=πradで接触させ、入テンション
100gで速度5 0 0 m/n+in(− 8 3
 3 cm/s)で10回走行させた後のフィルム表面
をアルミ蒸着して、スクラッチ傷の本数、幅の大きさ及
び白粉の発生状態を微分干渉顕微鏡で観察した。全くス
クラッチ傷が見られずかつ白粉の発生のないものを耐ス
クラッチ性:5、スクラッチ傷が3本/cm未満でかつ
白粉の発生がほとんどないものを耐スクラッチ性:4、
スクラッチ傷が3〜10本/cmで幅の大きいものもあ
り、かつ白粉がかなり発生しているものを耐スクラッチ
性=3、スクラッチ傷が10本/cm以上で幅も大きく
かつ白粉が著しく発生しているものを耐スクラッチ性=
2、それ以外を耐スクラッチ性=1と判定した。耐スク
ラッチ性が5または4であれば実用上問題なく使用でき
る。
(8) Scratch resistance In an atmosphere of 20°C and 60% relative humidity, a 1/2 inch wide tape-like film is brought into contact with a fixed shaft (surface roughness 0.28) having an outer diameter of 6 mmφ at an angle θ = πrad, At a tension of 100g, the speed is 500 m/n+in (-83
After running 10 times at a speed of 3 cm/s), aluminum was deposited on the surface of the film, and the number and width of scratches and the state of white powder generation were observed using a differential interference microscope. Scratch resistance: 5 if there are no scratches and no white powder generation; Scratch resistance: 4 if there are less than 3 scratches/cm and almost no white powder generation.
Scratch resistance = 3 for scratches with 3 to 10 scratches/cm, large width, and a large amount of white powder, and scratch resistance = 3, scratches of 10 scratches/cm or more, large width, and a large amount of white powder. Scratch resistance =
2. Otherwise, scratch resistance was determined to be 1. If the scratch resistance is 5 or 4, it can be used practically without any problem.

[実施例] 本発明を実施例、比較例に基づいて説明する。[Example] The present invention will be explained based on Examples and Comparative Examples.

実施例1 常法によりエステル交換反応を行ない、重合して極限粘
度0.62のポリエチレンテレフタレートペレットを得
た。これを180℃で6時間真空乾燥した後、押出機に
供給し、T型口金からシート状に吐出し、冷却固化せし
めて未延伸フィルムを作った。この未延伸シートを長手
方向にロール間のニップにより90℃で3.8倍延伸し
た。延伸速度の平均は12, 000%/minであっ
た。この一軸延伸フィルムをステン夕を用いて延伸速度
4,500%/min, 1 0 0℃で幅方向に4.
5倍延伸した。
Example 1 A transesterification reaction was carried out in a conventional manner, and polyethylene terephthalate pellets having an intrinsic viscosity of 0.62 were obtained by polymerization. After vacuum drying this at 180° C. for 6 hours, it was supplied to an extruder and discharged in a sheet form from a T-shaped nozzle, and solidified by cooling to produce an unstretched film. This unstretched sheet was stretched 3.8 times in the longitudinal direction at 90° C. using a nip between rolls. The average drawing speed was 12,000%/min. This uniaxially stretched film was stretched in the width direction at a stretching rate of 4,500%/min and 100°C using a stencil.
It was stretched 5 times.

次いで、このフィルムを冷却することなく、そのまま熱
処理ゾーンへ導き、210℃で10秒間熱固定し、厚さ
15μmの二軸配向熱可塑性樹脂フィルムを得た。
Next, this film was directly introduced into a heat treatment zone without being cooled and heat-set at 210° C. for 10 seconds to obtain a biaxially oriented thermoplastic resin film with a thickness of 15 μm.

次に、このフィルムに室温、大気中でXeCI(308
nm)レーザー(Lambda Ph7sik社製EM
G201、102MSC)を照射した。この場合、石英
製の凸レンズを用い照射光のエネルギー密度を0.5J
/cm2とし、表面にランダムな凹凸を持つ二軸配向熱
可塑性樹脂フィルムを得た。
Next, this film was coated with XeCI (308
nm) laser (EM manufactured by Lambda Ph7sik)
G201, 102 MSC) were irradiated. In this case, a convex lens made of quartz is used to reduce the energy density of the irradiation light to 0.5J.
/cm2, to obtain a biaxially oriented thermoplastic resin film having random irregularities on the surface.

実施例2〜4 実施例1の条件の中で、延伸条件、処理条件及び照射す
る照射光の波長、エネルギー密度を種々変更することに
より、特性の異なるサンプルを作った。
Examples 2 to 4 Samples with different characteristics were made by variously changing the stretching conditions, processing conditions, wavelength of irradiation light, and energy density under the conditions of Example 1.

