JPH02288160A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH02288160A
JPH02288160A JP1110336A JP11033689A JPH02288160A JP H02288160 A JPH02288160 A JP H02288160A JP 1110336 A JP1110336 A JP 1110336A JP 11033689 A JP11033689 A JP 11033689A JP H02288160 A JPH02288160 A JP H02288160A
Authority
JP
Japan
Prior art keywords
solid electrolyte
spraying
fuel cell
oxygen electrode
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1110336A
Other languages
Japanese (ja)
Other versions
JP2818948B2 (en
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1110336A priority Critical patent/JP2818948B2/en
Publication of JPH02288160A publication Critical patent/JPH02288160A/en
Application granted granted Critical
Publication of JP2818948B2 publication Critical patent/JP2818948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To form a thin film without breakage of perovskite structure by spraying a La family perovskite composite oxide by high frequency plasma thermal spray to form an oxygen electrode or an inter connector. CONSTITUTION:An oxygen electrode 2 and/or an inter-connector 5 are/is formed by spraying a La family perovskite composite oxide onto the circumference of a supporting tube 1 by high frequency plasma thermal spray. The high frequency plasma thermal spray has slow velocity of plasma gas and small collision energy of molten oxide to the supporting tube 1 in addition to easy thermal spray condition control and high productivity. A thin film having perovskite structure is efficiently formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は酸素イオンの選択透過性を有する固体電解質
を挟んで酸素ガスなどの酸化ガスと水素ガスなどの燃料
ガスとの間で電気化学的な反応を生じさせて起電力を得
る燃料電池の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is an electrochemical reaction between an oxidizing gas such as oxygen gas and a fuel gas such as hydrogen gas with a solid electrolyte having permselectivity for oxygen ions sandwiched therebetween. The present invention relates to a method for producing a fuel cell that generates electromotive force by generating electromotive force.

従来の技術 周知のように燃料電池は、酸素イオンの選択透過性を有
する固体電解質と、その固体電解質を挟んで配置した酸
素電極および燃料電極と、燃料電池を直列に接続するた
めに一方の電極に導通させて設けた中間接続子とを基本
要素として構成されており、例えば酸素電極側に酸素ガ
スを流し、燃料電極側に水素ガスを流すことにより、酸
化束イオンが固体電解質を通過して水素ガスと反応し、
それに伴う電流を各電極から取り出すものである。
Conventional Technology As is well known, a fuel cell consists of a solid electrolyte that has permselectivity for oxygen ions, an oxygen electrode and a fuel electrode that are placed between the solid electrolyte, and one electrode that connects the fuel cell in series. For example, by flowing oxygen gas to the oxygen electrode side and hydrogen gas to the fuel electrode side, the oxidized flux ions pass through the solid electrolyte. Reacts with hydrogen gas,
The accompanying current is taken out from each electrode.

燃料電池の基本要素のうち固体電解質は、M素イオンの
透過性が優れている外に、中性のガスが透過することを
防ぐために緻密な構造であることが必要であり、従来で
は、イツトリア安定化ジルコニア(Y203 ) x 
  (ZrO2) +−x (x=O108〜0.1)
あるいはこれに類するセラミック材料を素材として形成
されていた。また酸lA主電極、高温雰囲気での化学的
な安定性や高導電性、ガス透過性が要求され、その素材
としてペロブスカイト型Ia系複合酸化物が知られてい
る。さらに燃料電極としては、酸化反応面積を広くする
とともに、反応生成物の排出を良好ならしめるために開
孔構造である必要があり、かつ電子導電性が要求され、
その素材としては、NiやNi  2rO2サーメツト
が知られている。そして中間接続子は、高導電性および
化学的安定性が要求され、その素材として従来では、L
aCrO3やNi  CrもしくはNi−^Q等のNi
系合金が知られている。
Among the basic elements of fuel cells, the solid electrolyte not only has excellent permeability to M elementary ions, but also needs to have a dense structure to prevent neutral gases from permeating. Stabilized zirconia (Y203) x
(ZrO2) +-x (x=O108~0.1)
Alternatively, they were made of a similar ceramic material. In addition, the acid IA main electrode is required to have chemical stability in a high temperature atmosphere, high conductivity, and gas permeability, and perovskite type Ia-based composite oxides are known as materials thereof. Furthermore, the fuel electrode needs to have an open-pore structure in order to widen the oxidation reaction area and ensure good discharge of reaction products, and is also required to have electronic conductivity.
Known materials include Ni and Ni2rO2 cermet. The intermediate connector is required to have high conductivity and chemical stability, and the material used conventionally is L
Ni such as aCrO3, Ni Cr or Ni-^Q
alloys are known.

