JPH0277431A - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH0277431A
JPH0277431A JP64000775A JP77589A JPH0277431A JP H0277431 A JPH0277431 A JP H0277431A JP 64000775 A JP64000775 A JP 64000775A JP 77589 A JP77589 A JP 77589A JP H0277431 A JPH0277431 A JP H0277431A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
thickness
particles
inert particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP64000775A
Other languages
Japanese (ja)
Other versions
JPH0780282B2 (en
Inventor
Koichi Abe
晃一 阿部
Iwao Okazaki
巌 岡崎
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP64000775A priority Critical patent/JPH0780282B2/en
Publication of JPH0277431A publication Critical patent/JPH0277431A/en
Publication of JPH0780282B2 publication Critical patent/JPH0780282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain the subject film with a specified thickness composed of a thermoplastic resin and inert particles with a specified average particle size the main components, excellent in scratch resistance and friction coefficient and suitable for a base film for a magnetic record medium. CONSTITUTION:With (A) a thermoplastic resin (e.g., crystalline polyester) (B) inert particles with a particle size of 0.1-10 times the thickness of the film and, preferably <=0.6 relative standard deviation are mixed to obtain the objective film with 0.005-3mum thickness capable of deal with the increase of film- processing speed in various use application and imparting excellent dubbing resistance to a magnetic record medium.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向熱可塑性樹脂フィルムに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a biaxially oriented thermoplastic resin film.

[従来の技術] 二軸配向熱可塑性樹脂フィルムとしては、熱可塑性樹脂
であるポリエステルにコロイド状シリカに起因する実質
的に球形のシリカ粒子を含有せしめたフィルムが知られ
ている(たとえば特開昭59−171623号公報)。
[Prior Art] As a biaxially oriented thermoplastic resin film, there is known a film in which substantially spherical silica particles caused by colloidal silica are contained in polyester, which is a thermoplastic resin (for example, in Japanese Patent Application Laid-open No. 59-171623).

[発明が解決しようとする課題] しかし、上記従来の二軸配向熱可塑性樹脂フィルムは、
フィルムの加工工程、たとえば包装用途における印刷工
程、磁気媒体用途における磁性層塗布・カレンダー工程
あるいは感熱転写用途における感熱転写層塗布などの工
程速度の増大にともない、接触するロールによってフィ
ルム表面に傷がつくという欠点が最近、問題となってき
ている。
[Problems to be Solved by the Invention] However, the above conventional biaxially oriented thermoplastic resin film has the following problems:
As the speed of film processing increases, such as the printing process in packaging applications, the magnetic layer coating/calendering process in magnetic media applications, or the thermal transfer layer coating in thermal transfer applications, the film surface is scratched by contacting rolls. This shortcoming has recently become a problem.

また、上記従来の二軸配向熱可塑性樹脂フィルムは高温
・高湿下で、フィルムを取り扱う時に摩擦係数が高くな
り、ハンドリング性が不良になるという問題点があった
Furthermore, the above-mentioned conventional biaxially oriented thermoplastic resin film has a problem in that the coefficient of friction increases when the film is handled under high temperature and high humidity, resulting in poor handling properties.

さらに、フィルムの主要な用途であるビデオテープは、
最近、ソフト用(制作された映像作品をパッケージ媒体
に記録固定、複製・増製したもの)に用いられるケース
が多く、この場合、上記従来のビデオテープでは、「映
像作品を録画する工程」でマスターテープから高速でダ
ビング(記録複写)する時のS/N (シグナル/ノイ
ズ比、画質のパラメータ)の低下が大きく画質が悪くな
るという問題点も出てきている。
Furthermore, videotape, which is the main use of film,
Recently, there are many cases where it is used for software (recording, fixing, copying, and increasing the produced video work on package media), and in this case, the conventional videotape mentioned above is used in the "process of recording the video work". Another problem has arisen in that when dubbing (recording and copying) from a master tape at high speeds, the S/N (signal/noise ratio, image quality parameter) is greatly reduced, resulting in poor image quality.

本発明はかかる問題点を改善し、表面が傷つきに<<(
以下耐スクラッチ性という)、高温・高湿下での摩擦係
数が小さく(以下、摩擦係数という)、かつ、ダビング
による画質(S/N)の低下が少ない(以下耐ダビング
性という)フィルムを提供することを課題とする。
The present invention improves these problems and prevents scratches on the surface.
Provides a film that has a low friction coefficient (hereinafter referred to as "friction coefficient") under high temperature and high humidity (hereinafter referred to as "scratch resistance"), and has little deterioration in image quality (S/N) due to dubbing (hereinafter referred to as "dubbing resistance"). The task is to do so.

[課題を解決するための手段] フィルム中に含有する不活性粒子の平均粒径がフィルム
厚さの0.1〜10倍であって、該粒子の含有量が0.
 5〜50重量%であることを特徴とする厚さ0.00
5〜3μmの二軸配向熱可塑性樹脂フィルムとしたもの
である。
[Means for Solving the Problems] The average particle size of the inert particles contained in the film is 0.1 to 10 times the thickness of the film, and the content of the particles is 0.1 to 10 times the thickness of the film.
Thickness 0.00, characterized in that it is 5-50% by weight
It is a biaxially oriented thermoplastic resin film of 5 to 3 μm.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されることはないが、特に、ポリエステル、
中でも、エチレンテレフタレート、エチレンα、β−ビ
ス(2−クロルフェノキシ)エタン−4,4′−ジカル
ボキシレート、エチレン2.6−ナフタレート単位から
選ばれた少なくとも一種の構造単位を主要構成成分とす
る場合に耐スクラッチ性、耐ダビング性、摩擦係数がよ
り一層良好となるので望ましい。また、本発明を構成す
る熱可塑性樹脂は結晶性、あるいは溶融時光学異方性で
ある場合に耐スクラッチ性、耐ダビング性、摩擦係数が
より一層良好となるのできわめて望ましい。ここでいう
結晶性とはいわゆる非晶質ではないことを示すものであ
り、定量的には結晶化パラメータにおける冷結晶化温度
Tccが検出され、かつ結晶化パラメータΔTcgが1
50℃以下のものである。さらに、示差走査熱量計で測
定された融解熱(融解エンタルピー変化)が7.5ca
l/g以上の結晶性を示す場合に耐スクラッチ性、耐ダ
ビング性、摩擦係数がより一層良好となるのできわめて
望ましい。また、エチレンテレフタレートを主要構成成
分とするポリエステルの場合に耐ダビング性と耐スクラ
ッチ性がより一層良好となるので特に望ましい。なお、
本発明を阻害しない範囲内で、2種以上の熱可塑性樹脂
を混合しても良いし、共重合ポリマを用いても良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but in particular, polyester, polyphenylene sulfide, etc.
Among them, the main constituent is at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate, and ethylene 2,6-naphthalate units. In some cases, scratch resistance, dubbing resistance, and friction coefficient are further improved, which is desirable. Further, it is extremely desirable that the thermoplastic resin constituting the present invention be crystalline or optically anisotropic when melted, since this provides even better scratch resistance, dubbing resistance, and coefficient of friction. Crystallinity here indicates that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 1.
The temperature is 50°C or less. Furthermore, the heat of fusion (change in enthalpy of fusion) measured with a differential scanning calorimeter was 7.5 ca.
When the crystallinity is 1/g or more, the scratch resistance, dubbing resistance, and coefficient of friction become even better, which is extremely desirable. Further, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better dubbing resistance and scratch resistance. In addition,
Two or more types of thermoplastic resins may be mixed or a copolymer may be used within a range that does not impede the present invention.

本発明の熱可塑性樹脂A中の不活性粒子は、フィルム中
での粒径比(粒子の長径/短径)が1゜0〜1.3の粒
子、特に、球形状の粒子の場合に耐スクラッチ性がより
一層良好となるので望ましい。
The inert particles in the thermoplastic resin A of the present invention are particles with a particle size ratio (major axis/minor axis) of 1°0 to 1.3 in the film, especially spherical particles. This is desirable because the scratch resistance becomes even better.

また、本発明の熱可塑性樹脂A中の不活性粒子はフィル
ム中での単一粒子指数が0.7以上、好ましくは0.9
以上である場合に耐スクラッチ性、耐ダビング性がより
一層良好となるので特に望ましい。
Further, the inert particles in the thermoplastic resin A of the present invention have a single particle index in the film of 0.7 or more, preferably 0.9.
It is particularly desirable that the above is the case since scratch resistance and dubbing resistance become even better.

また、本発明の熱可塑性樹脂A中の不活性粒子は、フィ
ルム中での相対標準偏差が0.6以下、好ましくは06
5以下の場合に耐スクラッチ性、耐ダビング性がより一
層良好となるので望ましい。
Further, the inert particles in the thermoplastic resin A of the present invention have a relative standard deviation of 0.6 or less in the film, preferably 0.6
A value of 5 or less is desirable because scratch resistance and dubbing resistance become even better.

本発明の熱可塑性樹脂A中の不活性粒子の種類は特に限
定されないが、上記の好ましい粒子特性を満足するには
アルミナ珪酸塩、1次粒子が凝集した状態のシリカ、内
部析出粒子などは好ましくなく、コロイダルシリカに起
因する実質的に球形のシリカ粒子、架橋高分子による粒
子(たとえば架橋ポリスチレン)などがあるが、特に1
0重量%減量時温度(窒素中で熱重量分析装置島津T 
G−30Mを用いて測定。昇温速度20℃/分)が38
0℃以上になるまで架橋度を高くした架橋高分子粒子の
場合に耐スクラッチ性、耐ダビング、性がより一層良好
となるので特に望ましい。なお、。
The type of inert particles in the thermoplastic resin A of the present invention is not particularly limited, but in order to satisfy the above preferable particle properties, alumina silicate, silica in a state where primary particles are aggregated, internally precipitated particles, etc. are preferable. There are substantially spherical silica particles caused by colloidal silica, particles made of crosslinked polymers (for example, crosslinked polystyrene), etc.
Temperature at 0% weight loss (Thermogravimetric analyzer Shimadzu T in nitrogen)
Measured using G-30M. heating rate 20℃/min) is 38
It is particularly desirable to use crosslinked polymer particles whose degree of crosslinking is increased to 0° C. or higher, since the scratch resistance, dubbing resistance, and properties are even better. In addition,.

コロイダルシリカに起因する球形シリカの場合にはアル
コキシド法で製造された、ナトリウム含有量が少ない、
実質的に球形のシリカの場合に耐スクラッチ性がより一
層良好となるので特に望ましい。しかしながら、その他
の粒子、例えば炭酸カルシウム、二酸化チタン、アルミ
ナ等の粒子でもフィルム厚さと平均粒径の適切なフント
ロールにより十分使いこなせるものである。
In the case of spherical silica due to colloidal silica, produced by alkoxide method, low sodium content,
Substantially spherical silica is particularly preferred since it provides even better scratch resistance. However, other particles, such as particles of calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily with appropriate film thickness and average particle size.

本発明の熱可塑性樹脂A中の不活性粒子の結晶化促進係
数は特に限定されないが、−15〜15℃、好ましくは
一5℃〜10℃の場合に、耐スクラッチ性がより一層良
好となるので特に望ましい。
The crystallization promotion coefficient of the inert particles in the thermoplastic resin A of the present invention is not particularly limited, but the scratch resistance becomes even better when the temperature is -15 to 15°C, preferably -5 to 10°C. Therefore, it is particularly desirable.

不活性粒子の大きさは、フィルム中での平均粒径がフィ
ルム厚さの0. 1〜10倍、好ましくは0.5〜5倍
、さらに好ましくは1,1〜3倍の範囲であることが必
要である。平均粒径/フィルム厚さ比が上記の範囲より
小さいと耐スクラッチ性、摩擦係数が不良となり、逆に
大きくても耐スクラッチ性、耐ダビング性、摩擦係数が
不良となるので好ましくない。
The size of the inert particles is such that the average particle diameter in the film is 0.000 mm thick of the film thickness. It needs to be in the range of 1 to 10 times, preferably 0.5 to 5 times, more preferably 1.1 to 3 times. If the average particle diameter/film thickness ratio is smaller than the above range, the scratch resistance and friction coefficient will be poor, and if it is larger, the scratch resistance, dubbing resistance, and friction coefficient will be poor, which is not preferable.

また熱可塑性樹脂A中の不活性粒子のフィルム中での平
均粒径(直径)が0.007〜0.5μm、好ましくは
0.02〜0.45μmの範囲である場合に、耐スクラ
ッチ性、耐ダビング性、摩擦係数がより一層良好となる
ので望ましい。
In addition, when the average particle size (diameter) of the inert particles in the thermoplastic resin A in the film is in the range of 0.007 to 0.5 μm, preferably 0.02 to 0.45 μm, scratch resistance, This is desirable because the dubbing resistance and friction coefficient are even better.

