KR20040067608A - Metal powder and the manufacturing method - Google Patents

Metal powder and the manufacturing method Download PDF

Info

Publication number
KR20040067608A
KR20040067608A KR1020030004815A KR20030004815A KR20040067608A KR 20040067608 A KR20040067608 A KR 20040067608A KR 1020030004815 A KR1020030004815 A KR 1020030004815A KR 20030004815 A KR20030004815 A KR 20030004815A KR 20040067608 A KR20040067608 A KR 20040067608A
Authority
KR
South Korea
Prior art keywords
gas
nozzle
metal powder
metal
powder
Prior art date
Application number
KR1020030004815A
Other languages
Korean (ko)
Inventor
김홍물
연규엽
최관영
Original Assignee
(주)나노닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)나노닉스 filed Critical (주)나노닉스
Priority to KR1020030004815A priority Critical patent/KR20040067608A/en
Publication of KR20040067608A publication Critical patent/KR20040067608A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases

Abstract

PURPOSE: A method for manufacturing spherical high quality metal alloy powder having an average particle size of 50 μm or less and uniform chemical composition without surface oxidation by gas-atomization for efficiently controlling flow of gas using nozzle and melting unit, and metal powder manufactured by the method are provided. CONSTITUTION: The method comprises a process of making a stream(11) of molten metal without stopper using melting chamber of gas atomizer; a process of atomizing molten metal using atomizing nozzle(16) of the gas atomizer; and a process of solidifying the molten metal in the atomizing chamber, wherein manufactured metal powder has surface oxidation degree of 50 ppm or less, uniform chemical composition, an average particle size of 50 μm or less and spherical shape, wherein a melting tube connected to the nozzle is used in the melting chamber so that molten metal is supplied to the nozzle by using pressure change of the melting chamber without using of the stopper, wherein the atomizing nozzle is constructed in such a structure that flow of gas is smoothly proceeded, and an angle(13) between the stream of the molten metal and gas ejected is in the range of 5 to 35 degrees, wherein atomizing pressure of gas used in the atomizing nozzle is in the range of 0.5 to 4.0 MPa, wherein the gas includes inert gases such as nitrogen, argon and helium and air, and wherein the manufactured metal powder includes metal powders having high melting point such as stainless steel, copper and metal powders of nickel, and aluminum, zinc, tin and magnesium.

Description

금속 분말 및 그 제조 방법{Metal powder and the manufacturing method}Metal powder and its manufacturing method

일반적으로 금속분말을 제조하는 방법에는 고체금속을 분쇄하는 분쇄법과 화학적으로 석출등의 방법으로 제조하는 습식법, 그리고 금속분말을 용해하고 노즐을 이용하여 분무하는 방식이 있다. 이중에서 분무방식은 사용하는 냉각매체에 따라 물과 같은 액체를 사용하는 수분사법과 가스를 사용하는 가스분무법으로 구분할 수 있으며 용탕줄기를 급격하게 회전하는 디스크등에 낙하시켜 원심력을 이용하여 입자화하는 원심분무방식이 또한 있다.In general, a method of preparing a metal powder includes a grinding method of grinding a solid metal, a wet method of chemically precipitation, and a method of dissolving a metal powder and spraying using a nozzle. The spray method can be divided into water spray method using liquid such as water and gas spray method using gas depending on the cooling medium used. There is also a spray method.

금속은 용융온도에 따라 아연, 알루미늄, 주석 등과 같이 낮은 융점을 갖는 소재와 스테인레스강, 철, 구리, 니켈, 코발트 등과 같이 높은 융점을 갖는 금속으로 구분할 때, 국내에서는 저융점 금속분말은 여러 회사에서 연구하고 생산하고 있지만 융점이 높은 소재는 노즐설계기술등의 관련기술의 미숙으로 연구만 진행하고 있는 실정이다.When metals are classified into materials having low melting points such as zinc, aluminum, tin, etc. and metals having high melting points, such as stainless steel, iron, copper, nickel, and cobalt, depending on the melting temperature, low melting point metal powders in Korea Although it is researching and producing, the material with high melting point is only being studied due to the immature of related technologies such as nozzle design technology.

특히 스테인레스강, 구리, 니켈, 알루미늄, 아연, 주석 및 그 합금 금속등은 용융점이 높은 금속으로 산업의 기초소재로서 다양한 응용으로 사용되고 있으며, 이들 대부분의 분말은 수분사(Water-Atomizing)방식으로 제조되는 불규칙형상 분말과 가스분무(Gas-Atomizing)방식으로 제조되는 구형형상 분말 등의 제조공법으로 제조되고 있다. 수분사에 의한 냉각속도가 빠르고 제조설비가 간단하다는 장점이 있으나 수분을 건조시키고 필요에 따라 환원해야 해야하는 단점 외에 형상이 불규칙하여 가공성이 중요한 용도에는 사용이 곤란한 것으로 알려져 있다. 아토마이징에는 가스분무 및 원심분무법이 있으나 원심분무는 생산성과 입자크기를 미세화하는데는한계점을 가지고 있다. 반면 가스분무법은 사용하는 가스, 노즐형상, 가스압력등에 따라 다양한 크기의 입자를 제조할 수 있고 액적의 분무후 냉각되는 비행기간동안 표면장력에 의해 구형화가 이루어져 가공성이 우수한 것으로 알려져 있다.In particular, stainless steel, copper, nickel, aluminum, zinc, tin and their alloy metals are metals with high melting point and are used for various applications as the basic materials of industry. Most of these powders are manufactured by water-atomizing method. It is produced by a manufacturing method, such as irregular powder and spherical powder produced by a gas atomization (Gas-Atomizing) method. It is known that it is difficult to use for applications where the processability is important because of irregularities in addition to the disadvantage of having to dry the moisture and reduce it as necessary, although the cooling speed by the water yarn is fast and the manufacturing equipment is simple. Atomizing includes gas spraying and centrifugal spraying, but centrifugal spraying has limitations in minimizing productivity and particle size. On the other hand, the gas spraying method can produce particles of various sizes according to the gas used, the shape of the nozzle, the gas pressure, etc., and is known to be excellent in workability because it is spherical by surface tension during the plane cooling after spraying the droplets.

