JPS62268063A - Manufacture of solid electrolyte - Google Patents

Manufacture of solid electrolyte

Info

Publication number
JPS62268063A
JPS62268063A JP61108687A JP10868786A JPS62268063A JP S62268063 A JPS62268063 A JP S62268063A JP 61108687 A JP61108687 A JP 61108687A JP 10868786 A JP10868786 A JP 10868786A JP S62268063 A JPS62268063 A JP S62268063A
Authority
JP
Japan
Prior art keywords
layer
solid electrolyte
thermal spraying
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108687A
Other languages
Japanese (ja)
Inventor
Motohei Katsuta
勝田 基平
Toshiro Nishi
敏郎 西
Shozo Kaneko
祥三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61108687A priority Critical patent/JPS62268063A/en
Publication of JPS62268063A publication Critical patent/JPS62268063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make a solid electrolytic layer having the desired thickness and the degree of sealing securable in an efficient manner, by forming the solid electrolytic layer on the electrode layer formed on the surface of a porous base material in advance by means of thermal spraying process, performing chemical evaporation on the surface and simultaneously carrying out the sealing, and forming a film by a porous electrode material, on this sealed surface. CONSTITUTION:Nickel oxide as a fuel electrode 3 is deposited to the surface of a porous base material by means of an acetylene thermal spraying process, and furthermore powder of partially stabilized yttria system zirconia is deposited to this outer layer by means of a plasma thermal spraying process, forming a thin film. Before a chemical evaporation is formed on to of this film, gas containing hydrogen and water is made to flow to the porous base material side 7 and also zirconium chloride and yttrium chloride both are made to flow to the surface side 8 of a thermal spraying layer 4, thus evaporation reaction is carried out. Lanthanum cobalt (LaCoO3) series is laminated to a still upper layer on the layer of this oxided 5 by means of the acetylene thermal spraying process, constituting an air electrode 6, formation of the fuel electrode 3 and this air electrode 6 is reversible at need.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温固体電解質型燃料電池、高温電解装置用
電極として使用される固体電解質の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a solid electrolyte used as an electrode for a high-temperature solid electrolyte fuel cell or a high-temperature electrolyzer.

〔従来の技術〕[Conventional technology]

高温固体電解質型燃料電池の構成方法として第2図に示
すように溶射法による方式がある。
As a method of constructing a high-temperature solid oxide fuel cell, there is a method using a thermal spraying method, as shown in FIG.

この場合には、固体電解質を形成する層を200〜50
0μmとしなければガスの漏洩を防止できないし、場合
によっては水柱10mの圧力下でも漏洩があり、燃料と
空気が直接燃・焼をおこして効率が著しく低下するばか
りでなく危険ででもある。また厚み200〜300μm
と云うのは燃料電池として使用する際にはイオン伝導の
抵抗が大きくさらに薄くすることが望まれる。
In this case, the number of layers forming the solid electrolyte is 200 to 50.
Unless the thickness is 0 μm, gas leakage cannot be prevented, and in some cases, leakage may occur even under a pressure of 10 m of water column, causing direct combustion of fuel and air, which not only significantly reduces efficiency but is also dangerous. Also, the thickness is 200 to 300 μm
This is because when used as a fuel cell, the resistance to ion conduction is large and it is desirable to make the material thinner.

一方他の方法として第3図に示すように電気化学的蒸着
方法も提案されていて、この方法は封孔は完全にでき薄
膜化はできるが信頼性ある電池用の固体゛電解質を形成
するにはきわめて時間がか\す、大量にか\る固体電解
質材料軍池を生産することは不可能に近い。
On the other hand, as another method, an electrochemical vapor deposition method has been proposed as shown in Figure 3. Although this method can completely seal the pores and form a thin film, it is insufficient to form a reliable solid electrolyte for batteries. It is extremely time consuming and nearly impossible to produce solid electrolyte materials in large quantities.