本発明の熱可塑性樹脂A中の不活性粒子の含有量は0.
 5〜5ON量%、好ましくは1〜30重量%、さらに
好ましくは2〜15重量%であることが必要である。不
活性粒子の含有量が上記の範囲より少なくても、逆に大
きくても耐スクラッチ性が不良となるので好ましくない
The content of inert particles in the thermoplastic resin A of the present invention is 0.
It is necessary that the amount of ON is 5 to 5% by weight, preferably 1 to 30% by weight, and more preferably 2 to 15% by weight. Even if the content of inert particles is less than the above-mentioned range, it is not preferable that the content is greater than the above range because the scratch resistance becomes poor.

本発明フィルムは上記熱可塑性樹脂Aと不活性粒子から
なる組成物を主要成分とするが、本発明の目的を阻害し
ない範囲内で、他種ポリマをブレンドしてもよいし、ま
た酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有
機添加剤が通常添加される程度添加されていてもよい。
The main component of the film of the present invention is a composition consisting of the thermoplastic resin A and inert particles, but other types of polymers may be blended within a range that does not impede the purpose of the present invention, and antioxidants may be added. , heat stabilizers, lubricants, ultraviolet absorbers, and other organic additives may be added to the extent that they are normally added.

本発明フィルムは上記組成物を二軸配向せしめたフィル
ムである。−軸あるいは無配向フィルムでは耐スクラッ
チ性が不良となるので好ましくない。この配向の程度は
特に限定されないが、高分子の分子配向の程度の目安で
あるヤング率が長手方向、幅方向ともに350kg/m
m2以上である場合に耐スクラッチ性がより一層良好と
なるのできわめて望ましい。分子配向の程度の目安であ
るヤング率の上限は特に限定されないが、通常、500
0 k g/mm2程度が製造上の限界である。
The film of the present invention is a film in which the above composition is biaxially oriented. - Axial or non-oriented films are not preferred because they have poor scratch resistance. The degree of this orientation is not particularly limited, but the Young's modulus, which is a guideline for the degree of molecular orientation of polymers, is 350 kg/m in both the longitudinal and width directions.
If it is m2 or more, the scratch resistance will be even better, so it is extremely desirable. The upper limit of Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, but is usually 500
The manufacturing limit is about 0 kg/mm2.

また、本発明フィルムは、ヤング率が上記範囲内であっ
ても、フィルムの厚さ方向の一部分、例えば、表層付近
のポリマ分子の配向が無配向、あるいは、−軸配向にな
っていない、すなわち、厚さ方向の全部分の分子配向が
二軸配向である場合に耐スクラッチ性、耐ダビング性、
摩擦係数がより一層良好となるので特に望ましい。
In addition, even if the Young's modulus of the film of the present invention is within the above range, the orientation of the polymer molecules in a portion of the thickness direction of the film, for example, near the surface layer, is not oriented or is not oriented in the -axis direction, i.e. , Scratch resistance, dubbing resistance, when the molecular orientation in the entire thickness direction is biaxial orientation.
This is particularly desirable since the coefficient of friction becomes even better.

特にアツベ屈折率計、レーザーを用いた屈折率計、全反
射レーザーラマン法などによって測定される分子配向が
、表面、裏面ともに二軸配向である場合に耐スクラッチ
性、耐ダビング性、摩擦係数がより一層良好となるので
特に望ましい。
In particular, when the molecular orientation measured by an Atsube refractometer, laser refractometer, total internal reflection laser Raman method, etc. is biaxially oriented on both the front and back surfaces, scratch resistance, dubbing resistance, and friction coefficient are This is particularly desirable because it provides even better results.

さらに熱可塑性樹脂Aが結晶性ポリエステルであり、こ
れを主成分とする本発明フィルムの表面の全反射ラマン
結晶化指数が20cm−’以下、好ましくは18cm−
’以下、さらに17cm−”以下の場合に耐スクラッチ
性、耐ダビング性、摩擦係数がより一層良好となるので
きわめて望ましい。
Further, the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film of the present invention containing this as a main component is 20 cm-' or less, preferably 18 cm-'.
If the thickness is 17 cm or less, the scratch resistance, dubbing resistance, and friction coefficient will be even better, so it is extremely desirable.

本発明の熱可塑性樹脂へを主成分とするフィルムの2次
イオンマススペクトルによって測定される表層粒子濃度
比は特に限定されないが、1/10以下、特に1150
以下である場合に摩擦係数、耐スクラッチ性がより一層
良好となるので特に望ましい。
The surface layer particle concentration ratio measured by secondary ion mass spectrum of the film mainly composed of thermoplastic resin of the present invention is not particularly limited, but is 1/10 or less, especially 1150
It is particularly desirable that the value is below, since the friction coefficient and scratch resistance will be even better.

本発明の熱可塑性樹脂Aを主成分とするフィルムの厚さ
は0.005〜3μm1好ましくは0゜01〜1μm1
さらに好ましくは0゜03〜0゜5μmであることが必
要である。フィルム厚さが上記の範囲より小さいと耐ダ
ビング性、摩擦係数が不良となり逆に大きいと耐スクラ
ッチ性が不良となるので好ましくない。
The thickness of the film mainly composed of thermoplastic resin A of the present invention is 0.005 to 3 μm, preferably 0.01 to 1 μm.
More preferably, it is 0.03 to 0.5 μm. If the film thickness is smaller than the above range, the dubbing resistance and friction coefficient will be poor, and if it is larger, the scratch resistance will be poor, which is not preferable.

本発明の熱可塑性樹脂Aを主成分とするフィルムの表面
の平均突起高さは5〜500nm、好ましくは1・0〜
300nm、さらに好ましくは15〜200 nmの範
囲である場合に耐スクラッチ性、耐ダビング性、摩擦係
数がより一層良好となるので特に望ましい。
The average protrusion height on the surface of the film mainly composed of thermoplastic resin A of the present invention is 5 to 500 nm, preferably 1.0 to 500 nm.
A range of 300 nm, more preferably 15 to 200 nm, is particularly desirable because scratch resistance, dubbing resistance, and coefficient of friction become even better.

本発明の熱可塑性樹脂Aを主成分とするフィルムの平均
突起間隔は6μm以下、好ましくは4μm以下である場
合に耐スクラッチ性、耐ダビング性、摩擦係数がより一
層良好となるので特に望ましい。
It is particularly desirable that the average distance between protrusions of the film containing thermoplastic resin A of the present invention as a main component is 6 μm or less, preferably 4 μm or less, since scratch resistance, dubbing resistance, and coefficient of friction become even better.

本発明の熱可塑性樹脂Aを主成分とするフィルムの表面
の中心線深さRpは特に限定されないが、Rpが180
nm以下、特に160nm以下の場合に耐ダビング性が
より一層良好となるので特に望ましい。また、上記Rp
と最大高さRtの比、Rt / Rpが1.5〜2.5
、特に、1.7〜2゜3の場合に耐スクラッチ性、耐ダ
ビング性、摩擦係数がより一層良好となるので特に望ま
しい。
The centerline depth Rp of the surface of the film mainly composed of thermoplastic resin A of the present invention is not particularly limited, but Rp is 180
It is particularly desirable to have a thickness of 160 nm or less, especially 160 nm or less, since the dubbing resistance will be even better. In addition, the above Rp
and the maximum height Rt, Rt/Rp is 1.5 to 2.5
In particular, a range of 1.7 to 2°3 is particularly desirable because scratch resistance, dubbing resistance, and coefficient of friction become even better.

本発明の熱可塑性樹脂Aを主成分とするフィルムの表面
の中心線平均粗さRaと最大高さRtの比、Rt / 
Raが9.0以下、特に8.5以下の場合に耐スクラッ
チ性、耐ダビング性、摩擦係数がより一層良好となるの
で特に望ましい。
Rt/
It is particularly desirable that Ra is 9.0 or less, particularly 8.5 or less, since scratch resistance, dubbing resistance, and friction coefficient become even better.

本発明フィルムは上述したように、構成する熱可塑性樹
脂が結晶性あるいは溶融光学異方性であることがきわめ
て望ましいが、溶融等方性フィルムの場合、結晶化パラ
メータΔTcgが25〜65℃である場合に耐スクラッ
チ性、摩擦係数がより一層良好となるので特に望ましい
As mentioned above, it is extremely desirable for the thermoplastic resin constituting the film of the present invention to be crystalline or melt optically anisotropic, but in the case of a melt isotropic film, the crystallization parameter ΔTcg is 25 to 65°C. This is particularly desirable in cases where the scratch resistance and friction coefficient are even better.

なお熱可塑性樹脂Aがポリエステルの場合には熱可塑性
樹脂A面の厚さ方向屈折率が1.5以下の場合に、耐ス
クラッチ性、耐ダビング性がより一層良好となるので特
に望ましい。
In addition, when the thermoplastic resin A is polyester, it is particularly desirable that the refractive index of the thermoplastic resin A surface in the thickness direction is 1.5 or less, since scratch resistance and dubbing resistance become even better.

本発明フィルムを構成する熱可塑性樹脂Aがポリエステ
ルの場合はフィルムの固有粘度が0.60以上、特に0
.70以上の場合に耐スクラッチ性がより一層良好とな
るので特に望ましい。
When the thermoplastic resin A constituting the film of the present invention is polyester, the intrinsic viscosity of the film is 0.60 or more, particularly 0.
.. A value of 70 or more is particularly desirable because the scratch resistance becomes even better.

本発明フィルムを構成する熱可塑性樹脂Aがポリエステ
ルの場合はフィルム中の低分子成分含有量が0.8重量
%以下、特に0.5重量%以下の場合に耐スクラッチ性
がより一層良好となるので特に望ましい。
When the thermoplastic resin A constituting the film of the present invention is polyester, the scratch resistance becomes even better when the content of low molecular components in the film is 0.8% by weight or less, especially 0.5% by weight or less. Therefore, it is particularly desirable.

本発明フィルムは、もちろん単体(単層フィルム)でも
用いられるが、熱可塑性樹脂Bのフィルムの少なくとも
片面に上記熱可塑性樹脂Aのフィルムを積層した後二軸
配向したフィルムの形で用いると、機械的特性が良好と
なるのみならず、耐スクラッチ性、耐ダビング性、摩擦
係数もより一層良好となるのできわめて望ましい。ここ
で熱可塑性樹脂AとBは同じ種類でも、異なるものでも
良い。
The film of the present invention can of course be used alone (single-layer film), but if it is used in the form of a biaxially oriented film in which a film of thermoplastic resin A is laminated on at least one side of a film of thermoplastic resin B, This is extremely desirable because not only the physical properties are improved, but also the scratch resistance, dubbing resistance, and coefficient of friction are further improved. Here, the thermoplastic resins A and B may be the same type or different types.

上記は積層構成がA/B/A、A/Hの場合であるが、
もちろん、Aと異なる表面状態を有する0層をAと反対
面に設けたA/B/Cでも、あるいはそれ以上の多層構
造でもよい。(ここで、AlB、Cそれぞれの熱可塑性
樹脂の種類は同種でも、異種でもよい。また、少なくと
も片方の表面はA層であることが必要である。) 熱可塑性樹脂Bとしては結晶性ポリマが望ましく、特に
、結晶性パラメータΔTcgが20〜100℃の範囲の
場合に、耐ダビング性がより一層良好となるので望まし
い。具体例として、ポリエステル、ポリアミド、ポリフ
ェニレンスルフィド、ポリオレフィンが挙げられるが、
ポリエステルの場合に耐ダビング性がより一層良好とな
るので特に望ましい。また、ポリエステルとしては、エ
チレンテレフタレート、エチレンα、β−ビス(2−ク
ロルフェノキシ)エタン−4,41−ジカルボキシレ−
ト、エチレン2.6−ナフタレート単位から選ばれた少
なくとも一種の構造単位を主要構成成分とする場合に耐
ダビング性が特に良好となるので望ましい。ただし、本
発明を阻害しない範囲内、望ましい結晶性を損なわない
範囲内で、好ましくは5モル%以内であれば他成分が共
重合されていてもよい。
The above is for the case where the laminated structure is A/B/A, A/H,
Of course, it may be an A/B/C structure in which a layer 0 having a surface state different from that of A is provided on the opposite surface, or a multilayer structure having more than that. (Here, the types of thermoplastic resins for AlB and C may be the same or different.Also, at least one surface needs to be layer A.) Thermoplastic resin B is a crystalline polymer. It is particularly desirable that the crystallinity parameter ΔTcg is in the range of 20 to 100° C., since the dubbing resistance will be even better. Specific examples include polyester, polyamide, polyphenylene sulfide, and polyolefin.
Polyester is particularly desirable because it provides even better dubbing resistance. In addition, as polyester, ethylene terephthalate, ethylene α, β-bis(2-chlorophenoxy)ethane-4,41-dicarboxylene
It is preferable that the main constituent is at least one structural unit selected from the group consisting of ethylene 2.6-naphthalate units and ethylene 2.6-naphthalate units, since the dubbing resistance is particularly good. However, other components may be copolymerized within a range that does not impede the present invention, within a range that does not impair desirable crystallinity, and preferably within 5 mol%.