가스분무에 의해 제조된 구형의 고융점 합금분말은 우수한 내식성, 내산화성, 기계적 특성, 시장성 등이 뛰어나 분말야금(PM), 금속사출성형(MIM), 열간성형공정(HIP) 등의 방법으로 성형되어 제품에 응용되고 있으며 그 수요도 계속 증대되고 있다. 또한 국내에서 이용되는 가스분무된 분말의 거의 전량은 수입에 의존하고 있는 실정이다.The spherical high melting point alloy powder produced by gas spraying has excellent corrosion resistance, oxidation resistance, mechanical properties, and marketability, and is molded by methods such as powder metallurgy (PM), metal injection molding (MIM), and hot forming process (HIP). It is being applied to a product and the demand continues to increase. In addition, almost all of the gas-sprayed powders used in Korea depend on imports.

종래의 가스분무법에 의한 기술은 저융점 금속만을 제조하는 기술이며, 평균 입자크기를 50㎛이하로 형성하기 어렵고, 분말의 표면산화량을 제어하기 어려우며, 냉각속도가 낮아 내식성등의 화학적 및 기계적 특성이 우수하지 못한 기술들로 이루어져 있다.Conventional gas spraying technique is a technique for producing only low melting point metal, it is difficult to form the average particle size below 50㎛, difficult to control the surface oxidation amount of the powder, low cooling rate, chemical and mechanical properties such as corrosion resistance It is made up of techniques that are not excellent.

본 발명은 종래기술의 문제점을 개선하기 위해 새로이 고안된 노즐을 사용하여 입자가 미세하도록 설계하였다. 노즐은 주입되는 가스의 흐름이 와류를 형성하지 않도록 설계되어, 용탕줄기와의 일정한 각도를 형성하여 분쇄되므로 입자가 가스의 압력과 분사각도에 의해 직접적인 에너지를 얻으므로 초미세화가 가능하게 고안하였다. 얻어지는 입자크기는 평균입경이 100㎛이하가 되며, 바람직하게는 80㎛이하, 더욱 바람직하게는 50㎛이하가 되도록 고안되어야 한다.The present invention is designed to make the particles fine using a newly designed nozzle to improve the problems of the prior art. The nozzle is designed so that the flow of the injected gas does not form a vortex, and is pulverized by forming a constant angle with the molten metal stem, so that the particles obtain direct energy by the pressure and the injection angle of the gas, thereby making it possible to ultrafine. The particle size obtained should be designed to have an average particle diameter of 100 μm or less, preferably 80 μm or less, and more preferably 50 μm or less.

초저온 가스를 노즐을 통하여 분무하는 방식으로 급속한 응고속도가 발생하여 분말의 결정립이 평균 5.5㎛이하가 되며 바람직하게는 3.7㎛이하, 더욱 바람직하게는 1.2㎛이하의 결정립크기를 갖도록 냉각속도를 높여야 한다. 이를 달성하기 위하여 챔버내의 온도는 분무가 진행되는 동안에 분무된 액적이 급속히 응고되도록 충분히 낮게 유지되어야 한다.The rapid solidification rate is generated by spraying the cryogenic gas through the nozzle, and the cooling rate should be increased to have a grain size of 5.5 탆 or less on average, and preferably 3.7 탆 or less, more preferably 1.2 탆 or less. . To achieve this, the temperature in the chamber must be kept low enough so that the sprayed droplets solidify rapidly during the spraying process.

본 발명에서 이루고자 하는 또 다른 기술적 과제는 분말의 표면산화량 제어이다.Another technical problem to be achieved in the present invention is the surface oxidation amount control of the powder.

새로 고안된 용융챔버를 사용하여 용융중의 금속을 대기중의 산소와 접촉을 차단시킴으로 용탕표면의 산화 및 용탕내부의 함유가스를 제거해야 한다. 용융챔버의 분위기 조절은 진공처리 및 불활성가스 분위기로 제어하여 처리한다. 분무챔버 역시 분말의 표면산화량에 매우 중요한 변수로 작용하므로 분무챔버 전체를 액적이 비행중에 산화되지 않도록 산소함유량을 진공 및 불활성 분위기로 제어할 수 있다. 이때 분무챔버의 산소함유량은 5000PPM이하로 하며, 바람직하게는 1000PPM이하, 더욱 바람직하게는 500PPM, 더욱 바람직하게는 100PPM이하로 제어하는 것이 필요하다.The newly designed melting chamber should be used to remove the metal in the molten metal from contact with oxygen in the atmosphere to remove the oxidation of the molten surface and the gas contained in the molten metal. Atmosphere control of the melting chamber is controlled by vacuum treatment and inert gas atmosphere. The spray chamber also acts as a very important variable for the surface oxidation of the powder, so that the oxygen content can be controlled in a vacuum and an inert atmosphere so that the entire spray chamber is not oxidized in flight. At this time, the oxygen content of the spray chamber is 5000PPM or less, preferably 1000PPM or less, more preferably 500PPM, more preferably 100PPM or less.

이와같이 분말의 산화량을 제어하는 것은 분말자체의 내식성을 향상시키고 성형하는 과정중의 소결성을 높이며 유기물과의 혼합공정시에 화학적인 반응성을 향상시키기 위해 매우 중요한 변수가 되기 때문이다.This is because controlling the oxidation amount of the powder is a very important variable to improve the corrosion resistance of the powder itself, to increase the sintering during the molding process and to improve the chemical reactivity during the mixing process with the organic material.

본 발명의 노즐 및 분무시스템에 의해 제조될 수 있는 금속은 저융점 금속소재인 알루미늄, 아연, 주석, 마그네슘 및 그 합금들과 고융점 금속소재인 스테인레스강, 구리, 니켈, 코발트 및 그 합금들을 제조할 수 있다.Metals that can be produced by the nozzle and spray system of the present invention may be made of aluminum, zinc, tin, magnesium and their alloys, which are low melting point metals, and stainless steel, copper, nickel, cobalt and their alloys, which are high melting point metals. can do.

도1은 본 발명에 사용되는 노즐시스템 개략도1 is a schematic diagram of a nozzle system used in the present invention.