第2図において、01は例えばアルミナ(A403)の
約4箪厚の多孔質基材で、02はこの通気孔であり全体
に占める割合は20〜30%を占める。この表面に燃料
極03として酸化ニッケル(N10 )が約70〜10
0μmアセチレン溶射で付けられている。この上にプラ
ズマ溶射にて200.um〜300μmの厚みに部分安
定化したジルコニア[: (zroz)ate(cao
)at )が固体電解質04として付けられている。さ
らにその上層の06は空気極であって厚み100〜20
0μmのランタンクロム酸(LaCr03)  がアセ
チレン溶射法にてつけられたものである。
In FIG. 2, 01 is a porous base material made of, for example, alumina (A403) with a thickness of about 4 cm, and 02 is the ventilation hole, which accounts for 20 to 30% of the total. Approximately 70 to 10 nickel oxide (N10) is applied to this surface as the fuel electrode 03.
Attached by 0μm acetylene spraying. 200mm by plasma spraying on top of this. Partially stabilized zirconia [: (zroz)ate(cao) with a thickness of um~300μm
) at ) is attached as the solid electrolyte 04. Furthermore, the upper layer 06 is an air electrode with a thickness of 100 to 20
0 μm of lanthanum chromic acid (LaCr03) was applied by acetylene spraying.

次に第3図においては、厚さ2−のカルシア系部分安定
化ジルコニア[(ZrOt)a、(CaO)at)を多
孔質基材01aとして、その上層には[1,7−の空気
極06aがあり、ランタンマンガン酸(L a MTI
 02 )  をスラリーとして塗布後焼結している。
Next, in FIG. 3, a 2-thick calcia-based partially stabilized zirconia [(ZrOt)a, (CaO)at) is used as a porous base material 01a, and the upper layer is a [1,7-] air electrode. 06a, lanthanum manganic acid (L a MTI
02) was applied as a slurry and then sintered.

その上、)Δてイツトリア系部分安定化ジルコニア [
:(ZrOz)ass(YtOi)ate)を電気化学
的に蒸着して固体電解質層05a  40〜50μmを
形成しさらにその上部には燃料極05aとして50μm
のニツケルサーメツ) (Ni/N1p)をコーティン
グし焼結して形成している。
Moreover, ) Δtetriate partially stabilized zirconia [
:(ZrOz)ass(YtOi)ate) is electrochemically deposited to form a solid electrolyte layer 05a of 40 to 50 μm, and a fuel electrode 05a of 50 μm is formed on top of the solid electrolyte layer 05a.
It is formed by coating and sintering Ni (Ni/N1p).

〔発明が解決しようとする間萌点〕[The problem that the invention attempts to solve]

燃料電池として固体電解質を応用する上にはできるだけ
薄い固体電解質の形成が必要である。
In order to apply solid electrolytes to fuel cells, it is necessary to form solid electrolytes as thin as possible.

しかも固体電解の両側には多孔質の電極を介して燃料と
空気のガスが存在するので、お互いに通気(漏洩)する
ことがあってはならない。従来の溶射法では前述したよ
うにこの要求を満たすことはできない。
Furthermore, since fuel and air gas exist on both sides of the solid electrolyte via porous electrodes, there must be no ventilation (leakage) between them. Conventional thermal spraying methods cannot meet this requirement as described above.

多数の電池を組み合わして大出力を得ようとするうえに
は数kg / e、”の背圧に耐える必要すらある。し
かし一方多数の電池を徂み合わして使用する大出力の燃
料電池を構成するには大量生産方式が確立されることが
必要で従来の電気化学的蒸着方法では薄膜形成速度のき
わめておそい方式で必要厚みを得るには高価なものとな
り薄膜形成速度のスピードアップが必要とされている。
In order to obtain high output by combining a large number of batteries, it is necessary to withstand back pressure of several kg/e. It is necessary to establish a mass production method to construct the structure, and conventional electrochemical deposition methods are extremely slow in forming thin films, and are expensive to obtain the required thickness, so it is necessary to speed up the thin film forming speed. has been done.