本発明の熱可塑性樹脂Bにも、本発明の目的を阻害しな
い範囲内で、他種ポリマをブレンドしてもよいし、また
酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機
添加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with other types of polymers within the range that does not impede the purpose of the present invention, and organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added. The agent may be added to the extent that it is normally added.

熱可塑性樹脂Bを主成分とするフィルム中には不活性粒
子を含有している必要は特にないが、平均粒径が0.0
07〜2μm、特に0.02〜0゜45μmの不活性粒
子が0.001〜0.2重量%、特に0.005〜0.
15重量%、さらには0.005〜0.12重量%含有
されていると、摩擦係数、耐スクラッチ性がより一層良
好となるのみならず、フィルムの巻姿が良好となるので
きわめて望ましい。含有する不活性粒子の種類は熱可塑
性樹脂Aに望ましく用いられるものを使用することが望
ましい。熱可塑性樹脂AとBに含有する粒子の種類、大
きさは同じでも異なっていても良い。
It is not particularly necessary to contain inert particles in the film mainly composed of thermoplastic resin B, but if the average particle size is 0.0
0.07 to 2 μm, especially 0.02 to 0.45 μm inert particles in an amount of 0.001 to 0.2% by weight, especially 0.005 to 0.045 μm.
A content of 15% by weight, more preferably 0.005 to 0.12% by weight, is extremely desirable because not only the coefficient of friction and scratch resistance will be even better, but the winding appearance of the film will also be better. As for the type of inert particles contained, it is desirable to use those preferably used for thermoplastic resin A. The types and sizes of particles contained in thermoplastic resins A and B may be the same or different.

上記熱可塑性樹脂Aと熱可塑性樹脂Bの結晶化パラメー
タΔTcgの差(A−B)は特に限定されないが、−3
0〜+20°Cの場合に、耐スクラッチ性、耐ダビング
性がより一層良好となるので特、に望ましい。
The difference (A-B) in crystallization parameter ΔTcg between thermoplastic resin A and thermoplastic resin B is not particularly limited, but is -3
A temperature of 0 to +20°C is particularly desirable because scratch resistance and dubbing resistance become even better.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、熱可塑性樹脂Aに不活性粒子を含有せしめる方法
としては、熱可塑性樹脂がポリエステルの場合には、ジ
オール成分であるエチレングリコールのスラリーの形で
分散せしめ、このエチレングリコールを所定のジカルボ
ン酸成分と重合せしめるのが延伸破れなく、本発明範囲
の厚さと平均粒径の関係、含有量、望ましい範囲の配向
状態のフィルムを得るのに有効である。また、不活性粒
子を含有するポリエステルの溶融粘度、共重合成分など
を調節して、その結晶化パラメータΔTcgを40〜6
5℃の範囲にしておく方法は延伸破れなく、本発明範囲
の厚さと平均粒径の関係、含有量、望ましい範囲の配向
状態、表層粒子濃度比、平均突起高さ、Rt/Rp比、
Rt / Ra比のフィルムを得るのに有効である。
First, as a method for incorporating inert particles into thermoplastic resin A, when the thermoplastic resin is polyester, it is dispersed in the form of a slurry of ethylene glycol, which is a diol component, and this ethylene glycol is mixed with a predetermined dicarboxylic acid component. It is effective to obtain a film that does not break during stretching, has a relationship between thickness and average particle size, has a content within the range of the present invention, and has an orientation state within the desired range. In addition, by adjusting the melt viscosity, copolymerization components, etc. of the polyester containing inert particles, its crystallization parameter ΔTcg was adjusted to 40 to 6.
The method of keeping the temperature in the range of 5°C does not cause tearing due to stretching, and the relationship between the thickness and the average grain size within the range of the present invention, the content, the orientation state within the desired range, the surface layer particle concentration ratio, the average protrusion height, the Rt/Rp ratio,
It is effective to obtain a film with Rt/Ra ratio.

また、不活性粒子のエチレングリコールのスラリーを1
40〜200°C1特に180〜200°Cの温度で3
0分〜5時間、特に1〜3時間熱処理する方法は延伸破
れなく、本発明範囲の厚さと平均粒径の関係、含有量、
望ましい範囲の配向状態、表層粒子濃度比のフィルムを
得るのに有効である。
Additionally, a slurry of ethylene glycol of inert particles was added to
40-200°C1 Especially at temperatures of 180-200°C3
The method of heat treatment for 0 minutes to 5 hours, especially 1 to 3 hours, does not cause stretching breakage, and the relationship between thickness and average particle size, content, and
This is effective in obtaining a film having a desirable range of orientation and surface layer particle concentration ratio.

また熱可塑性樹脂(ポリエステルも含めて)に不活性粒
子を含有せしめる方法として、粒子をエチレングリコー
ル中で140〜200℃、特に180〜200℃の温度
で30分〜5時間、特に1〜3時間熱処理した後、溶媒
を水に置換したスラリーの形で熱可塑性樹脂と混合し、
ベント方式の2軸押比機を用いて混練して熱可塑性樹脂
に練り込む方法も本発明範囲の厚さと平均粒径の関係、
含有量、望ましい範囲の配向状態、表層粒子濃度比、平
均突起高さ、Rt/Rp比、Rt / Ra比のフィル
ムを得るのにきわめて有効である。
In addition, as a method of incorporating inert particles into thermoplastic resin (including polyester), particles are heated in ethylene glycol at a temperature of 140 to 200°C, particularly 180 to 200°C, for 30 minutes to 5 hours, especially 1 to 3 hours. After heat treatment, it is mixed with a thermoplastic resin in the form of a slurry in which the solvent is replaced with water.
The method of kneading and kneading into thermoplastic resin using a vent-type twin-screw press ratio machine also has the relationship between the thickness and average particle size within the range of the present invention,
It is extremely effective in obtaining a film having a desired content, orientation state, surface particle concentration ratio, average protrusion height, Rt/Rp ratio, and Rt/Ra ratio.

粒子の含有量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に不活性粒子を
実質的に含有しない熱可塑性樹脂で希釈して粒子の含有
量を調節する方法が有効である。
A method for adjusting the particle content is to prepare a high-concentration master using the above method, and then dilute it with a thermoplastic resin that does not substantially contain inert particles during film formation to adjust the particle content. The method is valid.

かくして、不活性粒子を所定量含有するペレットを必要
に応じて乾燥したのち、公知の溶融押出機に供給し、熱
可塑性樹脂の融点以上、分解点以下でスリット状のダイ
からシート状に押出し、キャスティングロール上で冷却
固化せしめて未延伸フィルムを作る。この場合、未延伸
フィルムに押出し成形する時の、口金スリット間隙/未
延伸フィルム厚さの比を5〜30、好ましくは8〜20
の範囲にすることが、延伸破れなく本発明範囲の厚さと
平均粒径の関係、含有量の範囲、望ましい範囲の配向状
態、表層粒子濃度比、全反射ラマン結晶化指数のフィル
ムを得るのに有効である。
After drying the pellets containing a predetermined amount of inert particles as necessary, the pellets are supplied to a known melt extruder and extruded into a sheet through a slit-shaped die at temperatures above the melting point and below the decomposition point of the thermoplastic resin. It is cooled and solidified on a casting roll to form an unstretched film. In this case, when extruding into an unstretched film, the ratio of die slit gap/unstretched film thickness is 5 to 30, preferably 8 to 20.
In order to obtain a film with the relationship between thickness and average grain size, content range, orientation state within the desired range, surface layer particle concentration ratio, and total reflection Raman crystallization index within the range of the present invention without stretching tearing, It is valid.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を3段階以上に分けて、総縦延伸倍率を3
.5〜6.5倍で行なう方法は延伸破れなく、本発明範
囲の厚さと平均粒径の関係、含有量、望ましい範囲の配
向状態、表層粒子濃度比のフィルムを得るのに有効であ
る。ただし、熱可塑性樹脂が溶融光学異方性樹脂である
場合は長手方向延伸倍率は1〜1゜1倍が適切である。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method that first stretches in the longitudinal direction and then in the width direction, the longitudinal stretching is divided into three or more stages, and the total longitudinal stretching ratio is 3.
.. A method performed at a stretching ratio of 5 to 6.5 times is effective for obtaining a film without tearing due to stretching and having a relationship between thickness and average grain size, a content, an orientation state within a desirable range, and a surface layer particle concentration ratio within the range of the present invention. However, when the thermoplastic resin is a molten optically anisotropic resin, the stretching ratio in the longitudinal direction is suitably 1 to 1.times.1.

長手方向延伸温度は熱可塑性樹脂の種類によって異なり
一概には言えないが、通常、その1段目を50〜130
℃とし、2段目以降はそれより高くすることが本発明範
囲の厚さと平均粒径の関係、含有量、望ましい範囲の配
向状態、平均突起高さ、表層粒子濃度比のフィルムを得
るのに有効である。長手方向延伸速度は5000〜50
000%/分の範囲が好適である。幅方向の延伸方法と
してはステツクを用いる方法が一般的である。延伸倍率
は、3.0〜5.0倍の範囲が適当である。幅方向の延
伸速度は、1000〜20000%/分、温度は80〜
160°Cの範囲が好適である。次にこの延伸フィルム
を熱処理する。この場合の熱処理温度は170〜200
℃、特に170〜190℃、時間は0.5〜60秒の範
囲が好適である。
Although the longitudinal stretching temperature varies depending on the type of thermoplastic resin and cannot be generalized, it is usually 50 to 130 ℃ in the first stage.
℃, and higher than that for the second and subsequent stages to obtain a film with the relationship between thickness and average particle size, content, orientation state within the desired range, average protrusion height, and surface layer particle concentration ratio within the range of the present invention. It is valid. Longitudinal stretching speed is 5000-50
A range of 000%/min is preferred. A common method for stretching in the width direction is to use a stick. The appropriate stretching ratio is 3.0 to 5.0 times. The stretching speed in the width direction is 1000-20000%/min, and the temperature is 80-2000%/min.
A range of 160°C is preferred. Next, this stretched film is heat treated. The heat treatment temperature in this case is 170-200
C., particularly 170 to 190.degree. C., and a time period of 0.5 to 60 seconds is suitable.

次に、熱可塑性樹脂Bを主成分とするフィルムの少なく
とも片面に熱可塑性樹脂Aを主成分とするフィルムを積
層する方法としては、次の方法が有効である。
Next, as a method for laminating a film mainly composed of thermoplastic resin A on at least one side of a film mainly composed of thermoplastic resin B, the following method is effective.