燃料電池はその固体電解質が高温で高いイオン輸率を示
すことから、各基本要素は上述したようにセラミックを
素材としており、そのためその各基本要素の製法として
は、素材粉末を加熱溶融させて所定の母材に付着させる
薄膜形成技術が応用されており、例えば円筒型固体電解
質燃料電池では、酸素電極および燃料電極をアセチレン
炎溶射によって形成し、また固体電解質および中間接続
子を直流アークプラズマ溶射によって形成する方法が知
られており、これらの方法によれば高い生産性を得るこ
とができる。
Since the solid electrolyte in a fuel cell exhibits a high ion transfer number at high temperatures, each basic element of a fuel cell is made of ceramic as mentioned above.Therefore, the manufacturing method for each of the basic elements is to heat and melt the raw material powder to a specified value. For example, in a cylindrical solid electrolyte fuel cell, the oxygen electrode and fuel electrode are formed by acetylene flame spraying, and the solid electrolyte and intermediate connector are formed by direct current arc plasma spraying. There are known methods for forming these, and high productivity can be obtained using these methods.

発明が解決しようとする課題 各電極などの要素を形成する方法としてアセチレン炎溶
射と直流アークプラズマ溶射とを比較すれば、溶射速度
や制御の容易性あるいは作業性などの点では直流アーク
プラズマ溶射が優れており、したがって各電極の形成方
法として直流アークプラズマ溶射を転用することが考え
られる。しかるに酸素電極を形成する方法として直流ア
ークプラズマ溶射を使用すると、酸化電極用の素材がプ
ラズマガス中で溶融され、かつ高速で母材に衝突し、そ
の際のアンカー効果によって薄膜が形成されると考えら
れるが、直流アークプラズマ溶射によるプラズマガスの
速度が例えば100〜200m/S程度の高速であるた
めに、酸素電極の素材であるべ。アスカイト型La系複
合酸化物の結晶構造が容易に破壊されてしまい、その結
果、形成された酸素電極の導電率が低下し、ひいては燃
料電池の発電能力が低下するおそれがあった。
Problems to be Solved by the Invention When comparing acetylene flame spraying and DC arc plasma spraying as methods for forming elements such as electrodes, DC arc plasma spraying is superior in terms of spraying speed, ease of control, and workability. Therefore, it is considered that direct current arc plasma spraying can be used as a method for forming each electrode. However, when direct current arc plasma spraying is used to form oxygen electrodes, the material for the oxidation electrodes is melted in plasma gas and collides with the base material at high speed, forming a thin film due to the anchoring effect. It is possible, but since the velocity of plasma gas by DC arc plasma spraying is high, for example, about 100 to 200 m/s, it should be the material of the oxygen electrode. The crystal structure of the ascite-type La-based composite oxide is easily destroyed, and as a result, the electrical conductivity of the formed oxygen electrode decreases, which may lead to a decrease in the power generation capacity of the fuel cell.

また溶射によってペロブスカイト型構造が破壊されても
、事後的に再加熱するなどのN置を講することによりペ
ロブスカイト型構造を再生することも可能であるが、そ
のためには更に熱処理工程を追加する必要があり、生産
性が低下する不都合が生じる。
Furthermore, even if the perovskite structure is destroyed by thermal spraying, it is possible to regenerate the perovskite structure by taking steps such as reheating afterwards, but this requires an additional heat treatment process. This causes the inconvenience of reduced productivity.

この発明は、上記の事情を背景としてなされたもので、
ペロブスカイト型構造を有する薄膜を能率良く成形する
ことのできる固体電解質燃料電池の製造方法を提供する
ことを目的とするものである。
This invention was made against the background of the above circumstances,
The object of the present invention is to provide a method for manufacturing a solid electrolyte fuel cell that can efficiently form a thin film having a perovskite structure.