本発明は上記従来法における欠点を解消しうる固体電解
質の製造方法を提供しようとするものである。
The present invention aims to provide a method for producing a solid electrolyte that can overcome the drawbacks of the above-mentioned conventional methods.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は ■ 多孔質基材の表面に多孔′(電極材料を塗布まだは
溶射により形成する第1工程、 ■ 該電極材料表面に固体電解質材料粉末を溶射して計
画厚さの大部分を占める厚さの固体電解質層を形成する
第2工程 ■ 該固体電解質層の表面に固体電解質材料を化学蒸着
させて固体電解質層の厚さを計画厚さとすると同時に該
層を封孔する第3工程、及び ■ 上記封孔処理した固体電解質層の表面に、多孔質@
極材料を塗布または溶射により形成する第4工程 よりなることを特徴とする固体電解質の製造方法である
The present invention includes: (1) forming pores (electrode material is coated on the surface of a porous base material by thermal spraying); (2) solid electrolyte material powder is thermally sprayed onto the surface of the electrode material so as to occupy most of the planned thickness; A second step of forming a solid electrolyte layer with a certain thickness ■ A third step of chemically depositing a solid electrolyte material on the surface of the solid electrolyte layer to make the thickness of the solid electrolyte layer the planned thickness, and at the same time sealing the layer. and■ Porous @ on the surface of the solid electrolyte layer sealed above
This is a solid electrolyte manufacturing method characterized by comprising a fourth step of forming an electrode material by coating or thermal spraying.

すなわち1本発明は予じめ多孔質ヲ材の表面に形成した
電極層上に先ず溶射法により固体電解質の80〜95%
に相当する50〜35μmを形成しその多孔性を利用し
て化学蒸着を行なわせ、封孔が完了した時期に固体電解
質の形成作業を終了する点を骨子とするものである。
That is, in the present invention, 80 to 95% of a solid electrolyte is first sprayed onto an electrode layer formed on the surface of a porous material by a thermal spraying method.
The basic idea is to form a solid electrolyte with a diameter of 50 to 35 .mu.m, which corresponds to 50 to 35 .mu.m, to perform chemical vapor deposition using its porosity, and to complete the solid electrolyte formation operation when the pore sealing is completed.

〔作用〕[Effect]

本発明は従来法の溶射法と化学的蒸着法とを巧みに組合
せて、所望の厚さ及び封孔度をもった固体電解質層を能
率よく製造しうるようにしたものである。
The present invention skillfully combines conventional thermal spraying methods and chemical vapor deposition methods to efficiently produce a solid electrolyte layer having a desired thickness and degree of sealing.

本発明において、多孔質基材としてはAt20seCS
 Z (Calcia 5tabilized Zrc
onia、カルシア安定化ジルコニア)等が、電極材料
としてばLaCoO3系、、 LaMnO3系などの空
気極、 Ni、 Ni−ZrO2サーメットなどの燃料
極が、固体電解質としてはC3Z、YSZ(イツトリア
安定化ジルコニア)などが使用される。
In the present invention, the porous base material is At20seCS
Z (Calcia 5tabilized Zrc
onia, calcia stabilized zirconia), etc., as electrode materials, air electrodes such as LaCoO3-based, LaMnO3-based, etc., fuel electrodes such as Ni, Ni-ZrO2 cermet, etc., and solid electrolytes such as C3Z, YSZ (yttoria-stabilized zirconia), etc. etc. are used.

〔実施例〕 第1図によって本発明の一実施例を説明する。〔Example〕 An embodiment of the present invention will be explained with reference to FIG.

1は多孔質基材で1瓢厚みのアルミナ(八403)板で
気孔率は20%のものを使用した。必要により長さ40
〜6(158の管又は底つきチューブを使うことができ
るし従来法に示した部分安定化ジルコニア系セラミック
スの多孔質材を基材として使うことが可能である。2は
気孔部分である。
No. 1 was a porous base material, which was an alumina (8403) plate with a thickness of one gourd and a porosity of 20%. Length 40 as required
6 (158) or a tube with a bottom can be used, and the porous material of partially stabilized zirconia ceramics shown in the conventional method can be used as the base material. 2 is the pore portion.