所定の熱可塑性樹脂フィルムと熱可塑性樹脂B(A、B
は同種、異種どちらでもよい)を公知の溶融積層用押出
機に供給し、スリット状のダイからシート状に押出し、
キャスティングロール上で冷却固化せしめて未延伸フィ
ルムを作る。すなわち、2または3台の押出し機、2ま
たは3層のマニホールドまたは合流ブロックを用いて、
熱可塑性樹脂A、Bを積層し、口金から2または3層の
シートを押し出し、キャスティングロールで冷却して未
延伸フィルムを作る。この場合、熱可塑性樹脂Aのポリ
マ流路に、スタティックミキサー、ギヤポンプを設置す
る方法は延伸破れなく、本発明範囲の厚さと平均粒径の
関係、含有量、望ましい範囲の配向状態、平均突起高さ
、Rt / Rp比、Rt / Ra比、表層粒子濃度
比のフィルムを得るのに有効である。また、熱可塑性樹
脂A側の押し出し機の溶融温度を、熱可塑性樹脂B側よ
り、10〜40℃高くすることが、延伸破れなく、本発
明範囲の厚さと平均粒径の関係、含有量、望ましい範囲
の配向状態、平均突起高さ、Rt / Rp比、Rt 
/ Ra比、表層粒子濃度比、全反射ラマン結晶化指数
のフィルムを得るのに有効である。
Predetermined thermoplastic resin film and thermoplastic resin B (A, B
may be the same or different types) is fed to a known melt lamination extruder and extruded into a sheet from a slit-shaped die,
It is cooled and solidified on a casting roll to form an unstretched film. That is, using 2 or 3 extruders, 2 or 3 layer manifolds or merging blocks,
Thermoplastic resins A and B are laminated, two or three layers of sheets are extruded from a die, and the sheets are cooled with a casting roll to form an unstretched film. In this case, the method of installing a static mixer and a gear pump in the polymer flow path of thermoplastic resin A will not cause stretching breakage, and the relationship between the thickness and average particle size within the range of the present invention, the content, the orientation state within the desired range, and the average protrusion height. It is effective to obtain a film with a high Rt/Rp ratio, Rt/Ra ratio, and surface particle concentration ratio. In addition, setting the melting temperature of the extruder on the thermoplastic resin A side 10 to 40°C higher than that on the thermoplastic resin B side will prevent stretching breakage, and the relationship between the thickness and average particle size, the content, and the content within the range of the present invention. Desired range of orientation state, average protrusion height, Rt/Rp ratio, Rt
/Ra ratio, surface layer particle concentration ratio, and total reflection Raman crystallization index.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る方法のポイントは、基本的に上述した単層フィルムと
同様である。ただし、積層フィルムの場合の延伸温度の
設定は熱可塑性樹脂Bを基準として設定する必要がある
。さらに2層積層フィルムの熱処理工程は、熱可塑性樹
脂A層に吹き付ける熱風温度を熱可塑性樹脂B層よりも
3〜20℃低くすることが、本発明範囲の厚さと平均粒
径の関係、含有量、望ましい範囲の配向状態、平均突起
高さ、Rt/Rp比、Rt / Ra比、表層粒子濃度
比、全反射ラマン結晶化指数のフィルムを得るのに有効
である。
Next, the points of the method for biaxially stretching this unstretched film to achieve biaxial orientation are basically the same as those for the single-layer film described above. However, in the case of a laminated film, the stretching temperature must be set based on thermoplastic resin B. Furthermore, in the heat treatment process of the two-layer laminated film, the temperature of the hot air blown onto the thermoplastic resin A layer is 3 to 20°C lower than that of the thermoplastic resin B layer. , is effective in obtaining a film with desired range of orientation state, average protrusion height, Rt/Rp ratio, Rt/Ra ratio, surface layer particle concentration ratio, and total reflection Raman crystallization index.

[作用コ 本発明は含有する粒子の大きさとフィルム厚さの関係、
含有量、フィルム厚さを特定範囲とした熱可塑性樹脂フ
ィルムあるいはその積層フィルムとしたので、従来の溶
融製膜/二軸延伸プロセスでは得られない表面形態とす
ることができたため、本発明の効果が得られたものと推
定される。
[Function] The present invention is based on the relationship between the size of the particles contained and the film thickness;
Since the thermoplastic resin film or its laminated film was used with the content and film thickness within a specific range, it was possible to obtain a surface morphology that could not be obtained with conventional melt film forming/biaxial stretching processes. It is estimated that this was obtained.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムからポリエステルをプラズマ低温灰化処理法(
たとえばヤマト科学製PR−503型)で除去し粒子を
露出させる。処理条件はポリエスチルは灰化されるが粒
子はダメ−ジを受けない条件を選択する。これをSEM
(走査型電子顕微鏡)で観察し、粒子の画像(粒子によ
ってできる光の濃淡)をイメージアナライザー(たとえ
ばケンブリッジインストルメント製QTM900)に結
び付け、観察箇所を変えて粒子数5000個以上で次の
数値処理を行ない、それによって求めた数平均径りを平
均粒径とする。
(1) Polyester is removed from a film of average particle size by plasma low-temperature ashing process (
For example, the particles are removed using a printer (Model PR-503 manufactured by Yamato Kagaku Co., Ltd.) to expose the particles. The processing conditions are selected so that the polyester is incinerated but the particles are not damaged. This is an SEM
(Scanning Electron Microscope) and connect the image of the particles (shades of light created by the particles) to an image analyzer (for example, Cambridge Instrument QTM900), change the observation location, and perform the next numerical processing when the number of particles is 5000 or more. The number average diameter obtained thereby is taken as the average particle diameter.

D=ΣD、/N ここで、Dlは粒子の円相当径、Nは個数である。D=ΣD, /N Here, Dl is the circle-equivalent diameter of the particle, and N is the number of particles.

(2)粒子の含有量 ポリエステルは溶解し粒子は溶解させない溶媒を選択し
、粒子をポリエステルから遠心分離し、粒子の全体重量
に対する比率(重量%)をもって粒子含有量とする。場
合によっては赤外分光法の併用も有効である。
(2) Particle content A solvent is selected that dissolves the polyester but does not dissolve the particles, centrifuges the particles from the polyester, and defines the particle content as the ratio (% by weight) to the total weight of the particles. In some cases, infrared spectroscopy may also be effective.

(3)結晶化パラメータΔTcg、融解熱パーキンエル
マー社製のDSC(示差走査熱量計)■型を用いて測定
した。DSCの測定条件は次の通りである。すなわち、
試料10mgをDSC装置にセットし、300℃の温度
で5分間溶融した後、液体窒素中に急冷する。この急冷
試料を10℃/分で昇温し、ガラス転移点Tgを検知す
る。
(3) Crystallization parameter ΔTcg, heat of fusion was measured using a DSC (differential scanning calorimeter) type II manufactured by PerkinElmer. The DSC measurement conditions are as follows. That is,
10 mg of the sample is set in a DSC device, melted at a temperature of 300° C. for 5 minutes, and then rapidly cooled in liquid nitrogen. This rapidly cooled sample is heated at a rate of 10° C./min, and the glass transition point Tg is detected.

さらに昇温を続け、ガラス状態からの結晶化発熱ピーク
温度をもって冷結晶化温度Tccとした。
The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

さらに昇温を続け、融解ピークから融解熱を求めた。こ
こでTcCとTgの差(T(c−T g)を結晶化パラ
メータΔTcgと定義する。
The temperature was further increased, and the heat of fusion was determined from the melting peak. Here, the difference between TcC and Tg (T(c-Tg)) is defined as a crystallization parameter ΔTcg.

(4)表面の分子配向(屈折率) ナトリウムD線(589nm)を光源として、アツベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。ポリマの
二軸配向性は長手方向、幅方向、厚さ方向の屈折率をN
1、N2、N3とした時、(NI  N2)の絶対値が
0.07以下、かつ、N3 / [(N、+N2 )/
2]が0.95以下であることをひとつの基準とできる
。また、レーザー型屈折率計を用いて屈折率を測定して
も良い。さらに、この方法では測定が難しい場合は全反
射レーザーラマン法を用いることもできる。
(4) Surface molecular orientation (refractive index) Measured using an Atsube refractometer using sodium D line (589 nm) as a light source. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH. The biaxial orientation of the polymer has a refractive index of N in the longitudinal direction, width direction, and thickness direction.
1, N2, and N3, the absolute value of (NI N2) is 0.07 or less, and N3 / [(N, +N2 ) /
2] is 0.95 or less. Alternatively, the refractive index may be measured using a laser refractometer. Furthermore, if measurement is difficult with this method, total internal reflection laser Raman method can also be used.

レーザー全反射ラマンの測定は、Jobin−Yvon
社製Ramanor U −1000ラマンシステムに
より、全反射ラマンスペクトルを測定し、例えばPET
の場合では、1615cm−’(ベンゼン環の骨格振動
)と1730cm−”(カルボニル基の伸縮振動)のバ
ンド強度比の偏光測定比(YY/XX比など。
Laser total internal reflection Raman measurement is performed by Jobin-Yvon
The total reflection Raman spectrum was measured using a Ramanor U-1000 Raman system manufactured by
In the case of , the polarization measurement ratio (YY/XX ratio, etc.) of the band intensity ratio of 1615 cm-' (skeletal vibration of benzene ring) and 1730 cm-' (stretching vibration of carbonyl group).

ここでYY:レーザーの偏光方向をYにしてYに対して
平行なうマン光検出、XX:レーザーの偏光方向をXに
してXに対して平行なうマン光検出)が分子配向と対応
することを利用できる。ポリマの二軸配向性はラマン測
定から得られたパラメータを長手方向、幅方向の屈折率
に換算して、その絶対値、差などから判定できる。この
場合の測定条件は次のとおりである。
Here, YY: detection of Mann light parallel to Y with the polarization direction of the laser set to Y; XX: detection of Mann light parallel to X with the polarization direction of the laser set to X) corresponds to molecular orientation. Available. The biaxial orientation of a polymer can be determined by converting the parameters obtained from Raman measurement into refractive indices in the longitudinal direction and width direction, and based on their absolute values, differences, etc. The measurement conditions in this case are as follows.

■光源 アルゴンイオンレーザ−(5145人)■試料のセツテ
ィング フィルム表面を全反射プリズムに圧着させ、レーザのプ
リズム・\の入射角(フィルム厚さ方向との角度)は6
0°とした。
■Light source Argon ion laser (5145 people) ■Setting the sample The surface of the film is pressed against a total reflection prism, and the incident angle of the laser prism (angle with the film thickness direction) is 6
It was set to 0°.

■検出器 PM : RCA31034/Photon Coun
ting System(Hamamafsu C12
3[1)  (supply 1600V)■測定条件 5LIT       1000μm LASER100mW GATE TIME     1.0secSCAN 
5PEED     12cm−’/minSAMPL
ING INTERVAL 0.2cm −’REPE
AT TIME    6 (5)全反射ラマン結晶化指数 1obin−Yvon社製Ramanor U−100
0ラマンシステムにより、全反射ラマンスペクトルを測
定し、カルボニル基の伸縮振動である1730cm〜1
の半価幅をもって表面の全反射ラマン結晶化指数とした
。測定条件は次のとおりである。測定深さは、表面から
500〜1000オングストロ一ム程度である。
■Detector PM: RCA31034/Photon Coun
ting System (Hamamafsu C12
3[1] (supply 1600V) ■Measurement conditions 5LIT 1000μm LASER100mW GATE TIME 1.0secSCAN
5PEED 12cm-'/minSAMPL
ING INTERVAL 0.2cm -'REPE
AT TIME 6 (5) Total reflection Raman crystallization index 1 obin-Yvon Ramanor U-100
The total reflection Raman spectrum was measured using the 0 Raman system, and the stretching vibration of the carbonyl group was measured from 1730 cm to 1.
The half width of the surface was taken as the total reflection Raman crystallization index of the surface. The measurement conditions are as follows. The measurement depth is about 500 to 1000 angstroms from the surface.

■光源 アルゴンイオンレーザ−(5145八)■試料のセツテ
ィング レーザー偏光方向(S偏光)とフィルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着させ
、レーザのプリズムへの入射角(フィルム厚さ方向との
角度)は60° とした。
■Light source: Argon ion laser (51458) ■Setting the sample Press the film surface to a total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and the incident angle of the laser to the prism ( The angle with respect to the film thickness direction was 60°.