課題を解決するための手段 この発明は、上記の目的を達成するために、酸素イオン
の選択透過性を有する固体電解質を挟んで陰極となる燃
料電極と陽極となる酸X電極とを設け、さらにこれらい
ずれか一方の電極に導通された中間接続子を設けた固体
電解質燃料電池を製造するにあたり、前記酸素電極と中
間接続子との少なくともいずれか一方を、高周波プラズ
マ溶射によりLa系ペロブスカイト型複合酸化物粉末を
所定の母材上に吹き付けて形成することを特徴とするも
のである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a fuel electrode serving as a cathode and an acid X electrode serving as an anode with a solid electrolyte having permselectivity for oxygen ions sandwiched therebetween; In manufacturing a solid electrolyte fuel cell having an intermediate connector electrically connected to one of these electrodes, at least one of the oxygen electrode and the intermediate connector is coated with a La-based perovskite composite oxide by high-frequency plasma spraying. It is characterized by being formed by spraying powder onto a predetermined base material.

またこの発明では、La系ベロアスカイト型複合酸化物
を、La +−xMx CrO3、La Mx Crt
−x。
In addition, in this invention, the La-based velorskite type composite oxide is made of La +-xMx CrO3, La Mx Crt
-x.

3 、La +−xMx MnO3、La l−XMX
 COO3(Mは、Ca、M9、S「、Baのいずれか
。X−0,01〜0.3)のいずれかとすることができ
る。
3, La +-xMx MnO3, La l-XMX
COO3 (M is any one of Ca, M9, S'', and Ba. X-0.01 to 0.3).

作     用 この発明では、高周波プラズマ溶射によってLa系ペロ
ブスカイト型複合酸化物を吹き付けることにより酸素電
極もしくは中間接続子を形成するから、プラズマガスの
速度が遅いために母材への衝突エネルギが小さく、ペロ
ブスカイト型構造が破壊されることなく簿映が形成され
る。
Function In this invention, since the oxygen electrode or intermediate connector is formed by spraying the La-based perovskite type composite oxide by high-frequency plasma spraying, the collision energy with the base material is small due to the slow velocity of the plasma gas, and the perovskite type composite oxide is The book image is formed without destroying the mold structure.

実施例 つぎにこの発明をより具体的に説明する。Example Next, this invention will be explained in more detail.

第1図はこの発明で製造すべき燃料電池の一例の模式的
な断面図であって、支持管1の外周に酸素素電極2が形
成されるとともに、その外周側に固体電解質3が形成さ
れ、さらにその固体電解質3の外周に燃料電極4が形成
されており、そして酸素電極2に導通しかつ燃料電極4
に対して絶縁された中間接続子(インターコネクタ)5
が外周の一部に突設されている。その支持管1は、アル
ミナやカルシア安定化ジルコニアを素材として中空状に
成形し、かつ焼結したものであって、ガス透過性に優れ
るとともに軽量化を図るために多孔構造となっている。
FIG. 1 is a schematic cross-sectional view of an example of a fuel cell to be manufactured according to the present invention, in which an oxygen electrode 2 is formed on the outer periphery of a support tube 1, and a solid electrolyte 3 is formed on the outer periphery side. Further, a fuel electrode 4 is formed on the outer periphery of the solid electrolyte 3, and is electrically connected to the oxygen electrode 2 and connected to the fuel electrode 4.
Intermediate connector (interconnector) 5 insulated against
is protruding from a part of the outer periphery. The support tube 1 is made of alumina or calcia-stabilized zirconia and is formed into a hollow shape and sintered, and has a porous structure for excellent gas permeability and weight reduction.