도2는 본 발명에 사용되는 용융챔버 시스템의 개략도2 is a schematic diagram of a melt chamber system used in the present invention;

도3은 본 발명의 가스분무장치의 주요부분을 나타내는 도면Figure 3 shows the main part of the gas atomizing device of the present invention;

도4는 니켈금속 분말의 전자현미경사진4 is an electron micrograph of nickel metal powder

도5는 스테인레스강 금속분말의 전자현미경사진5 is an electron micrograph of a stainless steel metal powder

도6은 구리금속 분말의 전자현미경 사진6 is an electron micrograph of a copper metal powder

도7.(a)는 일반노즐 사용에 의한 분말 단면의 광학현미경 사진Figure 7 (a) is an optical micrograph of the powder cross section by using a normal nozzle

도7.(b)는 고안된 노즐에 의한 분말 단면의 광학현미경 사진Figure 7 (b) is an optical micrograph of the powder cross section by the designed nozzle

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

11 : 용탕줄기11: molten stem

12 : 오리피스12: orifice

13 : 용탕줄기와 분무가스의 각도13: angle of molten stem and sprayed gas

14 : 분무가스의 연결튜브14: connecting tube of spray gas

15 : 오리피스 홀더15: Orifice Holder

16 : 노즐시스템16: nozzle system

21 : 용융챔버 투시창21: melting chamber viewing window

22 : 전력공급라인22: power supply line

23 : 원료공급라인23: raw material supply line

24 : 용융챔버의 내부압력24: internal pressure of the melting chamber

25 : 노즐시스템25: nozzle system

26 : 분무챔버의 내부압력26: internal pressure of the spray chamber

27 : 용탕이송튜브27: molten metal transfer tube

31 : 고주파유도로31: high frequency induction

32 : 솔레노이드밸브32: solenoid valve

33 : 가스공급라인33: gas supply line

34 : 가스 압력게이지34: gas pressure gauge

35 : 분무챔버 투시창35: spray chamber viewing window

36 : 분무챔버36: spray chamber

37 : 가스공급탱크37: gas supply tank

38 : 싸이클론38: cyclone

39 : 가스배기라인39: gas exhaust line

40 : 분말회수탱크40: powder recovery tank

본 발명의 구성은 금속입자를 초미세분으로 제조하는 노즐설계 및 가스압력 제어로 구성되어 있으며 분말의 표면산화방지를 위해서 용융챔버와 분무챔버의 분위기 제어로 이루어져 있다. 또한 입자의 냉각속도를 제어하기 위해서 초저온 가스분사가 사용되었다. 금속분말 제조방법의 구성은 크게 합금을 용융, 분사 그리고 포집으로 구성되어 있으며, 이들에 대한 상세한 설명은 도1 과 도2 그리고 도3 에 나타내었다.The configuration of the present invention is composed of a nozzle design for producing ultrafine metal particles and gas pressure control, and the atmosphere control of the melting chamber and the spray chamber to prevent the surface oxidation of the powder. In addition, cryogenic gas injection was used to control the cooling rate of the particles. The metal powder manufacturing method is mainly composed of melting, spraying and collecting the alloy, and the detailed description thereof is shown in FIGS. 1, 2 and 3.

도 1 은 본 발명에서 사용된 노즐의 개략도를 나타낸 것이다. 도가니에서 용융된 금속줄기는 오리피스(12)내부로 용융챔버의 내부압력(24)와 분무챔버의 내부압력(26)사이의 압력차로 인해 이송되고 오리피스(12)는 오리피스 홀더(12)에 의해 고정되어 용탕이 연속적으로 유입되고 가스에 의해 진동이 발생해도 오리피스의 각도 등이 변형되지 않도록 하는 역할을 한다. 노즐(16)은 불활성가스 공급라인(14)을 통해 가스가 유입되면 용탕줄기와 분무되는 가스의 각도(13)사이에서 충돌에 의해 분쇄되어 미세한 입자가 형성되는 작용을 한다. 이때 노즐에 유입되는 가스의 흐름은 와류가 형성되지 않도록 도1의 형상으로 제작되었다. 또한 노즐 내부에 가스의 범퍼 역활을 하는 공간을 두고 이공간에서 용탕줄기와 만나는 사이의 거리를 제어함으로 입자크기와 사용되는 가스의 양과 압력을 조절할 수 있다. 용탕줄기(11)와 분무가스 사이의 각도(13)가 클수록 용탕 줄기에 가해지는 충격에너지는 커지므로 분말은 표1에서 보는 바와 같이 미세해 진다.1 shows a schematic view of a nozzle used in the present invention. The molten metal stem in the crucible is transferred into the orifice 12 due to the pressure difference between the internal pressure 24 of the melting chamber and the internal pressure 26 of the spray chamber and the orifice 12 is fixed by the orifice holder 12. Therefore, the molten metal is continuously introduced and serves to prevent the angle of the orifice from being deformed even when vibration is generated by the gas. When the gas is introduced through the inert gas supply line 14, the nozzle 16 is pulverized by collision between the molten stem and the angle 13 of the gas to be sprayed to form fine particles. At this time, the flow of gas flowing into the nozzle was manufactured in the shape of FIG. In addition, it is possible to control the particle size and the amount of gas used and the pressure by controlling the distance between the meeting with the molten metal in this space and the space to act as a bumper of the gas inside the nozzle. As the angle 13 between the molten stem 11 and the spraying gas increases, the impact energy applied to the molten stem increases, so that the powder becomes fine as shown in Table 1.