■検出器 PM : RCA31034/Photon Coun
ting System(Hamamatsu C12
30)  (supply 1600V)■測定条件 5LIT       1000μm LASER100mW GATE TIME     1.0secSCAN 
5PEED     12cm””/minSAMPL
ING INTERVAL O’、 2cm −’RE
PEAT TIME   、 6 (6)表面突起の平均高さ 2検出着方式の走査型電子顕微鏡[ESM−3200、
エリオニクス(株)製]と断面測定装置[PMS−1、
エリオニクス(株)製]においてフィルム表面の平坦面
の高さを0として走査した時の突起の高−さ測定値を画
像処理装置[I BAS2000、カールツアイス(株
)製]に送り、画像処理装置上にフィルム表面突起画像
を再構築する。次に、この表面突起画像で突起部分を2
値化して得られた個々の突起の面積から円相当径を求め
これをその突起の平均径とする。また、この2値化され
た個々の突起部分の中で最も高い値をその突起の高さと
し、これを個々の突起について求める。この測定を場所
をかえて500回繰返し、突起個数を求め、測定された
全突起についてその高さの平均値を平均高さとした。ま
た個々の突起の高さデータをもとに、高さ分布の標準偏
差を求めた。また走査型電子顕微鏡の倍率は、1000
〜8000倍の間の値を選択する。なお、場合によって
は、高精度光干渉式3次元表面解析装置(WYKO社製
TOPO−3D、対物レンズ=40〜200倍、高解像
度カメラ使用が有効)を用いて得られる高さ情報を上記
SEMの値に読み替えて用いてもよい。
■Detector PM: RCA31034/Photon Coun
ting System (Hamamatsu C12
30) (supply 1600V) ■Measurement conditions 5LIT 1000μm LASER100mW GATE TIME 1.0secSCAN
5PEED 12cm””/minSAMPL
ING INTERVAL O', 2cm-'RE
PEAT TIME, 6 (6) Average height of surface protrusions 2-detection type scanning electron microscope [ESM-3200,
manufactured by Elionix Co., Ltd.] and a cross-sectional measuring device [PMS-1,
The measured height of the protrusions when scanned with the height of the flat surface of the film set as 0 is sent to the image processing device [I BAS2000, manufactured by Carl Zeiss Co., Ltd.], and the image processing device Reconstruct the film surface projection image on top. Next, use this surface protrusion image to mark the protrusion part by 2.
The equivalent circle diameter is determined from the area of each protrusion obtained by converting it into a value, and this is taken as the average diameter of the protrusion. Furthermore, the highest value among the binarized individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations to determine the number of protrusions, and the average value of the heights of all the measured protrusions was taken as the average height. Furthermore, the standard deviation of the height distribution was determined based on the height data of each protrusion. Also, the magnification of a scanning electron microscope is 1000
Choose a value between ~8000x. In some cases, the height information obtained using a high-precision optical interferometric three-dimensional surface analyzer (TOPO-3D manufactured by WYKO, objective lens = 40 to 200 times, effective use of a high-resolution camera) may be used in the above-mentioned SEM. It may be used instead of the value of .

(7)中心線平均表面粗さRa、中心線深さRp。(7) Centerline average surface roughness Ra, centerline depth Rp.

最大高さRt、突起間隔Sm 小板研究所製の高精度薄膜段差測定器ET−10を用い
て測定した。条件は下記のとおりであり、20回の測定
の平均値をもって値とした。
Maximum height Rt, protrusion spacing Sm Measured using a high-precision thin film step measuring instrument ET-10 manufactured by Koita Research Institute. The conditions were as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径二〇、5μm ・触針荷重  : 5mg ・測定長   :1mm ・カットオフ値:0.08mm なお、Ra、Rp、Rt、Smの定義は、たとえば、奈
良治部著「表面粗さの測定・評価法」 (総合技術セン
ター、1983)に示されているものである。
・Stylus tip radius 20.5μm ・Stylus load: 5mg ・Measurement length: 1mm ・Cutoff value: 0.08mm The definitions of Ra, Rp, Rt, and Sm are, for example, “Surface Roughness” by Jibu Nara. This method is described in "Methods for Measuring and Evaluating Quality" (Sogo Technological Center, 1983).

(8)ヤング率 J I 5−Z−1702に規定された方法にしたがっ
て、インストロンタイプの引っ張り試験機を用いて、2
5℃、65%RHにて測定した。
(8) Young's modulus 2 using an Instron type tensile tester according to the method specified in J I 5-Z-1702.
Measurement was performed at 5° C. and 65% RH.

(9)固有粘度[η] (単位はdi/g)オルソクロ
ルフェノール中、25℃で測定した溶液粘度から下記式
から計算される値を用いる。
(9) Intrinsic viscosity [η] (unit: di/g) A value calculated from the following formula from the solution viscosity measured at 25° C. in orthochlorophenol is used.

すなわち、 η、、/C=[η] +K [ηコ 2 ・ にこで、
η5F=(溶液粘度/溶媒粘度)−1、Cは溶媒100
m lあたりの溶解ポリマ重量(g/100m1.通常
1.2)、Kはハギンス定数(0,343とする)。ま
た、溶液粘度、溶媒粘度はオストワルド粘度計を用いて
測定した。
That is, η,, /C=[η] +K [ηko 2 ・ With a smile,
η5F=(solution viscosity/solvent viscosity)-1, C is solvent 100
Dissolved polymer weight per ml (g/100ml, usually 1.2), K is Huggins constant (assumed to be 0,343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

(10)表層粒子濃度比 2次イオンマススペクトル(S IMS)を用いて、フ
ィルム中の粒子に起因する元素の内のもっとも高濃度の
元素とポリエステルの炭素元素の濃度比を粒子濃度とし
、厚さ方向の分析を行なう。
(10) Surface layer particle concentration ratio Using secondary ion mass spectrometry (SIMS), the concentration ratio of the element with the highest concentration among the elements caused by particles in the film and the carbon element of the polyester is defined as the particle concentration, and the thickness Perform an analysis in the horizontal direction.

SIMSによって測定される最表層粒子濃度(深さ0の
点)における粒子濃度Aとさらに深さ方向の分析を続け
て得られる最高濃度Bの比、A/Bを表層濃度比と定義
した。測定装置、条件は下記のとおりである。測定装置
、条件は下記のとおりである。
The ratio of the particle concentration A at the outermost layer particle concentration (point at depth 0) measured by SIMS to the maximum concentration B obtained by further analysis in the depth direction, A/B, was defined as the surface layer concentration ratio. The measuring device and conditions are as follows. The measuring device and conditions are as follows.

■ 測定装置 2次イオン質量分析装置(S IMS)***、ATOM
IKA社製 A−DIDA31)[10■ 測定条件 1次イオン種 :0゜“ 1次イオン加速電圧:12KV 1次イオン電流:200nA ラスター領 域=400μm口 分析領域:ゲート30% 測定真空度: 6.0 ’x 10−9TorrE  
−G  U  N:0.5KY−3,0A(11)単一
粒子指数 フィルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を10oooo倍程度
にすれば、それ以上分けることができない1個の粒子が
観察できる。粒子の占める全面積をA1その内2個以上
の粒子が凝集している凝集体の占める面積をBとした時
、(A−B)/Aをもって、単一粒子指数とする。TE
M条件は下記のとおりであり1視野面積:2μm2の測
定を場所を変えて、500視野測定する。
■ Measuring device Secondary ion mass spectrometer (SIMS) West Germany, ATOM
IKA A-DIDA31) [10■ Measurement conditions Primary ion species: 0゜" Primary ion acceleration voltage: 12KV Primary ion current: 200nA Raster area = 400μm Mouth analysis area: Gate 30% Measurement vacuum: 6 .0' x 10-9TorrE
-GU N: 0.5KY-3,0A (11) A cross section of the single particle index film is photographically observed using a transmission electron microscope (TEM) to detect particles. If the observation magnification is set to about 1000 times, a single particle that cannot be separated any further can be observed. When the total area occupied by particles is A1 and the area occupied by aggregates in which two or more particles are aggregated is B, (A-B)/A is defined as a single particle index. T.E.
The M conditions are as follows: one field of view area: 2 μm2 is measured at different locations, and 500 fields of view are measured.

・装置:日本電子製JEM−1200EX・観察倍率:
 100000倍 ・加速電圧:100kV ・切片厚さ:約1000オングストローム(12)粒径
比 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
・Equipment: JEOL JEM-1200EX ・Observation magnification:
100,000 times Acceleration voltage: 100 kV Section thickness: Approximately 1000 angstroms (12) Particle size ratio Average value of the long diameter of each particle in the measurement of (1) above /
It is the ratio of the average value of the short axis.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=ΣD1./N 短径=ΣD2+/N Dll 、D21はそれぞれ個々の粒子の長径(最大径
)、短径(最短径)、Nは総個数である。
Long axis=ΣD1. /N short axis=ΣD2+/N Dll , D21 is the long axis (maximum diameter) and short axis (shortest axis) of each individual particle, and N is the total number.

(13)粒径の相対標準偏差 上記(1)の方法で測定された個々の突起径DI、平均
径D1粒子総数Nから計算される標準偏差σ(−f(Σ
(D、−D) 2/N+ )を平均径りで割った値(σ
/D)で表わした。
(13) Relative standard deviation of particle size Standard deviation σ(-f(Σ
(D, -D) 2/N+) divided by the average diameter (σ
/D).

(14)低分子成分含有量 試料ポリマを粉砕しソックスレー抽出器を用いて、クロ
ロホルムを溶媒として、還流下で24時間抽出を行なう
。クロロホルムを蒸発させて得られた抽出物の重量のも
との試料の重量に対する比率(重量%)をもって低分子
成分含有量とした。
(14) Low molecular component content The sample polymer is ground and extracted using a Soxhlet extractor under reflux using chloroform as a solvent. The ratio (wt%) of the weight of the extract obtained by evaporating chloroform to the weight of the original sample was defined as the low molecular component content.

(15)結晶化促進係数 上記(3)の方法で粒子を1重量%含有するポリエステ
ルのΔTag (I) 、およびこれから粒子を除去し
た同粘度のポリエステルのΔTcg(n)を測定し、Δ
Tcg(II)とΔTcg(I)の差[ΔTcg(II
)−ΔTcg(I)]をもって、結晶化促進係数とした
(15) Crystallization promotion coefficient ΔTg (I) of a polyester containing 1% by weight of particles by the method described in (3) above, and ΔTcg (n) of a polyester of the same viscosity from which particles have been removed, and Δ
Difference between Tcg(II) and ΔTcg(I) [ΔTcg(II
)−ΔTcg(I)] was taken as the crystallization promotion coefficient.

(16)積層フィルム中の熱可塑性樹脂A層の厚さ 2次イオン質量分析装置(SIMS)を用いて、フィル
ム中の粒子の内最も高濃度の粒子に起因する元素とポリ
エステルの炭素元素の濃度比(M+/C+)を粒子濃度
とし、熱可塑性樹脂A層の表面から深さ(厚さ)方向の
分析を行なう。表層では表面という界面のために粒子濃
度は低く表面から遠ざかるにつれて粒子濃度は高(なる
。本発明フィルムの場合は深さ[I]でいったん極大値
となった粒子濃度がまた減少し始める。この濃度分布曲
線をもとに極大値の粒子濃度の1/2になる深さ[■]
 (ここでII>I)を積層厚さとした。
(16) Thickness of the thermoplastic resin layer A in the laminated film Using a secondary ion mass spectrometer (SIMS), the concentration of elements originating from the particles with the highest concentration among the particles in the film and the carbon element of the polyester Using the ratio (M+/C+) as the particle concentration, analysis is performed in the depth (thickness) direction from the surface of the thermoplastic resin A layer. In the surface layer, the particle concentration is low due to the interface called the surface, and as it moves away from the surface, the particle concentration increases (in the case of the film of the present invention, the particle concentration once reached a maximum value at depth [I] and begins to decrease again. Based on the concentration distribution curve, the depth at which the maximum particle concentration is 1/2 [■]
(Here, II>I) was taken as the lamination thickness.

条件は測定法(10)と同様である。The conditions are the same as in measurement method (10).

なお、フィルム中にもっとも多く含有する粒子が有機高
分子粒子の場合はS IMSでは測定が難しいので、表
面からエツチングしなからXPS(X線光電子分光法)
、IR(赤外分光法)あるいはコンフォーカル顕微鏡な
どで、その粒子濃度のデプスプロファイルを測定し、上
記同様の手法から積層厚さを求めても良い。
Note that if the most abundant particles in the film are organic polymer particles, it is difficult to measure them using SIMS, so we recommend using XPS (X-ray photoelectron spectroscopy) instead of etching them from the surface.
The depth profile of the particle concentration may be measured using IR (infrared spectroscopy) or a confocal microscope, and the layer thickness may be determined using the same method as described above.

さらに、上述した粒子濃度のデプスプロファイルからで
はなく、フィルムの断面観察あるいは薄膜段差測定機等
によって熱可塑性樹脂Aの積層厚さを求めても良い。
Furthermore, the laminated thickness of the thermoplastic resin A may be determined not from the depth profile of the particle concentration described above, but by observing the cross section of the film, using a thin film step measuring device, or the like.

なお、単層フィルムの場合の厚さは、公知の方法、例え
ばダイヤルゲージ法、光干渉法、重量法、薄膜段差測定
法等によって求めること−ができる。
In the case of a single layer film, the thickness can be determined by a known method such as a dial gauge method, an optical interference method, a gravimetric method, and a thin film step measurement method.

(17)耐スクラッチ性 フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行性試験機を使用して、ガイドピン(表面
粗度:Raでi0100n上を走行させる(走行速度1
000m/分、走行回数10パス、巻き付は角=60°
、走行張カニ20g)。
(17) A scratch-resistant film slit into a tape with a width of 1/2 inch was run on a guide pin (surface roughness: Ra and i0100n (running speed 1) using a tape runnability tester.
000m/min, 10 passes, wrapping angle = 60°
, running crab 20g).