この表面に燃料極3として酸化ニッケル(N10)をア
セチレン溶射法で約50μmにつけ、さらにこの表層へ
プラズマ溶射法にて部分安定化したイツトリヤ系ジルコ
ニアの粉末を溶着させ厚みを平均40〜45μmとした
。粉末は(ZrOz)up・(YzOs)u+の混合組
成となるものを平均粒子径10μm以下のものを使用し
た。
Nickel oxide (N10) was applied to this surface as a fuel electrode 3 to a thickness of about 50 μm by acetylene spraying, and partially stabilized Ittriya-based zirconia powder was welded to this surface layer by plasma spraying to give an average thickness of 40 to 45 μm. . The powder had a mixed composition of (ZrOz)up/(YzOs)u+ and had an average particle size of 10 μm or less.

この上に化学蒸着層を形成する前に多孔質基材側7に水
素と水を含むガスを流し、溶射層4の表面側8に塩化ジ
ルコニウム及び塩化イツトリウムを約10対1のモル比
で流し1200℃に加熱して蒸着反応を行なった。
Before forming a chemical vapor deposition layer thereon, a gas containing hydrogen and water is flowed on the porous substrate side 7, and zirconium chloride and yttrium chloride are flowed on the surface side 8 of the thermal sprayed layer 4 at a molar ratio of about 10:1. A vapor deposition reaction was carried out by heating to 1200°C.

Z r C4+ 2820 →ZrO2+4HC2■2
YC13+3H20−I−Yz(% +6HCt   
 ■この2種の反応が溶射層4の表面でおこυ生成物で
ある酸化物5が蒸着して来てやがて封孔されるに至る。
Z r C4+ 2820 →ZrO2+4HC2■2
YC13+3H20-I-Yz(% +6HCt
(2) These two types of reactions occur on the surface of the thermally sprayed layer 4, and the oxide 5, which is a υ product, is deposited and the pores are eventually sealed.

封孔された後に、酸化物5の表面側と基材側に酸素分圧
差が生じて、酸素濃淡電池が形成され、 O!+4e  →20−         ■の反応で
起るOrが移動し酸化物5の表面側でZ r C14+
 40”−4Z r 01 + CI4 + 8 e 
  ■2YCLs + 302″″ →Y203 + 
3 C4+ 6 e  ■の反応が起り成長していく。
After the pores are sealed, a difference in oxygen partial pressure occurs between the surface side of the oxide 5 and the base material side, forming an oxygen concentration battery, and O! +4e →20− Or that occurs in the reaction of (2) moves and forms Z r C14+ on the surface side of oxide 5.
40”-4Z r 01 + CI4 + 8 e
■2YCLs + 302″″ →Y203 +
3 C4+ 6 e The following reaction occurs and it grows.

高温かつ酸素分圧が低い時は、酸化物5の層で電子導電
性が現われるため電子の補償はおこなわれている。しか
し酸素イオンの移動方向とは逆方向の電子の移動速度が
遅いため、この反応のみで所定の厚みの酸化物50層を
得るのは能率が悪い。本発明では耐圧力を満足する時点
で終了するのでこの反応は必要がないか、早々に打ち切
ることが可能である。
When the temperature is high and the oxygen partial pressure is low, electron conductivity appears in the layer of oxide 5, so that electron compensation is performed. However, since the moving speed of electrons in the opposite direction to the moving direction of oxygen ions is slow, it is inefficient to obtain 50 layers of oxide with a predetermined thickness only by this reaction. In the present invention, since the reaction ends when the pressure resistance is satisfied, this reaction is not necessary or can be stopped early.

この酸化物5の層のさらに上層にはランタンコバルタイ
ト(LaCo03)系をアセチレン溶射にて100μm
層積して空気極6を構成している。
Further above this layer of oxide 5, lanthanum cobaltite (LaCo03) is applied by spraying with acetylene to a thickness of 100 μm.
The air electrode 6 is formed by stacking layers.

必要によっては燃料極3と空気極6の構成を逆にもでき
る。
If necessary, the configurations of the fuel electrode 3 and air electrode 6 can be reversed.