도 2는 본 발명에 따른 금속분말을 제조하는 방법에 사용하기에 적합한 가스분무장치의 용융챔버의 개략도로서 금속합금을 담기 위해 주입구(23)를 통하여 도가니에 원료를 장입하고 합금을 용융하기 위해 도가니 주위를 에워싸고 있는 고주파 유도로 연결라인(22)과 도가니와 고주파 유도로의 발열부를 에워싸고 있는 진공챔버(21), 개방시에 용탕이 외부로 자유낙하할 수 있도록 도가니의 하부에 설치된 노즐(25), 용탕을 노즐부로 보낼 목적으로 연결된 튜브(27)가 도가니 바닥까지 연결되어 있다. 용탕은 챔버의 내부압력(24)과 노즐부(25) 하부의 분무챔버의 내부압력(26)과의 압력차를 제어하여 분무하게 되며 이러한 압력차이로 분무되는 용탕의 양을 조절할 수 있다. 연결튜브는 용융금속이 저온일 경우는 석영을 사용할 수 있고, 용융금속이 고온일 경우는 세라믹으로 가공하는 것이 바람직하다. 용융챔버의 가압력은 노즐의 가스분무압력과 밀접한 관련이 있으며, 가스-용탕 비율(gas-to-melt ratio)에 영향을 미치게 된다.2 is a schematic view of a melting chamber of a gas atomizing apparatus suitable for use in the method for producing a metal powder according to the present invention, where a raw material is charged into a crucible through an inlet 23 to contain a metal alloy and a crucible for melting an alloy High frequency induction furnace connecting line 22 surrounding the surroundings and vacuum chamber 21 surrounding the heating part of the crucible and the high frequency induction furnace, and a nozzle installed at the lower part of the crucible so that the molten metal can freely fall to the outside when opened ( 25), a tube 27 connected for the purpose of sending the molten metal to the nozzle portion is connected to the bottom of the crucible. The molten metal is sprayed by controlling a pressure difference between the internal pressure 24 of the chamber and the internal pressure 26 of the spray chamber below the nozzle unit 25, and the amount of molten metal sprayed by the pressure difference may be adjusted. The connecting tube may be quartz when the molten metal is low temperature, and it is preferable to process the ceramic when the molten metal is high temperature. The pressing force of the melt chamber is closely related to the gas spraying pressure of the nozzle and affects the gas-to-melt ratio.

도 3은 가스분무 설비의 개략도를 나타낸 것으로 가스탱크(37)에서 레귤레이터(34)를 통하여 일정한 분무가스를 공급하고 가스라인(33)은 노즐부에 공급되기 전에 가스의 공급 및 차단을 솔레노이드 밸브(32)로 제어한다. 용융챔버에 연결된 고주파유도로(31)에서 전기 유도에너지로 용융된 금속은 노즐을 통해 분무챔버(36)로 분무되며 분무되는 과정은 투시창(35)을 통해 관찰할 수 있다. 이때 분무챔버의 크기는 용융금속이 고압의 가스에 의해 분쇄되어 미세한 액적상태로 비행할 때 충분히 응고가 진행되도록 크게 제작하는 것이 바람직하다. 메인 분무챔버(36)에서 큰 입자는 1차회수가 가능하지만 작은 입자는 싸이클론(38)으로 진입되고 싸이클론 하부의 회수용기(40)에서 2차회수하여 최종제품을 얻어지게 되며 이송가스(39)는 대기중으로 배출되거나 리싸이클 되어 사용된다.3 is a schematic view of a gas spraying facility, in which a constant spray gas is supplied from the gas tank 37 through the regulator 34, and the gas line 33 supplies the gas to the nozzle unit before supplying and blocking the gas. 32). The metal melted by the electric induction energy in the high frequency induction path 31 connected to the melting chamber is sprayed into the spray chamber 36 through the nozzle and the spraying process can be observed through the viewing window 35. At this time, the size of the spray chamber is preferably made large so that the solidification proceeds sufficiently when the molten metal is pulverized by the high-pressure gas to fly in a fine droplet state. In the main spray chamber 36, the large particles can be recovered first, but the small particles enter the cyclone 38 and are recovered twice in the recovery vessel 40 under the cyclone to obtain a final product. 39 is used to discharge or recycle to the atmosphere.

메인 분무챔버(36)는 분무되는 액적의 냉각속도를 향상시킬 목적으로 내부에 액체불활성 가스를 별도로 분무하며 챔버를 2중 구조로 만들어 내부에 냉각수를 흘려줌으로 챔버의 온도가 상승하는 것을 방지한다. 또한 메인챔버는 산소함량 및 내부온도를 체크하기 위해 산소게이지와 열전대를 연결하여 사용한다.The main spray chamber 36 sprays the liquid inert gas separately in order to improve the cooling rate of the sprayed droplets and makes the chamber a double structure to prevent the temperature of the chamber from rising by flowing coolant therein. . In addition, main chamber is used by connecting oxygen gauge and thermocouple to check oxygen content and internal temperature.

표 1은 본 발명에서 제작 설계한 노즐을 활용하여 여러 가지 변수를 고려하여 실험한 결과치를 나타낸 것이다. 용탕줄기의 양과 분무되는 가스량의 비율을 고려하여 실험한 결과 용탕줄기에 비해 분무되는 가스량이 증가할수록 입자는 미세해지는 것을 관찰할 수 있다. 이것은 용탕 단위 질량에 가해지는 가스의 충격에너지가 커지기 때문에 입자가 더욱 미세하게 분쇄되는 것으로 보인다.Table 1 shows the experimental results in consideration of various variables using the nozzle designed and manufactured in the present invention. As a result of considering the ratio of the amount of the molten stem and the amount of gas to be sprayed, it can be observed that the particles become finer as the amount of gas to be sprayed is increased compared to the molten stem. This seems to cause the particles to be more finely pulverized because the impact energy of the gas applied to the melt unit mass increases.

용탕줄기와 분무가스 사이의 각도 역시 입자크기에 중요한 변수로 작용하는데 각도가 커질수록 용탕줄기에 가해지는 충격에너지가 커서 입자는 미세하게 제조되었으며 분사되는 불활성가스의 압력을 변수로 하여 실험해 보았을 때 가해지는 압력이 증가할수록 입자는 미세해 졌다. 불활성 가스 중에서도 아르곤과 질소가스를 비교하여 실험하였다. 아르곤은 질소보다 질량이 무겁기 때문에 예상한대로 아르곤이 입자가 평균적으로 미세하게 얻어졌다. 분말의 크기가 갖는 평균편차는 입자가 미세한 분말일수록 편차는 적게 발생하는 것으로 나타났다.The angle between the molten stem and the spraying gas also acts as an important variable in particle size. The larger the angle, the greater the impact energy applied to the molten stem and the finer the particles were manufactured. As the pressure applied increases, the particles became finer. Argon and nitrogen gas were compared among inert gases. Because argon is heavier than nitrogen, argon particles are finely averaged as expected. The average deviation of the size of the powder was found to be less variation in the finer powder.