この時、フィルムに入った傷を顕微鏡で観察し、幅2.
5μm以上の傷がテープ幅あたり2本未満は優、2本以
上10本未満は良、10本以上は不良と判定した。優が
望ましいが、良でも実用的には使用可能である。
At this time, the scratches in the film were observed under a microscope, and the width was 2.
If there were less than two scratches per tape width of 5 μm or more, it was determined to be excellent, if there were 2 or more and less than 10 scratches, it was determined to be good, and if there were 10 or more scratches, it was determined to be poor. Excellent is desirable, but good is still usable for practical purposes.

(18)耐ダビング性 フィルムに下記組成の磁性塗料をグラビヤロールにより
塗布し、磁気配向させ、乾燥させる。さらに、小型テス
トカレンダー装置(スチールロール/ナイロンロール、
5段)で、温度ニア0℃、線圧: 200kg/cmで
カレンダー処理した後、70℃、48時間キユアリング
する。上記テープ原反を1/2インチにスリットし、パ
ンケーキを作成した。このパンケーキから長さ250m
の長さをVTRカセットに組み込みVTRカセットテー
プとした。
(18) A magnetic paint having the following composition is applied to the dubbing-resistant film using a gravure roll, magnetically oriented, and dried. In addition, a small test calender device (steel roll/nylon roll,
After calendering at a temperature of near 0°C and a linear pressure of 200 kg/cm, the product was cured at 70°C for 48 hours. The original tape was slit into 1/2 inch pieces to make pancakes. 250m long from this pancake
This length was incorporated into a VTR cassette to make a VTR cassette tape.

(磁性塗料の組成) ・co含有酸イヒ鉄(BET値50m2/g)2100
重量部 ・エスレックA(種水化学製塩化ビニル/酢酸ビニル共
重合体)         :10重量部・ニラポラン
2304 (日本ポリウレタン製ポリウレタンエラスト
マ)      =10重量部・コロネートしく日本ポ
リウレタン製ポリイソシアネート)         
  =5重量部・レシチン          :1重
量部・メチル・エチルケトン     ニア5重量部・
メチルイソブチルケトン   ニア5重量部・トルエン
          ニア5重量部・カーボンブラック
      :2重量部・ラウリン酸        
 :1.5重量部このテープに家庭用VTRを用いてシ
バツク製のテレビ試験波形発生器(TG7/U706)
により100%クロマ信号を記録し、その再生信号から
シバツク製カラービデオノイズ測定器(925D/1)
でクロマS/Nを測定しAとした。また上記と同じ信号
を記録したマスターテープのパンケーキを磁界転写方式
のビデオソフト高速プリントシステム(たとえばソニー
マグネスケール■製のスプリンタ)を用いてAを測定し
たのと同じ試料テープ(未記録)のパンケーキへダビン
グした後のテープのクロマS/Nを上記と同様にして測
定し、Bとした。このダビングによるクロマS/Nの低
下(A−B)が3dB未満の場合は耐ダビング性:優、
3dB以上5dB未満の場合は良、5dB以上は不良と
判定した。優が望ましいが、良でも実用的には使用可能
である。
(Composition of magnetic paint) ・Co-containing iron oxide (BET value 50m2/g) 2100
Parts by weight: S-LEC A (vinyl chloride/vinyl acetate copolymer manufactured by Tanezu Chemical Co., Ltd.): 10 parts by weight, Niraporan 2304 (polyurethane elastomer manufactured by Nippon Polyurethane) = 10 parts by weight, Coronate (polyisocyanate manufactured by Nippon Polyurethane)
= 5 parts by weight Lecithin: 1 part by weight Methyl ethyl ketone 5 parts by weight
Methyl isobutyl ketone 5 parts by weight, toluene 5 parts by weight, carbon black: 2 parts by weight, lauric acid
: 1.5 parts by weight This tape was used with a home VTR and a Shibatsu TV test waveform generator (TG7/U706) was applied.
100% chroma signal was recorded, and the playback signal was measured using Shibaku color video noise measuring instrument (925D/1).
The chroma S/N was measured and given as A. In addition, the same sample tape (unrecorded) on which A was measured using a magnetic field transfer type video software high-speed printing system (for example, Sony Magnescale's Sprinter) on the master tape pancake on which the same signal as above was recorded. The chroma S/N of the tape after dubbing it onto pancakes was measured in the same manner as above, and it was designated as B. If the chroma S/N reduction (A-B) due to dubbing is less than 3 dB, dubbing resistance is excellent.
A value of 3 dB or more and less than 5 dB was determined to be good, and a value of 5 dB or more was determined to be bad. Excellent is desirable, but good is still usable for practical purposes.

(19)摩擦係数μに フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行性試験機TBT−300型(■横浜シス
テム研究新製)を使用し、60℃、80%RH雰囲気で
走行させ、初期の摩擦係数を下記の式より求めた(フィ
ルム幅は1/2インチとした)。
(19) The film was slit into a tape shape with a width of 1/2 inch to give a coefficient of friction μ, and was measured using a tape runnability tester TBT-300 model (manufactured by Yokohama System Research Co., Ltd.) at 60°C and in an 80% RH atmosphere. The initial friction coefficient was determined using the following formula (the film width was 1/2 inch).

μに=0.733 log (T2 /TI )ここで
T8は入側張力、T2は出側張力である。
μ = 0.733 log (T2 /TI) where T8 is the inlet tension and T2 is the outlet tension.

ガイド径は5n+n+φであり、ガイド材質は5US2
7(表面粗度0.2S)、巻き付は角は180°、走行
速度は3.3cm/秒である。この測定によって得られ
たμkが0.35以下の場合は摩擦係数:良好、0.3
5を越える場合は摩擦係数:不良と判定した。このμに
はフィルムを磁気記録媒体、コンデンサ、包装用などの
加工する時のハンドリング性を左右する臨界点である。
The guide diameter is 5n+n+φ, and the guide material is 5US2.
7 (surface roughness 0.2S), the winding angle is 180°, and the running speed is 3.3 cm/sec. If μk obtained by this measurement is 0.35 or less, the friction coefficient is good, 0.3
If it exceeds 5, the friction coefficient is determined to be poor. This μ is a critical point that determines the handling properties when processing the film into magnetic recording media, capacitors, packaging, etc.

(20)耐削れ性 フィルムを幅1/2インチにテープ状にスリットしたも
のに片刃を垂直に押しあて、さらに0. 5am押し込
んだ状態で20cm走行させる(走行張力=500 g
、走行速度:6.7cm/秒)。この時片刃の先に付着
したフィルム表面の削れ物の高さを顕微鏡で読みとり、
削れ量とした(単位はμm)。
(20) Press one blade perpendicularly against a tape-like slit of 1/2 inch wide scratch-resistant film, and then Run 20cm with 5am pushed in (running tension = 500 g
, running speed: 6.7 cm/sec). At this time, the height of the scraped material on the film surface attached to the tip of the single blade was read using a microscope.
It was defined as the amount of abrasion (unit: μm).

少なくとも片面について、この削れ量が10μm以下の
場合は耐削れ性:良好、10μmを越える場合は耐削れ
性:不良と判定した。この削れ量:10μmという値は
、印刷工程やカレンダー工程などの加工工程で、フィル
ム表面が削れることによって、工程上、製品性能上のト
ラブルがおこるか否かを判定するための臨界点である。
For at least one side, if the amount of abrasion was 10 μm or less, the abrasion resistance was determined to be good, and if it exceeded 10 μm, the abrasion resistance was determined to be poor. This value of 10 μm of the amount of abrasion is a critical point for determining whether or not problems in process and product performance will occur due to abrasion of the film surface during processing steps such as printing and calendering.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1〜10、比較例1〜7 平均粒径の異なる架橋ポリスチレン粒子、コロイダルシ
リカに起因するシリカ粒子を含有するエチレングリコー
ルスラリーを調製し、このエチレングリコールスラリー
を190℃で1.5時間熱処理した後、テレフタル酸ジ
メチルとエステル交換反応後、重縮合し、該粒子を0.
3〜55重量%含有するポリエチレンテレフタレート(
以下PETと略記する)のペレットを作った。また、実
施例9はポリエチレンα、β−ビス(2−クロルフェノ
キシ)エタン−4,4′−ジカルボキシレートを、実施
例10はポリエチレン2.6−ナフタレートを用いた。
Examples 1 to 10, Comparative Examples 1 to 7 Ethylene glycol slurry containing crosslinked polystyrene particles and silica particles derived from colloidal silica with different average particle sizes was prepared, and this ethylene glycol slurry was heat-treated at 190°C for 1.5 hours. After that, the particles were subjected to transesterification reaction with dimethyl terephthalate, followed by polycondensation, and the particles were reduced to 0.
Polyethylene terephthalate containing 3 to 55% by weight (
(hereinafter abbreviated as PET) pellets were made. Further, in Example 9, polyethylene α,β-bis(2-chlorophenoxy)ethane-4,4′-dicarboxylate was used, and in Example 10, polyethylene 2,6-naphthalate was used.

この時、重縮合時間を調節し固有粘度を0゜70とした
(熱可塑性樹脂A)。また、常法によって、固有粘度0
.62の実質的に不活性粒子を含有しないPETを製造
し、熱可塑性樹脂Bとした。これらのポリマをそれぞれ
180℃で3時間減圧乾燥(3Torr) した。熱可
塑性樹脂Aを押出機1に供給し310℃で溶融し、さら
に、熱可塑性樹脂Bを押出機2に供給、280°Cで溶
融し、これらのポリマを合流ブロック(フィードブロッ
ク)で合流積層し、静電印加キャスト法を用いて表面温
度30℃のキャスティング・ドラムに巻きつけて冷却固
化し、2層構造の未延伸フィルムを作った。この時、口
金スリット間隙/未延伸フィルム厚さの比を10として
未延伸フィルムを作った。また、それぞれの押出機の吐
出量を調節し総厚さ、熱可塑性樹脂A層の厚さを調節し
た。この未延伸フィルムを温度80℃にて長手方向に4
゜5倍延伸した。この延伸は2組ずつのロールの周速差
で、4段階で行なった。この−軸延伸フィルムをステン
タを用いて延伸速度2000%/分で100℃で幅方向
に4.0倍延伸し、定長下で、200℃にて5秒間熱処
理し、総厚さ15μm、熱可塑性樹脂A層厚さ0.00
3〜5μmの二軸配向積層フィルムを得た。これらのフ
ィルムの本発明のパラメータは第1表に示したとおりで
あり、本発明のパラメータが範囲内の場合は耐スクラッ
チ性、耐ダビング性、摩擦係数は第1表に示したとおり
優または良であったが、そうでない場合は耐スクラッチ
性、耐ダビング性、摩擦係数を兼備するフィルムは得ら
れなかった。
At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.70 (thermoplastic resin A). In addition, by a conventional method, the intrinsic viscosity is 0.
.. 62 substantially inert particle-free PET was produced and designated as Thermoplastic Resin B. Each of these polymers was dried under reduced pressure (3 Torr) at 180° C. for 3 hours. Thermoplastic resin A is supplied to extruder 1 and melted at 310°C, thermoplastic resin B is further supplied to extruder 2 and melted at 280°C, and these polymers are merged and laminated in a merging block (feed block). Then, using an electrostatic casting method, the film was wound around a casting drum with a surface temperature of 30° C., and cooled and solidified to produce an unstretched film with a two-layer structure. At this time, an unstretched film was prepared with a ratio of die slit gap/unstretched film thickness of 10. In addition, the total thickness and the thickness of the thermoplastic resin A layer were adjusted by adjusting the discharge amount of each extruder. This unstretched film was stretched 4 times in the longitudinal direction at a temperature of 80°C.
It was stretched 5 times. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This -axially stretched film was stretched 4.0 times in the width direction at 100°C at a stretching rate of 2000%/min using a stenter, and then heat treated at 200°C for 5 seconds under constant length to give a total thickness of 15 μm. Plastic resin A layer thickness 0.00
A biaxially oriented laminated film of 3 to 5 μm was obtained. The parameters of the present invention for these films are as shown in Table 1, and when the parameters of the present invention are within the range, the scratch resistance, dubbing resistance, and friction coefficient are excellent or good as shown in Table 1. However, in other cases, a film having good scratch resistance, dubbing resistance, and coefficient of friction could not be obtained.