これらのフィルムの評価結果をまとめて第1表に示した
。それらから、フィルムの表面パラメータが本発明範囲
内の場合は耐スクラッチ性、耐ダビング性を両立するフ
ィルムが得られることがわかる。
The evaluation results of these films are summarized in Table 1. These results show that when the surface parameters of the film are within the range of the present invention, a film having both scratch resistance and dubbing resistance can be obtained.

比較例1 粒子として、平均粒径0.5μmの炭酸カルシウムを含
有するエチレングリコールスラリーを調製した。そのス
ラリーを常法によりエステル交換反応を行ない重合して
、粒子を1重量%含有する極限粘度0.60のポリエチ
レンテレフタレートの粒子マスタペレットを得た。これ
を実質的に粒子を含有しないポリエチレンテレフタレー
トと混合し、粒子の含有量が0.  3重量%となるよ
うにし180℃、6時間真空乾燥した後、押出し機に供
給して280℃で溶融押出し、フィルターを経由してT
型口金からシート状に吐出した。この溶融シートを表面
温度55℃の冷却ドラムに巻き付けて、冷却固化せしめ
て未延伸シートを作った。
Comparative Example 1 An ethylene glycol slurry containing calcium carbonate having an average particle size of 0.5 μm was prepared as particles. The slurry was subjected to transesterification and polymerization in a conventional manner to obtain particle master pellets of polyethylene terephthalate containing 1% by weight of particles and having an intrinsic viscosity of 0.60. This is mixed with substantially particle-free polyethylene terephthalate, so that the particle content is 0. After vacuum drying at 180°C for 6 hours to give a concentration of 3% by weight, it was fed to an extruder and melt-extruded at 280°C, passed through a filter and then
It was discharged in a sheet form from the mold nozzle. This molten sheet was wound around a cooling drum with a surface temperature of 55°C, and cooled and solidified to produce an unstretched sheet.

この未延伸シートを長手方向に85℃で3.4倍延伸し
た。この延伸はロール間の周速差で行なった。延伸速度
の平均は10, 000%/minであった。
This unstretched sheet was stretched 3.4 times in the longitudinal direction at 85°C. This stretching was performed using a difference in circumferential speed between the rolls. The average drawing speed was 10,000%/min.

この一軸延伸フィルムをステン夕を用いて延伸速度3,
 000%/min, 1 0 0℃で幅方向に3.6
倍延伸した。次いで、このフィルムを冷却することなく
、そのまま熱処理ゾーンへ導き、2lO℃で10秒間熱
固定し厚さ15μmの二軸配向熱可塑性樹脂フィルムを
得た。
This uniaxially stretched film was stretched at a stretching speed of 3,
000%/min, 3.6 in the width direction at 100℃
Stretched twice. Next, this film was directly introduced into a heat treatment zone without being cooled and heat-set at 210° C. for 10 seconds to obtain a biaxially oriented thermoplastic resin film having a thickness of 15 μm.

比較例2〜4 比較例1の諸条件の中で、添加する粒子の種類、平均粒
径、添加量及び延伸条件、処理条件を変更することによ
り、特性の異なるサンプルを作った。
Comparative Examples 2 to 4 Samples with different characteristics were made by changing the types of particles added, average particle size, amount added, stretching conditions, and processing conditions under the conditions of Comparative Example 1.

これらのフィルムの評価結果をまとめて第1表に示した
。それらから、フィルムの表面パラメータが本発明範囲
内でない場合は耐スクラッチ性、耐ダビング性を両立す
るフィルムが得られないことがわかる。
The evaluation results of these films are summarized in Table 1. From these results, it can be seen that if the surface parameters of the film are not within the range of the present invention, a film having both scratch resistance and dubbing resistance cannot be obtained.

[発明の効果] 本発明は表面形態を特定したので従来の熱可塑性フィル
ムに比べて、耐スクラッチ性、耐ダビング性に極めて優
れたフィルムが得られた。これはさらにまた、今後の磁
気記録媒体の高品質化のための耐摩耗性、高出力化にも
対応できるものである。
[Effects of the Invention] Since the present invention specifies the surface morphology, a film with extremely excellent scratch resistance and dubbing resistance compared to conventional thermoplastic films was obtained. Furthermore, this will also be compatible with the wear resistance and high output required to improve the quality of magnetic recording media in the future.