표 1에서 보는 바와 같이 본 발명에서 구성한 노즐 및 가스 분무장치는 평균입경을 50㎛이하로 제작이 가능하며 이 크기는 다양한 변수를 바꾸어도 입자가 크게 형성되지 않는 것으로 나타났다.As shown in Table 1, the nozzle and the gas spray device configured in the present invention can be manufactured with an average particle diameter of 50 μm or less, and this size does not appear to be largely formed even when various variables are changed.

본 발명의 노즐 및 분무시스템에 의해 제조될 수 있는 금속은 저융점 금속소재인 알루미늄, 아연, 주석, 마그네슘 및 그 합금들과 고융점 금속소재인 스테인레스강,구리, 니켈, 코발트 및 그 합금들을 제조하는 것이 가능하다.The metal which can be produced by the nozzle and spray system of the present invention is made of aluminum, zinc, tin, magnesium and alloys thereof, which are low melting point metals, and stainless steel, copper, nickel, cobalt and alloys thereof which are high melting point metals. It is possible to do

이하, 본 발명에 관한 몇 가지 실시예를 설명하지만, 본 발명을 이러한 실시예에 나타내는 것으로 한정하는 것을 의도한 것은 아니다.Hereinafter, although some Examples concerning this invention are described, it is not what intended limiting this invention to what is shown in these Examples.

ExampleExample Gas-to-melt ratioGas-to-melt ratio Jet and melt tip apex angle (')Jet and melt tip apex angle (') Atomizing pressure (MPa)Atomizing pressure (MPa) GasGas Average melt flow rate (kg/min)Average melt flow rate (kg / min) Mean particle diameter D50 (micrmeter)Mean particle diameter D50 (micrmeter) Standard deviation D84/D50Standard deviation D84 / D50 (1)(One) 1.581.58 18.218.2 2.82.8 ArAr 26.126.1 47.347.3 3.23.2 (2)(2) 2.192.19 23.523.5 2.72.7 ArAr 26.726.7 38.238.2 3.43.4 (3)(3) 3.223.22 31.331.3 2.52.5 ArAr 27.227.2 31.831.8 2.82.8 (4)(4) 2.132.13 23.523.5 1.31.3 ArAr 28.628.6 55.455.4 3.53.5 (5)(5) 2.262.26 23.523.5 2.82.8 ArAr 24.924.9 35.735.7 2.72.7 (6)(6) 2.342.34 23.523.5 4.04.0 ArAr 26.726.7 18.118.1 2.32.3 (7)(7) 2.422.42 23.523.5 2.92.9 N2N2 29.429.4 49.449.4 3.03.0 (8)(8) 2.232.23 23.523.5 2.42.4 ArAr 27.527.5 36.936.9 2.52.5

실시예1Example 1

실시예 1로서 용사코팅에 사용되는 니켈분말을 본 발명의 노즐 및 가스분무시스템으로 제조하였다. 즉, 도 1에 나타낸 노즐을 사용하여 도2에 나타낸 용융챔버를 활용하였으며 용탕줄기와 가스분무사이의 각도는 23.5도로 맞추어 제작하였으며 이때 가스분무압력은 2.7MPa로 하였고 분무가스는 액체 아르곤을 기화시켜 사용하였다. 이때 측정된 평균 용탕유동속도는 26.7kg/min으로 나타났으며 메인챔버 및 싸이클론에서 회수된 분말의 입경을 측정한 결과 평균입자(D50)는 38.2㎛로 얻어졌으며 입도의 표준편차(D84/D50)는 3.4로 나타났다. 이렇게 얻어진 분말의 형상과 분포는 도면 4에 나타낸 것과 같으며 입자는 위성형 분말이 5%이내이며 완전히 구형을 나타냈고 표면산화량을 측정한 결과 50PPM 이내로 관찰되었다. 표1에 나타낸 실험예중에서 (2)번이 실시예 1에 해당한다. 표 1에 나타낸 결과치들은 실험할때마다 약간의 실험오차가 발생하였지만 그대로 기록하였다.As Example 1, the nickel powder used for the spray coating was produced by the nozzle and gas spray system of the present invention. That is, the melt chamber shown in FIG. 2 was used by using the nozzle shown in FIG. 1 and the angle between the molten stem and the gas spray was made to be 23.5 degrees. Used. At this time, the average melt flow rate was found to be 26.7kg / min, and the average particle size (D50) was found to be 38.2㎛ and the standard deviation of particle size (D84 / D50) was measured. ) Was found to be 3.4. The shape and distribution of the powder thus obtained are as shown in FIG. 4, and the particles were less than 5% of the satellite powder and completely spherical, and the surface oxidation was measured to be within 50 PPM. In the experimental example shown in Table 1, (2) corresponds to Example 1. The results shown in Table 1 were recorded as they were, although some experimental errors occurred in each experiment.

비교예1Comparative Example 1

상기 실시예1에서 노즐의 분사각도를 18.2로 변경시킨 것 외에는 상기 실시예1과 동일하게 처리하였으며, 본 비교예1에 관한 결과를 표1의 실험예 (1)로 나타내었다.Except that the injection angle of the nozzle was changed to 18.2 in Example 1, the treatment was performed in the same manner as in Example 1, and the results of Comparative Example 1 are shown in Experimental Example (1) of Table 1.

비교예2Comparative Example 2

상기 실시예1에서 노즐의 분사각도를 31.3로 변경시킨 것 외에는 상기 실시예1과 동일하게 처리하였으며, 본 비교예1에 관한 결과를 표1의 실험예 (3)로 나타내었다.Except that the injection angle of the nozzle was changed to 31.3 in Example 1, the treatment was performed in the same manner as in Example 1, and the results of Comparative Example 1 are shown in Experimental Example (3) of Table 1.