実施例11〜14 実施例1に用いた熱可塑性樹脂Aの原料を押出機1に供
給し、平均粒径0. 3〜1. 0μmの架橋ポリスチ
レンの粒子を所定量含有する固有粘度0.6のPETを
熱可塑性樹脂Bとしてこれを押出機2に供給して、実施
例1と同様にして、ただしA/B/Aの3層構造の総厚
さ15μm1熱可塑性樹脂A層(片側)の厚さが0.0
6〜0.3μmのフィルムを作った。これらのフィルム
の本発明パラメータは本発明範囲であり、耐スクラ・ン
チ性、耐ダビング性ともに優れたフィルムであった(第
2表)。
Examples 11 to 14 The raw material for thermoplastic resin A used in Example 1 was supplied to extruder 1, and the average particle size was 0. 3-1. PET with an intrinsic viscosity of 0.6 containing a predetermined amount of crosslinked polystyrene particles of 0 μm was supplied as thermoplastic resin B to the extruder 2, and the same procedure as in Example 1 was carried out, except that A/B/A was 3. Total thickness of layer structure: 15 μm 1 Thickness of thermoplastic resin A layer (one side): 0.0
Films of 6-0.3 μm were made. The inventive parameters of these films were within the inventive range, and the films were excellent in both scratch resistance and dubbing resistance (Table 2).

実施例15〜18、比較例8〜9 平均粒径の異なるコロイダルシリカに起因するシリカ粒
子を含有するエチレングリコールを調製し、ナトリウム
含有量を粒子に対し0.02〜1゜5重量%とした。こ
のエチレングリコールスラリーを190℃で1.5時間
熱処理した後、テレフタル酸ジメチルとエステル交換反
応後、重縮合し、コロイダルシリカに起因するシリカ粒
子を所定量含有するPETのペレットを作った。この時
、重縮合時間を調節し固有粘度を0. 7とした。また
、実施例18、比較例9はPETとp−オキシ安息香酸
メチルの共重合体からなる溶融光学異方性ポリエステル
(出光石油化学製LCP100E)と、コロイダルシリ
カに起因するシリカ粒子を含有するエチレングリコール
スラリーを190℃で1゜5時間熱処理した後溶媒を水
に置換したスラリーとを、ベント方式の2軸押比機を用
いて混練し、コロイダルシリカに起因するシリカ粒子を
所定量含有するポリマを作った。これらのペレットをそ
れぞれ180℃で3時間減圧乾燥(3Torr) L、
、押出機に供給し、300°Cで溶融し、静電印加キャ
スト法を用いて表面温度30℃のキャスティング・ドラ
ムに巻きつけて冷却固化し未延伸フィルムを作った。こ
の未延伸フィルムを温度80℃にて長手方向に1〜4.
5倍延伸した。この延伸は2組ずつのロールの周速差で
、延伸段数を1〜4段階で変更して行なった。この−軸
延伸フィルムをステンタを用いて延伸速度2000%/
分で100℃で幅方向に4.0倍延伸し、定長下で、1
90℃にて5秒間熱処理し、厚さ065〜3μmの二軸
配向フィルムを得た。これらのフィルムの本発明のパラ
メータおよび性能は第3表に示したとおりであり、本発
明のパラメータが本発明範囲内である場合は耐スクラッ
チ性、摩擦係数は優または良であるが、パラメータが本
発明範囲外である場合には耐スクラッチ性、摩擦係数を
兼備したフィルムは得られないことがわかる。
Examples 15 to 18, Comparative Examples 8 to 9 Ethylene glycol containing silica particles derived from colloidal silica with different average particle sizes was prepared, and the sodium content was set to 0.02 to 1.5% by weight based on the particles. . This ethylene glycol slurry was heat-treated at 190° C. for 1.5 hours, followed by transesterification with dimethyl terephthalate, followed by polycondensation to produce PET pellets containing a predetermined amount of silica particles derived from colloidal silica. At this time, adjust the polycondensation time to reduce the intrinsic viscosity to 0. It was set at 7. In addition, Example 18 and Comparative Example 9 used a fused optically anisotropic polyester (LCP100E manufactured by Idemitsu Petrochemical Co., Ltd.) consisting of a copolymer of PET and methyl p-oxybenzoate, and ethylene containing silica particles originating from colloidal silica. The glycol slurry was heat-treated at 190°C for 1°5 hours and the solvent was replaced with water, and the slurry was kneaded using a vent type twin-screw presser to produce a polymer containing a predetermined amount of silica particles originating from colloidal silica. made. These pellets were dried under reduced pressure (3 Torr) at 180°C for 3 hours, respectively.
The mixture was supplied to an extruder, melted at 300°C, wound around a casting drum with a surface temperature of 30°C using an electrostatic casting method, and cooled and solidified to produce an unstretched film. This unstretched film was stretched 1 to 4 times in the longitudinal direction at a temperature of 80°C.
It was stretched 5 times. This stretching was carried out by changing the number of stretching stages from 1 to 4 by changing the peripheral speed of each two sets of rolls. This -axially stretched film was stretched at a stretching speed of 200%/
Stretched 4.0 times in the width direction at 100°C for 1 minute, then stretched at a constant length for 1
Heat treatment was performed at 90° C. for 5 seconds to obtain a biaxially oriented film with a thickness of 065 to 3 μm. The parameters and performance of the present invention of these films are shown in Table 3. When the parameters of the present invention are within the range of the present invention, the scratch resistance and friction coefficient are excellent or good, but the parameters are not within the range of the present invention. It can be seen that a film having both scratch resistance and friction coefficient cannot be obtained when the content is outside the range of the present invention.

実施例19〜24、比較例10〜11 熱可塑性樹脂A、Bとして、PET、ポリフェニレンス
ルフィド、ナイロン6を準備した。熱可塑性樹脂Aには
各種粒子を含有するエチレングリコールスラリーを19
0℃で1.5時間熱処理した後、溶媒を水に置換したス
ラリーをベント方式の2軸押出機を用いて熱可塑性樹脂
と混練し、各種粒子を所定量含有する熱可塑性樹脂Aを
作った。
Examples 19-24, Comparative Examples 10-11 As thermoplastic resins A and B, PET, polyphenylene sulfide, and nylon 6 were prepared. Thermoplastic resin A contains ethylene glycol slurry containing various particles.
After heat treatment at 0°C for 1.5 hours, the slurry in which the solvent was replaced with water was kneaded with a thermoplastic resin using a vented twin-screw extruder to produce thermoplastic resin A containing a predetermined amount of various particles. .

熱可塑性樹脂Aを押出機1に供給し310〜330℃で
溶融し、さらに、実質的に粒子を含有しない熱可塑性樹
脂Bを押出機2に供給、290〜310℃で溶融し、こ
れらの熱可塑性樹脂を第4表のように組み合わせて、合
流ブロック(フィードブロック)で合流積層し、静電印
加キャスト法を用いて表面温度30℃のキャスティング
・ドラムに巻きつけて冷却固化し、3層構造(A/B/
A)の未延伸フィルムを作った。この時、口金スリット
間隙/未延伸フィルム厚さの比を10として未延伸フィ
ルムを作った。また、それぞれの押出機の吐出量を調節
し総厚さ、熱可塑性樹脂A層の厚さを調節した。この未
延伸フィルムを温度50〜95℃にて長手方向に4.5
倍延伸した。この延伸は2組ずつのロールの周速差で、
4段階で行なった。この−軸延伸フィルムをステンタを
用いて延伸速度2000%/分で100℃で幅方向に4
゜0倍延伸し、定長下で、180℃にて5秒間熱処理し
、総厚さ15μm1熱可塑性樹脂A層の厚さおよび厚さ
と含有する粒子の径の比、含有量が異なるサンプルを作
った。これらのフィルムの本発明のパラメータは第4表
に示したとおりであり、本発明のパラメータが範囲内の
場合は耐スクラッチ性、耐ダビング性、摩擦係数は第4
表に示したとおり優または良であったが、そうでない場
合は耐スクラッチ性、耐ダビング性、摩擦係数を兼備す
るフィルムは得られなかった。
Thermoplastic resin A is supplied to extruder 1 and melted at 310 to 330°C, and thermoplastic resin B, which does not substantially contain particles, is supplied to extruder 2 and melted at 290 to 310°C. Plastic resins are combined as shown in Table 4, combined and laminated in a feed block, and then wrapped around a casting drum with a surface temperature of 30°C using the electrostatic casting method and cooled and solidified to create a three-layer structure. (A/B/
A) unstretched film was made. At this time, an unstretched film was prepared with a ratio of die slit gap/unstretched film thickness of 10. In addition, the total thickness and the thickness of the thermoplastic resin A layer were adjusted by adjusting the discharge amount of each extruder. This unstretched film was heated to 4.5 mm in the longitudinal direction at a temperature of 50 to 95°C.
Stretched twice. This stretching is done by the difference in circumferential speed between the two sets of rolls.
It was done in 4 stages. This -axially stretched film was stretched in the width direction at 100°C at a stretching speed of 2000%/min using a stenter.
゜0 times stretched and heat treated at 180°C for 5 seconds under constant length to make samples with a total thickness of 15 μm 1 The ratio of the thickness of the thermoplastic resin A layer to the diameter of the contained particles, and the content. Ta. The parameters of the present invention for these films are shown in Table 4, and when the parameters of the present invention are within the range, the scratch resistance, dubbing resistance, and friction coefficient are as shown in Table 4.
As shown in the table, the results were excellent or good; otherwise, a film having both scratch resistance, dubbing resistance, and coefficient of friction could not be obtained.

[発明の効果] 本発明は、製法の工夫により、不活性粒子を含有する熱
可塑性樹脂を用いて、粒子の大きさとフィルム厚さの関
係、含有量、フィルム厚さを特定範囲としたフィルムあ
るいはその積層フィルムとしたので、耐スクラッチ性、
摩擦係数が優れたフィルムとなり、また磁気記録媒体用
に用いた時の耐ダビング性に優れたフィルムが得られた
ものであり、各用途でのフィルム加工速度の増大に対応
できるものである。本発明フィルムの用途は特に限定さ
れないが、加工工程でのフィルム表面の傷が加工工程上
、製品性能上特に問題となる磁気記録媒体用ベースフィ
ルムとして特に有用である。
[Effects of the Invention] The present invention utilizes a thermoplastic resin containing inert particles by devising a manufacturing method to produce a film or film with a specific range of the relationship between particle size and film thickness, content, and film thickness. The laminated film has scratch resistance and
A film with an excellent coefficient of friction and excellent dubbing resistance when used for magnetic recording media was obtained, and can respond to increases in film processing speed in various applications. Although the use of the film of the present invention is not particularly limited, it is particularly useful as a base film for magnetic recording media, where scratches on the film surface during processing are particularly problematic in terms of processing and product performance.

また、本発明フィルムのうち2層構造のものは熱可塑性
樹脂A面が走行面(磁気記録媒体用では磁性層を塗布し
ない面、その他の用途では印刷やその地塗材の塗布など
の処理がほどこされない面)として用いることが好まし
い。
In addition, for films of the present invention with a two-layer structure, the thermoplastic resin side A is the running surface (for magnetic recording media, the surface is not coated with a magnetic layer, and for other uses, it is the surface that is not coated with a magnetic layer, and for other uses, it is the surface that is not coated with a magnetic layer, and for other uses, it is the surface that is not coated with a magnetic layer). It is preferable to use it as an unfinished surface.

また、本発明は製膜工程内で、コーティングなどの操作
なしで直接複合積層によって作ったフィルムであり、製
膜工程中あるいはその後のコーティングによって作られ
る積層フィルムに比べて、最表層の分子も二軸配向であ
るため、上述した特性以外、例えば、表面の耐削れ性も
はるかに優れ、しかもコスト面、品質の安定性などにお
いて有利であるものである。
In addition, the present invention is a film made by direct composite lamination without any operations such as coating during the film-forming process, and compared to laminated films made during the film-forming process or by subsequent coating, the outermost layer has two molecules. Since it is axially oriented, it has far superior properties other than those described above, such as surface abrasion resistance, and is advantageous in terms of cost and quality stability.