この支持管1の外周の酸素電極2は高周波プラズマ溶射
によってLa系ベロアスカイト型複合酸化物を支持管1
の外周に吹き付けることにより形成する。ここで高周波
プラズマ溶射を使用した理由は、溶射条件の制御が簡単
でありかつ生産性が高いことに加え、プラズマガスの速
度が遅く、溶融した酸化物の支持管1に対する衝突エネ
ルギが小さいためである。したがって得られる酸素電極
2はペロブスカイト型4fiffiを備え、導電率の高
いものとなる。また素材であるL a系ベロアスカイト
型複合酸化物としては、具体的には、Lad−xMX 
CrO3、La Mx Cr+−xO3、La +−x
Mx 1Jno3%La +−xMx COO3(Mは
、Ca1M9.3r 、3aのいずれか。x=0.01
〜0,3)を使用することができる。さらに酸素電極2
はガス透過性が要求されるから、大気圧(例えば600
〜800Torr)下で高周波プラズマ溶射することに
より形成する。 固体電解質3は、−船釣には、イツト
リア安定化ジルコニア((2rO2)+−x・(Y20
3 )x  :x=”0.05〜0.15 >もしくは
7Jルシア安定化ジルコニア((2rO2)+−x・ 
(cao)x  : x= 0.05〜0.15 )を
素材とし、これを例えば高周波プラズマ溶射することに
より形成する。なお、固体電解質3は可及的に!fli
密な構造に形成して中性のガスが透過することを防ぐ必
要があるので、溶射は減圧下(例えば30〜150To
rr >で行なう。また固体電解質3は直流アークプラ
ズマ溶射を行なっても結晶II4造は破壊されないから
、従来と同様に直流アークプラズマ溶射によって形成し
てもよい。さらに後述する中間接続子5に先立って固体
電解質3を形成する場合には、前記酸素電極2の外周の
所定箇所をマスキングした状態で固体電解質3の溶射を
行なう。
The oxygen electrode 2 on the outer periphery of the support tube 1 is coated with La-based velorskite-type composite oxide by high-frequency plasma spraying.
It is formed by spraying on the outer periphery of. The reason why high-frequency plasma spraying was used here is that the spraying conditions can be easily controlled and productivity is high, and the velocity of the plasma gas is slow and the impact energy of the molten oxide against the support tube 1 is small. be. Therefore, the obtained oxygen electrode 2 has perovskite type 4fiffi and has high electrical conductivity. In addition, as the material La-based velorskite composite oxide, specifically, Lad-xMX
CrO3, La Mx Cr+-xO3, La +-x
Mx 1Jno3%La +-xMx COO3 (M is either Ca1M9.3r or 3a.x=0.01
~0,3) can be used. Furthermore, oxygen electrode 2
requires gas permeability, so atmospheric pressure (e.g. 600
It is formed by high frequency plasma spraying under ~800 Torr). The solid electrolyte 3 is - For boat fishing, ittria stabilized zirconia ((2rO2)+-x・(Y20
3) x: x=”0.05 to 0.15 > or 7J Lucia stabilized zirconia ((2rO2)+-x・
(cao)x: x=0.05 to 0.15) is used as a material, and is formed by, for example, high-frequency plasma spraying. In addition, use solid electrolyte 3 as much as possible! fli
Since it is necessary to form a dense structure to prevent neutral gases from permeating, thermal spraying is carried out under reduced pressure (for example, 30 to 150 To
Do this with rr>. Further, the solid electrolyte 3 may be formed by direct current arc plasma spraying as in the conventional method, since the crystal II structure is not destroyed even if direct current arc plasma spraying is performed. Further, when forming the solid electrolyte 3 prior to forming the intermediate connector 5, which will be described later, the solid electrolyte 3 is thermally sprayed while masking a predetermined location on the outer periphery of the oxygen electrode 2.

第1図に示す構成では、陰極となる燃料電極4を最も外
周側に形成するが、その素材は、Ni、Go、Niと<
2rO2) +−xφ(Y203 ) x  (x= 
0.05〜0.15)トノサーメット、もしくG;tN
iと(2r 02 >1−X−(Cab) X  (X
=  0.05〜0.15 )とのサーメットとするこ
とができ、燃料電極4はこれらいずれかの素材を高周波
プラズマ溶射することにより形成することができる。そ
の場合、減圧下(例えば30〜150Torr )で溶
射を行なった後に水素ガスで還元して多孔構造としても
よい。
In the configuration shown in FIG. 1, the fuel electrode 4 serving as the cathode is formed on the outermost side, and its materials include Ni, Go, and Ni.
2rO2) +-xφ(Y203) x (x=
0.05-0.15) Tonocermet or G;tN
i and (2r 02 >1-X-(Cab)
= 0.05 to 0.15), and the fuel electrode 4 can be formed by high-frequency plasma spraying of any of these materials. In that case, a porous structure may be obtained by thermal spraying under reduced pressure (for example, 30 to 150 Torr) and then reducing with hydrogen gas.