실시예2Example 2

실시예 2로서 금속사출성형(MIM)에 사용되는 스테인레스강(SUS316L) 분말을 본 발명의 노즐 및 가스분무시스템으로 제조하였다. 즉, 도 1에 나타낸 노즐을 사용하여 도2에 나타낸 용융챔버를 활용하였으며 용탕줄기와 가스분무사이의 각도는 23.5도로 맞추어 제작하였으며 이때 가스분무압력은 4.0MPa로 하였고 분무가스는 액체 아르곤을 기화시켜 사용하였다. 이때 측정된 평균 용탕유동속도는 26.7kg/min으로 나타났으며 메인챔버 및 싸이클론에서 회수된 분말의 입경을 측정한 결과 평균입자(D50)는 18.1㎛로 얻어졌으며 입도의 표준편차(D84/D50)는 2.3으로 나타났다. 이렇게 얻어진 분말의 형상과 분포는 도면 5에 나타낸 것과 같으며 입자는 위성형 분말이 거의 나타나지 않고 완전히 구형을 나타냈고 표면산화량을 측정한 결과 60PPM으로 얻어졌다. 표1에 나타낸 실험예중에서 (6)번이 실시예 2에 해당한다.표 1에 나타낸 결과치들은 실험할때마다 약간의 실험오차가 발생하였지만 그대로 기록하였다.As Example 2, stainless steel (SUS316L) powder used for metal injection molding (MIM) was prepared by the nozzle and gas spray system of the present invention. That is, the melt chamber shown in FIG. 2 was used by using the nozzle shown in FIG. 1 and the angle between the molten stem and the gas spray was made to be 23.5 degrees. At this time, the gas spray pressure was set to 4.0 MPa and the spray gas was vaporized with liquid argon. Used. At this time, the average melt flow rate was found to be 26.7kg / min, and the average particle size (D50) was obtained as 18.1㎛ and the standard deviation of the particle size (D84 / D50) was measured. ) Was 2.3. The shape and distribution of the powder thus obtained are as shown in FIG. 5, and the particles were completely spherical with little satellite powder, and the surface oxidation was measured to obtain 60 PPM. In the experimental examples shown in Table 1, (6) corresponds to Example 2. The results shown in Table 1 were recorded as they were, although some experimental errors occurred in each experiment.

비교예3Comparative Example 3

상기 실시예2에서 노즐의 분사압력을 1.3MPa로 변경시킨 것 외에는 상기 실시예2와 동일하게 분무하였으며 본 비교예3에 관한 결과를 표1의 실험예 (4)로 나타내었다.Except that the injection pressure of the nozzle was changed to 1.3MPa in Example 2 was sprayed in the same manner as in Example 2 and the results of the Comparative Example 3 is shown in Experimental Example (4) of Table 1.

비교예4Comparative Example 4

상기 실시예2에서 노즐의 분사압력을 2.8MPa로 변경시킨 것 외에는 상기 실시예2와 동일하게 분무하였으며 본 비교예 4에 관한 결과를 표1의 실험예 (5)로 나타내었다.Except that the injection pressure of the nozzle in Example 2 was changed to 2.8 MPa and sprayed in the same manner as in Example 2, the results of the Comparative Example 4 is shown in Experimental Example (5) of Table 1.

비교예5Comparative Example 5

상기 실시예2에서 노즐의 분사압력을 1.3MPa로 액체아르곤을 기화시켜 분무하였으며 노즐의 분무각도를 23.5도로 고정하여 얻은 분말은 평균이 55.4㎛로 얻어졌는데,(실험예 (4)) 이때 회수한 분말중 비교적 큰 분말을 광학현미경으로 내부를 관찰하기 위하여 마운팅하고 연마하고 에칭함으로 분말의 단면을 관찰하여 도 7 (b)에 나타내었다. 또한 또한 동일한 금속소재를 일반노즐과 가스분무장치에서 얻어진 분말을 상기와 같이 가공하여 단면을 관찰하여 도 7 (a)에 비교를 위해 나타내었다.In Example 2, the spray pressure of the nozzle was sprayed by vaporizing liquid argon at 1.3 MPa, and the powder obtained by fixing the spray angle of the nozzle at 23.5 degrees was obtained with an average of 55.4 µm (Experimental Example (4)). The cross section of the powder was observed by mounting, polishing, and etching a relatively large powder in the powder under an optical microscope, and is shown in FIG. 7 (b). In addition, the same metal material was processed by the powder obtained from the general nozzle and the gas spraying device as described above, and the cross section was observed for comparison in FIG. 7 (a).

관찰결과 예상했던 대로 일반노즐과 일반 가스분무장치에서 얻어진 분말은 단면의 결정립의 평균크기가 30㎛ 정도로 나타났지만 본 발명에 의해 제조된 분말은 동일한 크기의 분말일지라도 결정립이 5㎛이내의 크기를 갖는 것으로 확인할 수 있었으며 이로써 본 발명에 의한 분말은 냉각속도가 급격히 이루어지는 것으로 결론내릴수 있다.As expected, the powders obtained from the general nozzle and the gas spraying device showed the average size of the crystal grains in the cross section of about 30 µm, but the powders produced by the present invention had a grain size within 5 µm even though the powders of the same size were used. As a result, it can be concluded that the powder according to the present invention has a rapid cooling rate.

실시예3Example 3

실시예 3으로서 금속분말야금 소결용(PM)에 사용되는 구리분말을 본 발명의 노즐 및 시스템으로 제조하였다. 즉, 도 1에 나타낸 노즐을 사용하여 도2에 나타낸 용융챔버를 활용하였으며 용탕줄기와 가스분무사이의 각도는 23.5도로 맞추어 제작하였으며 이때 가스분무압력은 2.9MPa로 하였고 분무가스는 액체 질소를 기화시켜 사용하였다. 이때 측정된 평균 용탕유동속도는 29.4kg/min으로 나타났으며 메인챔버 및 싸이클론에서 회수된 분말의 입경을 측정한 결과 평균입자(D50)는 49.4㎛로 얻어졌으며 입도의 표준편차(D84/D50)는 3.0으로 나타났다. 이렇게 얻어진 분말의 형상과 분포는 도면 6에 나타낸 것과 같으며 입자는 위성형 분말이 거의 나타나지 않고 완전히 구형을 나타냈고 표면산화량을 측정한 결과 60PPM으로 얻어졌다. 표1에 나타낸 실험예 중에서 (7)번이 실시예 3에 해당한다. 표 1에 나타낸 결과치들은 실험할때마다 약간의 실험오차가 발생하였지만 그대로 기록하였다.As Example 3, a copper powder used for metal powder metallurgy sintering (PM) was produced by the nozzle and system of the present invention. That is, the melt chamber shown in FIG. 2 was used using the nozzle shown in FIG. 1, and the angle between the molten stem and the gas spray was made to be 23.5 degrees. At this time, the gas spray pressure was 2.9 MPa and the spray gas was vaporized with liquid nitrogen. Used. At this time, the average melt flow rate was found to be 29.4kg / min, and the average particle size (D50) was obtained as 49.4㎛ and the standard deviation of particle size (D84 / D50) was measured. ) Is 3.0. The shape and distribution of the powder thus obtained are as shown in FIG. 6, and the particles were completely spherical with little satellite powder, and the surface oxidation was measured to obtain 60 PPM. (7) of the experimental example shown in Table 1 corresponds to Example 3. The results shown in Table 1 were recorded as they were, although some experimental errors occurred in each experiment.