Claims (6)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂Aと不活性粒子とを主成分とするフ
ィルムであって、該フィルム中に含有される不活性粒子
の平均粒径がフィルム厚さの0.1〜10倍、該粒子の
含有量が0.5〜50重量%であることを特徴とする厚
さ0.005〜3μmの二軸配向熱可塑性樹脂フィルム
(1) A film containing thermoplastic resin A and inert particles as main components, wherein the average particle diameter of the inert particles contained in the film is 0.1 to 10 times the thickness of the film; A biaxially oriented thermoplastic resin film having a thickness of 0.005 to 3 μm, the content of which is 0.5 to 50% by weight.
(2)実質的に不活性粒子を含有しない熱可塑性樹脂B
を主成分とするフィルムの少なくとも片面に、請求項(
1)に記載の熱可塑性樹脂フィルムが積層されてなるこ
とを特徴とする二軸配向熱可塑性樹脂フィルム。
(2) Thermoplastic resin B that does not substantially contain inert particles
At least one side of the film mainly composed of
A biaxially oriented thermoplastic resin film, characterized in that the thermoplastic resin films described in item 1) are laminated.
(3)熱可塑性樹脂Bと平均粒径0.007〜2μmの
不活性粒子とを主成分とし、該不活性粒子の含有量が0
.001〜0.2重量%であるフィルムの少なくとも片
面に、請求項(1)に記載の熱可塑性樹脂フィルムが積
層されてなることを特徴とする二軸配向熱可塑性樹脂フ
ィルム。
(3) Thermoplastic resin B and inert particles with an average particle size of 0.007 to 2 μm are the main components, and the content of the inert particles is 0.
.. A biaxially oriented thermoplastic resin film, characterized in that the thermoplastic resin film according to claim 1 is laminated on at least one side of the film in an amount of 0.001 to 0.2% by weight.
(4)熱可塑性樹脂Aが結晶性ポリエステルであり、か
つ、熱可塑性樹脂Aを主成分とするフィルムの表面の全
反射ラマン結晶化指数が20cm^−^1以下であるこ
とを特徴とする請求項(1)〜(3)のいずれかに記載
の二軸配向熱可塑性樹脂フィルム。
(4) A claim characterized in that the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film containing the thermoplastic resin A as a main component is 20 cm^-^1 or less The biaxially oriented thermoplastic resin film according to any one of items (1) to (3).
(5)熱可塑性樹脂Aを主成分とするフィルムに含有さ
れる不活性粒子が粒径比1.0〜1.3の粒子であるこ
とを特徴とする請求項(1)〜(4)のいずれかに記載
の二軸配向熱可塑性樹脂フィルム。
(5) Claims (1) to (4) characterized in that the inert particles contained in the film containing thermoplastic resin A as a main component are particles with a particle size ratio of 1.0 to 1.3. The biaxially oriented thermoplastic resin film according to any one of the above.
(6)熱可塑性樹脂Aを主成分とするフィルムに含有さ
れる不活性粒子の相対標準偏差が0.6以下であること
を特徴とする請求項(1)〜(5)のいずれかに記載の
二軸配向熱可塑性樹脂フィルム。
(6) According to any one of claims (1) to (5), wherein the relative standard deviation of the inert particles contained in the film containing thermoplastic resin A as a main component is 0.6 or less. biaxially oriented thermoplastic resin film.
JP64000775A 1988-06-08 1989-01-05 Biaxially oriented thermoplastic resin film Expired - Lifetime JPH0780282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP64000775A JPH0780282B2 (en) 1988-06-08 1989-01-05 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14197288 1988-06-08
JP63-141972 1988-06-08
JP64000775A JPH0780282B2 (en) 1988-06-08 1989-01-05 Biaxially oriented thermoplastic resin film

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP6017497A Division JP2804434B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film
JP6017499A Division JP2827880B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film
JP1749894A Division JP2892273B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film
JP18933696A Division JPH0912745A (en) 1996-07-18 1996-07-18 Biaxially oriented thermoplastic resin film
JP9134838A Division JPH1052890A (en) 1988-06-08 1997-05-26 Biaxialy oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH0277431A true JPH0277431A (en) 1990-03-16
JPH0780282B2 JPH0780282B2 (en) 1995-08-30

Family

ID=26333841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64000775A Expired - Lifetime JPH0780282B2 (en) 1988-06-08 1989-01-05 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPH0780282B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399847A (en) * 1989-09-14 1991-04-25 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH0399848A (en) * 1989-09-14 1991-04-25 Toray Ind Inc Biaxially oriented thermoplastic resin film for magnetic tape base
JPH03175034A (en) * 1989-12-05 1991-07-30 Toray Ind Inc Biaxially oriented polyester film and worked matter thereof
JPH03187741A (en) * 1989-12-18 1991-08-15 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03207651A (en) * 1990-01-10 1991-09-10 Toray Ind Inc Biaxially oriented polyester film
JPH04119845A (en) * 1990-09-10 1992-04-21 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH04278349A (en) * 1991-03-06 1992-10-02 Toray Ind Inc Biaxially oriented laminated polyester film
JPH04341841A (en) * 1991-05-20 1992-11-27 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH0592483A (en) * 1991-09-30 1993-04-16 Toray Ind Inc Biaxially-oriented laminated film
JPH05269838A (en) * 1992-03-27 1993-10-19 Toray Ind Inc Biaxially oriented laminated film
JPH0643123B2 (en) * 1989-07-27 1994-06-08 ローヌ―プーラン・フイルム Use as composite polyester film and protective layer for photopolymer plate and photopolymer plate containing said film
JPH06198827A (en) * 1992-12-28 1994-07-19 Toray Ind Inc Biaxially oriented polyester film
JPH06256542A (en) * 1988-06-08 1994-09-13 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH06290515A (en) * 1993-02-11 1994-10-18 Philips Electron Nv Device for at least one of record and reproduction for tape-type recording carrier
US5401559A (en) * 1991-11-18 1995-03-28 Toray Industries, Inc. Biaxially oriented thermoplastic resin film
US5458964A (en) * 1992-08-12 1995-10-17 Toray Industries, Inc. Biaxially oriented film comprising organic particles
US5532047A (en) * 1993-08-30 1996-07-02 Toray Industries, Inc. Biaxially oriented, laminated polyester film
EP0845351A3 (en) * 1996-11-14 1999-03-10 Teijin Limited Biaxially oriented laminate polyester film
EP1325809A1 (en) * 2001-12-27 2003-07-09 Toray Industries, Inc. Biaxially oriented, laminated polyester film
JP2006274112A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Biaxially oriented polyester film
JP2009166424A (en) * 2008-01-18 2009-07-30 Teijin Ltd Biaxially stretched polyester film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518387A (en) * 1974-07-11 1976-01-23 Toray Industries HORIESUTER USEKISOFUIRUMU
JPS60254415A (en) * 1984-04-16 1985-12-16 ヘキスト アクチエンゲゼルシヤフト Multilayer biaxially stretched support sheet for informationsupport by magnetism and manufacture thereof
JPS61149353A (en) * 1984-12-24 1986-07-08 東洋紡績株式会社 Thermoplastic resin film laminate and manufacture thereof
JPS62152850A (en) * 1985-12-27 1987-07-07 東洋紡績株式会社 Thermoplastic-resin film laminate and manufacture thereof
JPS62225345A (en) * 1986-02-14 1987-10-03 ロ−ヌ−プ−ラン・フイルム Transparent composite polyester film capable of being particularly used for manufacturing metallic glossy film having high gloss and manufacture thereof
JPS62259304A (en) * 1986-05-06 1987-11-11 帝人株式会社 Polyester film for capacitor dielectric
JPS62290535A (en) * 1986-06-11 1987-12-17 東レ株式会社 Polyester film for magnetic record medium and manufacture thereof
JPS63108037A (en) * 1986-08-27 1988-05-12 Teijin Ltd Biaxially oriented polyester film
JPS63316419A (en) * 1987-06-18 1988-12-23 Diafoil Co Ltd Biaxially drawn polyester film for capacitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518387A (en) * 1974-07-11 1976-01-23 Toray Industries HORIESUTER USEKISOFUIRUMU
JPS60254415A (en) * 1984-04-16 1985-12-16 ヘキスト アクチエンゲゼルシヤフト Multilayer biaxially stretched support sheet for informationsupport by magnetism and manufacture thereof
JPS61149353A (en) * 1984-12-24 1986-07-08 東洋紡績株式会社 Thermoplastic resin film laminate and manufacture thereof
JPS62152850A (en) * 1985-12-27 1987-07-07 東洋紡績株式会社 Thermoplastic-resin film laminate and manufacture thereof
JPS62225345A (en) * 1986-02-14 1987-10-03 ロ−ヌ−プ−ラン・フイルム Transparent composite polyester film capable of being particularly used for manufacturing metallic glossy film having high gloss and manufacture thereof
JPS62259304A (en) * 1986-05-06 1987-11-11 帝人株式会社 Polyester film for capacitor dielectric
JPS62290535A (en) * 1986-06-11 1987-12-17 東レ株式会社 Polyester film for magnetic record medium and manufacture thereof
JPS63108037A (en) * 1986-08-27 1988-05-12 Teijin Ltd Biaxially oriented polyester film
JPS63316419A (en) * 1987-06-18 1988-12-23 Diafoil Co Ltd Biaxially drawn polyester film for capacitor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804434B2 (en) * 1988-06-08 1998-09-24 東レ株式会社 Biaxially oriented thermoplastic resin film
JPH06256542A (en) * 1988-06-08 1994-09-13 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH0643123B2 (en) * 1989-07-27 1994-06-08 ローヌ―プーラン・フイルム Use as composite polyester film and protective layer for photopolymer plate and photopolymer plate containing said film
JPH0399847A (en) * 1989-09-14 1991-04-25 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH0399848A (en) * 1989-09-14 1991-04-25 Toray Ind Inc Biaxially oriented thermoplastic resin film for magnetic tape base
JPH03175034A (en) * 1989-12-05 1991-07-30 Toray Ind Inc Biaxially oriented polyester film and worked matter thereof
JPH03187741A (en) * 1989-12-18 1991-08-15 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03207651A (en) * 1990-01-10 1991-09-10 Toray Ind Inc Biaxially oriented polyester film
JPH04119845A (en) * 1990-09-10 1992-04-21 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH04278349A (en) * 1991-03-06 1992-10-02 Toray Ind Inc Biaxially oriented laminated polyester film
JPH04341841A (en) * 1991-05-20 1992-11-27 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH0592483A (en) * 1991-09-30 1993-04-16 Toray Ind Inc Biaxially-oriented laminated film
US5401559A (en) * 1991-11-18 1995-03-28 Toray Industries, Inc. Biaxially oriented thermoplastic resin film
JPH05269838A (en) * 1992-03-27 1993-10-19 Toray Ind Inc Biaxially oriented laminated film
US5458964A (en) * 1992-08-12 1995-10-17 Toray Industries, Inc. Biaxially oriented film comprising organic particles
JPH06198827A (en) * 1992-12-28 1994-07-19 Toray Ind Inc Biaxially oriented polyester film
JPH06290515A (en) * 1993-02-11 1994-10-18 Philips Electron Nv Device for at least one of record and reproduction for tape-type recording carrier
US5532047A (en) * 1993-08-30 1996-07-02 Toray Industries, Inc. Biaxially oriented, laminated polyester film
US5677034A (en) * 1993-08-30 1997-10-14 Toray Industries, Inc. Biaxially oriented, laminated polyester film
EP0845351A3 (en) * 1996-11-14 1999-03-10 Teijin Limited Biaxially oriented laminate polyester film
US6068909A (en) * 1996-11-14 2000-05-30 Teijin Limited Biaxially oriented laminate polyester film
EP1325809A1 (en) * 2001-12-27 2003-07-09 Toray Industries, Inc. Biaxially oriented, laminated polyester film
JP2006274112A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Biaxially oriented polyester film
JP2009166424A (en) * 2008-01-18 2009-07-30 Teijin Ltd Biaxially stretched polyester film

Also Published As

Publication number Publication date
JPH0780282B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US5069962A (en) Biaxially oriented laminated film
JPH0277431A (en) Biaxially oriented thermoplastic resin film
JP2817302B2 (en) Biaxially oriented polyester film
JP2692320B2 (en) Biaxially oriented polyester film
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP2892273B2 (en) Biaxially oriented thermoplastic resin film
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JP3134416B2 (en) Polyester film
JP2804434B2 (en) Biaxially oriented thermoplastic resin film
JP2510741B2 (en) Biaxially oriented thermoplastic resin film
JP2569937B2 (en) Biaxially oriented polyester film
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JPH04151245A (en) Biaxially oriented polyester film
JP2827880B2 (en) Biaxially oriented thermoplastic resin film
JP2853878B2 (en) Biaxially oriented thermoplastic resin film
JPH02158628A (en) Biaxially orientated thermoplastic resin film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JPH04259548A (en) Biaxially oriented polyester film
JPH03210339A (en) Biaxially oriented thermoplastic resin film and production thereof
JPH03187723A (en) Biaxially oriented thermoplastic resin film
JP2666499B2 (en) Audio tape
JPH04119845A (en) Biaxially oriented thermoplastic resin film
JPH03150127A (en) Manufacture of biaxially stretched thermoplastic resin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14