このようにして構成した多孔質基材1の側7に水素或は
−酸化炭素をわずかの水蒸気と共に供給し、空気極6の
側8に空気を供給して1000℃に全体を保持するとき
、燃料極3と空気極6とを導Bq t 1oにて結線す
るとき直流の電気が得られるいわゆる燃料電池が構成さ
れる。
When hydrogen or carbon oxide is supplied together with a small amount of water vapor to the side 7 of the porous substrate 1 constructed in this way, and air is supplied to the side 8 of the air electrode 6 to maintain the entire body at 1000°C. When the fuel electrode 3 and the air electrode 6 are connected by a conductor Bq t 1o, a so-called fuel cell is constructed which can obtain direct current electricity.

このとき、空気j6では 02 + 4p #20−          ■の反
応が生じ酸素イオンは固体電解質を構成している第1図
における酸化物5、溶射層4の固体内を、イオン伝導し
て移動し、燃料極3に至る。燃料種3では導線)0,9
を結んで外側を移動して来た電子をもらい式■の逆反応
がおき、さらに、 2Hz+0□4 2H,0■ 2 Co + Oz  、:  2 CO2■の反応に
よって燃料電池としての反応が終結する。
At this time, the reaction 02 + 4p #20- (2) occurs in the air j6, and the oxygen ions move through the solid of the oxide 5 and sprayed layer 4 in Fig. 1, which constitute the solid electrolyte, by ion conduction. It reaches the fuel electrode 3. For fuel type 3, conductor) 0,9
The reverse reaction of the formula ■ occurs when the electrons that have moved on the outside are received, and further, the reaction as a fuel cell is completed by the reaction of 2Hz + 0□4 2H,0■ 2 Co + Oz, : 2 CO2■ .

また、結線9,10に直流電気を供給するときには上記
■又は0式が逆に行なわれ、酸素イオンが空気極6で酸
素としてとりだせるいわゆる高@電解装置としても利用
できる。
Further, when direct current electricity is supplied to the connections 9 and 10, the above formula (1) or (0) is performed in reverse, and the device can also be used as a so-called high@electrolysis device in which oxygen ions can be taken out as oxygen at the air electrode 6.

〔発明の効果〕〔Effect of the invention〕

1)従来溶射によって構成された方法では到底得られな
い薄膜型の固体電解質が得られる。
1) A thin film type solid electrolyte, which could not be obtained by conventional thermal spraying methods, can be obtained.

2)かつ化学蒸着法洸より完全な密閉が可能となり、集
積して使用するとき充分なを圧をかけても洩れがなく安
全となる。
2) Furthermore, chemical vapor deposition allows complete sealing, and when used in an integrated manner, there is no leakage and safety even when sufficient pressure is applied.

5)従来の戒気化学的蒸着法のきわめて慇い生産性を著
しく向上できる。
5) It is extremely easy to use and the productivity of the conventional chemical vapor deposition method can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解質の構成を示す概略図、第2
図、第5図は従来方法で製造した固体電解質の構成を示
す概略図である。 第1図 8   空気 第2図 手続補正書 昭和61年 9月9日
Figure 1 is a schematic diagram showing the structure of the solid electrolyte of the present invention, Figure 2 is a schematic diagram showing the structure of the solid electrolyte of the present invention.
FIG. 5 is a schematic diagram showing the structure of a solid electrolyte manufactured by a conventional method. Figure 1 8 Air Figure 2 Procedural Amendments September 9, 1986

Claims (4)

【特許請求の範囲】[Claims] (1)多孔質基材の表面に多孔質電極材料を塗布または
溶射により形成する第1工程、
(1) A first step of forming a porous electrode material on the surface of a porous base material by coating or thermal spraying,
(2)該電極材料表面に固体電解質材料粉末を溶射して
計画厚さの大部分を占める厚さの固体電解質層を形成す
る第2工程
(2) A second step of spraying solid electrolyte material powder onto the surface of the electrode material to form a solid electrolyte layer with a thickness that accounts for most of the planned thickness.
(3)該固体電解質層の表面に固体電解質材料を化学蒸
着させて固体電解質層の厚さを計画厚さとすると同時に
該層を封孔する第3工程、及び
(3) a third step of chemically depositing a solid electrolyte material on the surface of the solid electrolyte layer to bring the thickness of the solid electrolyte layer to the planned thickness and simultaneously sealing the layer;
(4)上記封孔処理した固体電解質層の表面に、多孔質
電極材料を塗布または溶射により形成する第4工程 よりなることを特徴とする固体電解質の製造方法。
(4) A method for manufacturing a solid electrolyte, comprising a fourth step of forming a porous electrode material on the surface of the solid electrolyte layer subjected to the sealing treatment by coating or thermal spraying.
JP61108687A 1986-05-14 1986-05-14 Manufacture of solid electrolyte Pending JPS62268063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108687A JPS62268063A (en) 1986-05-14 1986-05-14 Manufacture of solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108687A JPS62268063A (en) 1986-05-14 1986-05-14 Manufacture of solid electrolyte