비교예6Comparative Example 6

상기 실시예 3에서 노즐의 분사가스를 아르곤으로 변경시킨 것 외에는 상기 실시예3와 동일하게 분무하였으며 본 비교예 6에 관한 결과를 표1의 실험예 (8)로 나타내었다.Except for changing the injection gas of the nozzle to the argon in Example 3 was sprayed in the same manner as in Example 3 and the results of the Comparative Example 6 is shown in Experimental Example (8) of Table 1.

이상에서 설명한 바와 같이 새로 고안된 분무노즐을 활용한 가스분무방법으로 금속 분말을 제조하여 표면산화도가 50PPM이하이며 분말의 화학조성이 균일하고 평균입도가 50㎛이하의 스테인레스강, 구리, 니켈등 구상의 금속분말을 제조할 수 있다.As described above, metal powders are prepared by the gas spray method using the newly designed spray nozzle, and the surface oxidation degree is 50PPM or less, and the chemical composition of the powder is uniform and the average particle size is 50㎛ or less, such as stainless steel, copper, nickel, etc. The metal powder of can be manufactured.

상기에서는 본 발명의 바람직한 실시의 예를 참조하여 설명하였지만 해당기술분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변화시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the scope of the invention described in the claims below. You will understand.

Claims (8)

가스분무장치를 이용하여 금속분말을 제조하는 방법으로서, 가스분무장치의 용융챔버를 이용하여 스토퍼를 사용하지 않고 용탕줄기를 만드는 공정을 포함하고,A method of manufacturing a metal powder using a gas spraying apparatus, the method comprising: producing a molten metal stem without using a stopper by using a melting chamber of a gas spraying apparatus; 가스분무장치의 분무노즐을 사용하여 용융금속을 분무하는 공정과, 이 용융금속이 분무챔버에서 응고하는 공정을 포함하며, 이때 제조된 금속분말은, 표면산화도가 50PPM이하이며 분말의 화학조성이 균일하고 평균입도가 50㎛이하이고 형상이 구형인 금속분말을 제조방법.Spraying molten metal using a spray nozzle of a gas atomizer; and solidifying the molten metal in a spray chamber, wherein the prepared metal powder has a surface oxidation degree of 50 PPM or less and a chemical composition of the powder. A method for producing a metal powder having a uniform, average particle size of 50 µm or less and a spherical shape. 제1항에서, 용융챔버는 노즐에 연결된 용탕튜브를 사용하므로 스토퍼를 사용하지 않고도 용융챔버의 압력변화를 이용하여 노즐에 용탕을 공급할 수 있는 금속분말 제조방법.The method of claim 1, wherein the melting chamber uses a molten tube connected to the nozzle, so that the molten metal can be supplied to the nozzle using a pressure change of the melting chamber without using a stopper. 제1항에서, 분무노즐은 가스의 흐름이 원활히 진행되도록 구성되었으며, 용탕줄기와 가스분출사이의 각도가 5도에서 35도의 범위를 갖는 금속분말제조방법.The method of claim 1, wherein the spray nozzle is configured to facilitate the flow of gas, the metal powder manufacturing method having an angle between the molten stem and the gas blowing range of 5 degrees to 35 degrees. 제3항에서, 분무노즐에서 사용되는 가스의 분무압력은 0.5MPa에서 4.0MPa까지의 범위를 갖는 금속분말 제조방법.The method of claim 3, wherein the spray pressure of the gas used in the spray nozzle has a range of 0.5MPa to 4.0MPa. 제 1항에서 사용하는 가스는 질소, 아르곤, 헬륨등의 불활성가스와 공기를사용하는 금속분말제조방법.The gas used in claim 1 is a metal powder manufacturing method using inert gas such as nitrogen, argon, helium and air. 제1항에서 제조된 금속분말은 평균입경이 5㎛에서 100㎛의 범위를 갖는 금속분말제조방법The metal powder prepared in claim 1 has a metal powder manufacturing method having an average particle diameter of 5㎛ to 100㎛ 제1항에서 제조된 금속분말은 표면산화량이 10PPM에서 100PPM이하로 구성된 금속분말제조방법The metal powder prepared in claim 1 has a surface oxidation amount of less than 10PPM to 100PPM 제1항에서 제조된 금속분말은 스테인레스강, 구리, 니켈 등을 포함하는 고융점 금속분말과 알루미늄, 아연, 주석, 마그네슘 등을 포함하는 금속분말제조방법The metal powder prepared in claim 1 is a high melting point metal powder including stainless steel, copper, nickel, and the like, and a metal powder manufacturing method including aluminum, zinc, tin, magnesium, and the like.
KR1020030004815A 2003-01-24 2003-01-24 Metal powder and the manufacturing method KR20040067608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030004815A KR20040067608A (en) 2003-01-24 2003-01-24 Metal powder and the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030004815A KR20040067608A (en) 2003-01-24 2003-01-24 Metal powder and the manufacturing method

Publications (1)

Publication Number Publication Date
KR20040067608A true KR20040067608A (en) 2004-07-30

Family

ID=37682669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030004815A KR20040067608A (en) 2003-01-24 2003-01-24 Metal powder and the manufacturing method