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも片面のフィルム表面に存在する微細な
凹凸の高さが0.01〜2μm、頂と頂の間隔が10μ
m以下であり、かつ該凹凸が実質的に不活性粒子に起因
しない凹凸より成ることを特徴とする二軸配向熱可塑性
樹脂フィルム。
(1) The height of the fine irregularities existing on at least one side of the film surface is 0.01 to 2 μm, and the distance between the peaks is 10 μm.
A biaxially oriented thermoplastic resin film, characterized in that the roughness is not more than m, and the roughness consists of roughness that is not substantially caused by inert particles.
(2)レーザー光を照射して、少なくとも片面のフィル
ム表面に微細な凹凸を形成することを特徴とする請求項
1記載の二軸配向熱可塑性樹脂フィルムの製造方法。
(2) The method for producing a biaxially oriented thermoplastic resin film according to claim 1, characterized in that fine irregularities are formed on at least one surface of the film by irradiating laser light.
(3)レーザー光を照射して、少なくとも片面のフィル
ム表面に微細な凹凸を形成した後、少なくとも一軸方向
に延伸することを特徴とする請求項1に記載の二軸配向
熱可塑性樹脂フィルムの製造方法。
(3) Production of the biaxially oriented thermoplastic resin film according to claim 1, wherein the film is irradiated with laser light to form fine irregularities on at least one side of the film surface, and then stretched in at least one direction. Method.
(4)レーザー光の照射を大気中雰囲気下で行なうこと
を特徴とする請求項2または3記載の二軸配向熱可塑性
樹脂フィルムの製造方法。
(4) The method for producing a biaxially oriented thermoplastic resin film according to claim 2 or 3, wherein the laser light irradiation is carried out in the air.
(5)照射するレーザー光の波長が150〜700nm
であることを特徴とする請求項2〜4のいずれかに記載
の二軸配向熱可塑性樹脂フィルムの製造方法。
(5) The wavelength of the irradiated laser light is 150 to 700 nm
The method for producing a biaxially oriented thermoplastic resin film according to any one of claims 2 to 4.
(6)照射するレーザー光のエネルギー密度が0.02
〜10.0j/cm^2であることを特徴とする請求項
2〜5のいずれかに記載の二軸配向熱可塑性樹脂フィル
ムの製造方法。
(6) The energy density of the irradiated laser light is 0.02
The method for producing a biaxially oriented thermoplastic resin film according to any one of claims 2 to 5, wherein the biaxially oriented thermoplastic resin film is 10.0 j/cm^2.
JP11299189A 1989-05-02 1989-05-02 Biaxially oriented thermoplastic resin film and its production Pending JPH02292335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11299189A JPH02292335A (en) 1989-05-02 1989-05-02 Biaxially oriented thermoplastic resin film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11299189A JPH02292335A (en) 1989-05-02 1989-05-02 Biaxially oriented thermoplastic resin film and its production

Publications (1)

Publication Number Publication Date
JPH02292335A true JPH02292335A (en) 1990-12-03

Family

ID=14600688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11299189A Pending JPH02292335A (en) 1989-05-02 1989-05-02 Biaxially oriented thermoplastic resin film and its production

Country Status (1)

Country Link
JP (1) JPH02292335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130629A4 (en) * 2014-06-12 2017-12-06 Toppan Printing Co., Ltd. Method for imparting heat sealability to biaxially oriented polyester film, and method for producing packaging container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130629A4 (en) * 2014-06-12 2017-12-06 Toppan Printing Co., Ltd. Method for imparting heat sealability to biaxially oriented polyester film, and method for producing packaging container

Similar Documents

Publication Publication Date Title
JPH0277431A (en) Biaxially oriented thermoplastic resin film
KR100241146B1 (en) Biaxially oriented thermoplastic resin film
JPH02292335A (en) Biaxially oriented thermoplastic resin film and its production
JP2692320B2 (en) Biaxially oriented polyester film
JP2817302B2 (en) Biaxially oriented polyester film
JPH03224127A (en) Magnetic recording medium
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2555717B2 (en) Biaxially oriented polyester film and method for producing the same
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JP2671333B2 (en) Biaxially oriented polyester film
JP2538641B2 (en) Biaxially oriented polyester film
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JP2985340B2 (en) Biaxially oriented thermoplastic resin film
JPH02158629A (en) Biaxially orientated polyester film
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2605808B2 (en) Biaxially oriented polyester film
JP2510741B2 (en) Biaxially oriented thermoplastic resin film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JPH01229420A (en) Back-coatless video tape
JPH04138251A (en) Biaxially oriented polyester film
JPH06322147A (en) Biaxially oriented film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JPH06320617A (en) Biaxially oriented laminated film
JPH03187723A (en) Biaxially oriented thermoplastic resin film