中間接続子5は、固体電解質3および燃料電気4に先立
って形成してもよく、また燃料電極4を形成した後に形
成してもよく、いずれの場合であっても、不必要部分の
マスキングをしてそれぞれの溶射を行なう。この中間接
続子5も酸素電極2と同様にLa系ベロアス力イト型複
合酸化物を素材とすることができるが、中間接続子5は
導電率が可及的に高いことが好ましく、また酸化還元雰
囲気中での化学的安定性が要求されるから、減圧下(例
えば30〜150Torr )で高周波プラズマ溶射す
ることにより緻密な構造とする。そしてこの場合も高周
波プラズマ溶射を行なうことにより、溶融した素材の衝
突エネルギが少なくなってペロブスカイト型構造が破壊
されることを防止することができる。
The intermediate connector 5 may be formed before the solid electrolyte 3 and the fuel electrode 4, or may be formed after the fuel electrode 4 is formed, and in either case, masking of unnecessary parts is performed. and perform each thermal spraying. Like the oxygen electrode 2, this intermediate connector 5 can also be made of a La-based velor forceite type composite oxide, but it is preferable that the intermediate connector 5 has as high electrical conductivity as possible, and also Since chemical stability in the atmosphere is required, a dense structure is obtained by high-frequency plasma spraying under reduced pressure (for example, 30 to 150 Torr). In this case as well, high-frequency plasma spraying reduces the impact energy of the molten material and prevents the perovskite structure from being destroyed.

つぎにこの発明の効果を確認するために行なって実施例
と比較例とを示す。
Next, Examples and Comparative Examples will be shown in order to confirm the effects of the present invention.

カルシア安定化ジルコニア(ZrO2)α9・ (Ca
O)α1管の外周に溶射によって酸素電極を形成した。
Calcia stabilized zirconia (ZrO2) α9・ (Ca
O) An oxygen electrode was formed on the outer periphery of the α1 tube by thermal spraying.

本発明例として、l−a系ペロブスカイト型複合酸化物
にLaα9Srα11Jn 03を使用し、これを大気
圧下で高周波プラズマ溶射することにより300IJJ
nの厚さの酸素電極を形成した。溶射条件は、周波数が
5MH2,入力20kW、プラズマガスがArガス、原
料粉末の供給量が5 g/ ninとなるよう設定した
As an example of the present invention, Laα9Srα11Jn 03 is used as the la-based perovskite type composite oxide, and 300IJJ is obtained by high-frequency plasma spraying under atmospheric pressure.
An oxygen electrode with a thickness of n was formed. The spraying conditions were set such that the frequency was 5 MH2, the input power was 20 kW, the plasma gas was Ar gas, and the feed rate of raw material powder was 5 g/nin.

また比較例として、La系ベロアスカイト型複合酸化物
にLaα9srα1廂03を使用し、これを大気圧下で
直流アークプラズマ溶射することにより150#の厚さ
の酸素電極を形成した。溶射条件は、電流が500A 
、プラズマガスがArガス、原料粉末の供給量が20g
/ninとなるよう設定した。
As a comparative example, Laα9srα1-03 was used as the La-based velorskite composite oxide, and an oxygen electrode with a thickness of 150 # was formed by direct current arc plasma spraying under atmospheric pressure. Thermal spraying conditions are a current of 500A.
, plasma gas is Ar gas, supply amount of raw material powder is 20g
/nin.

得られた各酸素電極を調べたところ、本発明例では全体
に亘ってほぼ完全にペロブスカイト型構造を備えていた
が、比較例ではほぼ70%の割合いでペロブスカイト型
構造が破壊されていた。また本発明例と比較例との各H
素電極の7001での比抵抗を測定したところ、本発明
例の酸素電極の比抵抗が比較例のものよりも低いことが
認められた。
When each of the obtained oxygen electrodes was examined, it was found that the inventive example had a perovskite structure almost completely throughout, but the perovskite structure was destroyed at a rate of approximately 70% in the comparative example. In addition, each H of the present invention example and the comparative example
When the specific resistance of the elementary electrode at 7001 was measured, it was found that the specific resistance of the oxygen electrode of the example of the present invention was lower than that of the comparative example.