Country Status (1)

Country Link
KR (1) KR20040067608A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750270B2 (en) 2004-12-28 2010-07-06 Samsung Electronics Co., Ltd. Nanoparticle generator
WO2010077736A3 (en) * 2008-12-09 2010-10-28 United Technologies Corporation A method for producing high strength aluminum alloy powder containing l12 intermetallic dispersoids
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
KR101308828B1 (en) * 2010-12-06 2013-09-13 히타치 긴조쿠 가부시키가이샤 Method for producing fine metal ball
US8728389B2 (en) 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8778099B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
WO2015093672A1 (en) 2013-12-20 2015-06-25 주식회사 포스코 Powder manufacturing apparatus and powder forming method
US9127334B2 (en) 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US9194027B2 (en) 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
KR20160124068A (en) * 2016-10-18 2016-10-26 한국기계연구원 Apparatus and Method for Manufacturing Minute Powder
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
KR20180043853A (en) * 2014-03-31 2018-04-30 제이에프이 스틸 가부시키가이샤 Method for producing atomized metal powder
CN108714697A (en) * 2018-07-02 2018-10-30 南京理工大学 A kind of aerosolization nozzle being used to prepare metal powder
CN111804924A (en) * 2020-07-20 2020-10-23 宁波双鹿新能源科技有限公司 Production system for preparing zinc material by atomization
CN113181831A (en) * 2021-04-30 2021-07-30 深圳航科新材料有限公司 Non-metallic material powder and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374633A (en) * 1981-03-16 1983-02-22 Hart Robert J Apparatus for the continuous manufacture of finely divided metals, particularly magnesium
JPS6468409A (en) * 1987-09-09 1989-03-14 Daido Steel Co Ltd Production of globular metal powder
JPH06212212A (en) * 1993-01-18 1994-08-02 Techno I:Kk Production and apparatus for production of fine metallic powder
JPH1129802A (en) * 1997-07-10 1999-02-02 Alps Electric Co Ltd Alloy powder, its production, conductive paste using the alloy powder, and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374633A (en) * 1981-03-16 1983-02-22 Hart Robert J Apparatus for the continuous manufacture of finely divided metals, particularly magnesium
JPS6468409A (en) * 1987-09-09 1989-03-14 Daido Steel Co Ltd Production of globular metal powder
JPH06212212A (en) * 1993-01-18 1994-08-02 Techno I:Kk Production and apparatus for production of fine metallic powder
JPH1129802A (en) * 1997-07-10 1999-02-02 Alps Electric Co Ltd Alloy powder, its production, conductive paste using the alloy powder, and electronic equipment

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750270B2 (en) 2004-12-28 2010-07-06 Samsung Electronics Co., Ltd. Nanoparticle generator
WO2010077736A3 (en) * 2008-12-09 2010-10-28 United Technologies Corporation A method for producing high strength aluminum alloy powder containing l12 intermetallic dispersoids
US8778098B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US8778099B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US9611522B2 (en) 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US9127334B2 (en) 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US8728389B2 (en) 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US9194027B2 (en) 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
KR101308828B1 (en) * 2010-12-06 2013-09-13 히타치 긴조쿠 가부시키가이샤 Method for producing fine metal ball
WO2015093672A1 (en) 2013-12-20 2015-06-25 주식회사 포스코 Powder manufacturing apparatus and powder forming method
US10391558B2 (en) 2013-12-20 2019-08-27 Posco Powder manufacturing apparatus and powder forming method
KR20180043853A (en) * 2014-03-31 2018-04-30 제이에프이 스틸 가부시키가이샤 Method for producing atomized metal powder
KR20160124068A (en) * 2016-10-18 2016-10-26 한국기계연구원 Apparatus and Method for Manufacturing Minute Powder
CN108714697A (en) * 2018-07-02 2018-10-30 南京理工大学 A kind of aerosolization nozzle being used to prepare metal powder
CN111804924A (en) * 2020-07-20 2020-10-23 宁波双鹿新能源科技有限公司 Production system for preparing zinc material by atomization
CN113181831A (en) * 2021-04-30 2021-07-30 深圳航科新材料有限公司 Non-metallic material powder and preparation method thereof
CN113181831B (en) * 2021-04-30 2024-01-30 深圳航科新材料有限公司 Nonmetallic material powder and preparation method thereof

Similar Documents

Publication Publication Date Title
US4731111A (en) Hydrometallurical process for producing finely divided spherical refractory metal based powders
KR20040067608A (en) Metal powder and the manufacturing method
US4731110A (en) Hydrometallurigcal process for producing finely divided spherical precious metal based powders
JP3653380B2 (en) Method for producing chromium carbide-nickel chromium atomized powder
US4772315A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders containing readily oxidizable alloying elements
US4802915A (en) Process for producing finely divided spherical metal powders containing an iron group metal and a readily oxidizable metal
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
CA3070371A1 (en) Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization
JP2018035388A (en) Silver powder production method and silver powder production device
JPS63307202A (en) Wet metallurgical method for producing finely divided copper or copper alloy powder
EP0292792B1 (en) Hydrometallurgical process for producing finely divided iron based powders
Schade et al. Atomization
KR100819534B1 (en) High-pressure water spray system and method for fabricating metallic powders having super small particle sizes using the same
KR100594761B1 (en) Apparatus and Method for Manufacturing Inflammable metal powder
JP2004107740A (en) Method and apparatus for producing metal powder by water atomization method, metal powder, and part
EP0283960B1 (en) Hydrometallurgical process for producing finely divided spherical low melting temperature metal based powders
JPH04266475A (en) Production of composite material
CN114990541A (en) High-hardness material coating structure and preparation method thereof
KR20200078630A (en) Method for manufacturing atomized metal powder
CA1330625C (en) Hydrometallurgical process for producing finely divided spherical metal powders
JPS60500872A (en) Method of producing ultrafine metal powder
Dunkley Blown to atoms: how to make metal powders
JPH03193805A (en) Manufacture of metal fine powder
WO2023110151A1 (en) Controlled atmosphere and optimised atomisation for powder production
JPH03247709A (en) Apparatus for manufacturing metal powder

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application