Publications (1)

Publication Number Publication Date
JPS62268063A true JPS62268063A (en) 1987-11-20

Family

ID=14491110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108687A Pending JPS62268063A (en) 1986-05-14 1986-05-14 Manufacture of solid electrolyte

Country Status (1)

Country Link
JP (1) JPS62268063A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414270A2 (en) * 1989-08-24 1991-02-27 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
EP0481679A2 (en) * 1990-10-15 1992-04-22 Westinghouse Electric Corporation Solid oxide electrochemical cell fabrication process
WO1992010862A1 (en) * 1990-12-10 1992-06-25 Yuasa Battery Co., Ltd. Method for manufacturing solid-state electrolytic fuel cell
WO1994010717A1 (en) * 1992-10-28 1994-05-11 Siemens Aktiengesellschaft Process for sealing high-temperature fuel cells and fuel cells sealed according to this process
US5358735A (en) * 1991-03-28 1994-10-25 Ngk Insulators, Ltd. Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
US6093297A (en) * 1996-04-02 2000-07-25 Nkk Corporation Method for depositing solid electrolyte layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414270A2 (en) * 1989-08-24 1991-02-27 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
US5151334A (en) * 1989-08-24 1992-09-29 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
EP0481679A2 (en) * 1990-10-15 1992-04-22 Westinghouse Electric Corporation Solid oxide electrochemical cell fabrication process
WO1992010862A1 (en) * 1990-12-10 1992-06-25 Yuasa Battery Co., Ltd. Method for manufacturing solid-state electrolytic fuel cell
US5290323A (en) * 1990-12-10 1994-03-01 Yuasa Corporation Manufacturing method for solid-electrolyte fuel cell
US5358735A (en) * 1991-03-28 1994-10-25 Ngk Insulators, Ltd. Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
WO1994010717A1 (en) * 1992-10-28 1994-05-11 Siemens Aktiengesellschaft Process for sealing high-temperature fuel cells and fuel cells sealed according to this process
US6093297A (en) * 1996-04-02 2000-07-25 Nkk Corporation Method for depositing solid electrolyte layer

Similar Documents

Publication Publication Date Title
US4749632A (en) Sintering aid for lanthanum chromite refractories
CA1236352A (en) Method of making an electrode
US5085742A (en) Solid oxide electrochemical cell fabrication process
US20020081762A1 (en) Electrochemical device and process of making
US5277995A (en) Electrode and method of interconnection sintering on an electrode of an electrochemical cell
JP2004511070A (en) Solid oxide fuel cell component and method of manufacturing solid oxide fuel cell component
JPH08509570A (en) Refractory fuel cell with improved solid electrolyte / electrode interface and method of making the interface
JPS61171064A (en) Pneumatic electrode material for high temperature electrochemical battery
JPH04332474A (en) Method of forming electronic conductive composite layer onto base material of device containing solid electrolyte
CA2445599A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
CN112382774A (en) Preparation method of electrolyte supporting type electrolytic cell barrier layer
US20100325878A1 (en) Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs
Mineshige et al. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique
JPS62268063A (en) Manufacture of solid electrolyte
JPH05151981A (en) Solid electrolyte fuel cell
JPH03222261A (en) Electrode for solid electrolytic fuel cell
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
CN101107740A (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
WO2014198513A1 (en) Electrochemical cell
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPS63285877A (en) Manufacture of solid electrolyte
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
JPH04101360A (en) Manufacture of solid electrolyte-type fuel cell