また中間接続子についても同様な試験を行なった。すな
わち上記の酸素電極を形成した後に、その外周の一部が
露出するようマスキングを行ない、その部分に継続して
溶射を行なって100趨の厚さの中間接続子を形成した
。その溶射として高周波プラズマ溶射と直流アークプラ
ズマ溶射とを別個に行ない、それぞれの方法で得られた
中間接続子の結晶4111造および比抵抗を調べた。本
発明例として高周波プラズマ溶射を行なったものはペロ
ブスカイト型構造が確保されており、また比抵抗も低く
、これに対して比較例として行なった直流アークプラズ
マ溶射によるものは、ペロブスカイト型構造が破壊され
、また比抵抗も本発明例のものよりも大きい値を示した
Similar tests were also conducted on intermediate connectors. That is, after forming the above oxygen electrode, masking was performed so that a part of its outer periphery was exposed, and thermal spraying was continued on that part to form an intermediate connector having a thickness of 100 mm. High frequency plasma spraying and direct current arc plasma spraying were carried out separately, and the crystal 4111 structure and specific resistance of intermediate connectors obtained by each method were investigated. In the case of high-frequency plasma spraying as an example of the present invention, a perovskite structure is ensured and the resistivity is low.On the other hand, in the case of direct current arc plasma spraying as a comparative example, the perovskite structure is destroyed. Moreover, the specific resistance also showed a larger value than that of the example of the present invention.

発明の詳細 な説明したようにこの発明の方法によれば、酸素電極も
しくは中間接続子を形成するにあたって高周波ブララズ
マ溶射を行なうために、溶融した素材が母材に対して衝
突する速度が遅くなってペロブスカイト型構造が破壊さ
れることがなく、したがって溶射と同時に所期の酸素電
極もしくは中間接続子が形成され、事後的に熱処理を行
なうなどの不都合を解消して能率良く燃料電池を製造す
ることができる。
As described in detail, according to the method of the present invention, the speed at which the molten material collides with the base material is slowed down in order to perform high-frequency plasma spraying when forming the oxygen electrode or intermediate connector. The perovskite structure is not destroyed, and therefore the desired oxygen electrode or intermediate connector can be formed at the same time as thermal spraying, making it possible to efficiently manufacture fuel cells without the inconvenience of subsequent heat treatment. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明で製造する燃料電池の一例を模式的に
示す断面図である。 1・・・支持管、 2・・・酸素電極、 3・・・固体
電解質、 4・・・燃料電極、 5・・・中間接続子。
FIG. 1 is a sectional view schematically showing an example of a fuel cell manufactured by the present invention. DESCRIPTION OF SYMBOLS 1... Support tube, 2... Oxygen electrode, 3... Solid electrolyte, 4... Fuel electrode, 5... Intermediate connector.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素イオンの選択透過性を有する固体電解質を挟
んで陰極となる燃料電極と陽極となる酸素電極とを設け
、さらにこれらいずれか一方の電極に導通された中間接
続子を設けた固体電解質燃料電池を製造するにあたり、 前記酸素電極と中間接続子との少なくともいずれか一方
を、高周波プラズマ溶射によりLa系ペロブスカイト型
複合酸化物粉末を所定の母材上に吹き付けて形成するこ
とを特徴とする固体電解質燃料電池の製造方法。
(1) A solid electrolyte in which a fuel electrode serving as a cathode and an oxygen electrode serving as an anode are provided with a solid electrolyte having permselectivity for oxygen ions sandwiched therebetween, and an intermediate connector electrically connected to one of these electrodes. In manufacturing the fuel cell, at least one of the oxygen electrode and the intermediate connector is formed by spraying La-based perovskite composite oxide powder onto a predetermined base material by high-frequency plasma spraying. A method for manufacturing a solid electrolyte fuel cell.
(2)前記La系ペロブスカイト型複合酸化物が、La
_1_−_xM_xCrO_3、LaM_xCr_1_
−_xO_3、La_1_−_xM_xMnO_3、L
a_1_−_xM_xCoO_3(Mは、Ca、Mg、
Sr、Baのいずれか。x=0.01〜0.3)のいず
れかであることを特徴とする請求項1に記載の固体電解
質燃料電池の製造方法。
(2) The La-based perovskite-type composite oxide contains La
_1_-_xM_xCrO_3, LaM_xCr_1_
−_xO_3, La_1_-_xM_xMnO_3, L
a_1_-_xM_xCoO_3 (M is Ca, Mg,
Either Sr or Ba. The method for manufacturing a solid electrolyte fuel cell according to claim 1, wherein x=0.01 to 0.3).
JP1110336A 1989-04-28 1989-04-28 Method for manufacturing solid electrolyte fuel cell Expired - Fee Related JP2818948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110336A JP2818948B2 (en) 1989-04-28 1989-04-28 Method for manufacturing solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110336A JP2818948B2 (en) 1989-04-28 1989-04-28 Method for manufacturing solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH02288160A true JPH02288160A (en) 1990-11-28
JP2818948B2 JP2818948B2 (en) 1998-10-30

Family

ID=14533170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110336A Expired - Fee Related JP2818948B2 (en) 1989-04-28 1989-04-28 Method for manufacturing solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2818948B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133265A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH04133266A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
US5332598A (en) * 1991-12-04 1994-07-26 Ngk Insulators, Ltd. Process for the production of lanthanum chromite films by plasma spraying
US5348776A (en) * 1991-04-23 1994-09-20 Osaka Gas Company Limited Method of producing interconnectors for solid oxide electrolyte fuel cells
US5397657A (en) * 1991-01-28 1995-03-14 Ngk Insulators, Ltd. Method for increasing the electrical conductivity of a thermal sprayed interconnector for a solid electrolyte fuel cell
KR950034880A (en) * 1994-02-14 1995-12-28 다니엘 씨. 에이블스 A method of forming a plasma sprayed interconnect layer on an electrode of an electrochemical cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133265A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH04133266A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH07109767B2 (en) * 1990-09-25 1995-11-22 工業技術院長 Air electrode structure of solid electrolyte fuel cell
JPH07109768B2 (en) * 1990-09-25 1995-11-22 工業技術院長 Air electrode structure of solid electrolyte fuel cell
US5397657A (en) * 1991-01-28 1995-03-14 Ngk Insulators, Ltd. Method for increasing the electrical conductivity of a thermal sprayed interconnector for a solid electrolyte fuel cell
US5348776A (en) * 1991-04-23 1994-09-20 Osaka Gas Company Limited Method of producing interconnectors for solid oxide electrolyte fuel cells
US5332598A (en) * 1991-12-04 1994-07-26 Ngk Insulators, Ltd. Process for the production of lanthanum chromite films by plasma spraying
KR950034880A (en) * 1994-02-14 1995-12-28 다니엘 씨. 에이블스 A method of forming a plasma sprayed interconnect layer on an electrode of an electrochemical cell

Also Published As

Publication number Publication date
JP2818948B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
US5085742A (en) Solid oxide electrochemical cell fabrication process
CA1257899A (en) High strength porous support tubes for high temperature solid electrolyte electrochemical cells
US5998056A (en) Anode substrate for a high temperature fuel cell
US6048636A (en) Electrode substrate for fuel cell
JPH08509570A (en) Refractory fuel cell with improved solid electrolyte / electrode interface and method of making the interface
EP0727836A1 (en) Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
JPH09223508A (en) High temperature fuel cell having thin film electrolyte
US4895576A (en) Method of doping interconnections for electrochemical cells
EP0341365A1 (en) A method of bonding a conductive layer on an electrode structure
EP0617475B1 (en) Method of forming an interconnection layer by sintering on an electrode of an electrochemical cell
US5391440A (en) Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell
US8211587B2 (en) Plasma sprayed ceramic-metal fuel electrode
US6316136B1 (en) Interconnector for high temperature fuel cells
US20100325878A1 (en) Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs
JPH02288160A (en) Manufacture of solid electrolyte fuel cell
US20060172166A1 (en) Solid-oxide fuel cell and method for producing the same
US20100151353A1 (en) Method of producing a gas-tight solid electrolyte layer and solid electrolyte layer
JPH0395859A (en) Solid electrolyte fuel cell
JP3609146B2 (en) Fuel electrode of solid oxide fuel cell
US6093297A (en) Method for depositing solid electrolyte layer
JPH0436962A (en) Fuel cell with solid electrolyte
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JPS62268063A (en) Manufacture of solid electrolyte
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees